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Abstract

Antipsychotic Induced Weight Gain (AIWG) is a common and severe side effect of many 

antipsychotic medications. Mitochondria play a vital role for whole-body energy homeostasis and 

there is increasing evidence that antipsychotics modulate mitochondrial function. This study aimed 

to examine the role of variants in nuclear-encoded mitochondrial genes and the mitochondrial 

DNA (mtDNA) in conferring risk for AIWG. We selected 168 European-Caucasian individuals 

from the CATIE sample based upon meeting criteria of multiple weight measures while taking 

selected antipsychotics (risperidone, quetiapine or olanzapine). We tested the association of 670 

nuclear-encoded mitochondrial genes with weight change (%) using MAGMA software. Thirty of 

these genes showed nominally significant P-values (<0.05). We were able to replicate the 

association of three genes, CLPB, PARL, and ACAD10, with weight change (%) in an 

independent prospectively assessed AIWG sample. We analyzed mtDNA variants in a subset of 74 

of these individuals using next-generation sequencing. No common or rare mtDNA variants were 

found to be significantly associated with weight change (%) in our sample. Additionally, analysis 
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of mitochondrial haplogroups showed no association with weight change (%). In conclusion, our 

findings suggest nuclear-encoded mitochondrial genes play a role in AIWG. Replication in larger 

sample is required to validate our initial report of mtDNA variants in AIWG.
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1. Introduction

Schizophrenia (SCZ) is a complex disorder characterized by psychosis and disturbed 

behavior. It is estimated to affect approximately 1% of the adult population worldwide 

(McGuffin et al., 1995). SCZ is ranked among the top 10 causes of disability among people 

in developed countries (Kahn et al., 2015). Antipsychotic medications are an important, 

effective therapeutic intervention for controlling the major symptoms of SCZ (Allison et al., 

1999). However, weight gain is a common side effect of treatment with antipsychotics, and 

is particularly pronounced with clozapine and olanzapine, and is becoming a major health 

concern (Gebhardt et al., 2010). Antipsychotic-induced weight gain (AIWG) is a severe side 

effect observed in up to 40% of patients taking medications referred to as second-generation 

or atypical antipsychotics (Lett et al., 2012; Ucok and Gaebel, 2008). Weight gain leads to 

increased risk for cardiovascular morbidity and mortality. In addition, excessive weight and 

obesity can have important effects on an individual's' adjustment in the community, ability to 

participate in rehabilitation efforts and self-image, contributing to a main reason for non-

adherence (Ucok and Gaebel, 2008). The heritability of AIWG has been suggested to be 

between 60 and 80% based on twin and family studies, indicating the role of genetic factors 

in the pathophysiology of AIWG (Gebhardt et al., 2010). Several studies have addressed the 

genetic basis of AIWG in terms of the nuclear genome, and it is a well-established area of 

research (MacNeil and Muller, 2016; Muller et al., 2013; Muller and Kennedy, 2006).

The mitochondrial system is an interesting target to be examined in AIWG studies. First, 

mitochondria are the main source of aerobic energy for brain cellular functioning. Second, 

these organelles have been shown to be involved in appetite and satiety regulation through 

hypothalamic signaling mechanisms. Briefly, the arcuate nucleus in the hypothalamus is the 

main central regulator for energy metabolism. In this region, there are two specific types of 

neurons: anorectic (POMC) and orexigenic (NPY/AgRP). When glucose levels are high in 

the cell, POMC neurons are active and promote satiety in association with elevated 

production of the mitochondrial reactive oxygen species (mtROS), and increased 

mitochondrial fusion. When glucose levels are low, NPY-AgRP neurons are active and 

promote hunger associated with fatty acid metabolism, low levels of mtROS, and increased 

mitochondria fission (Jordan et al., 2010; Nasrallah and Horvath, 2014). Finally, 

antipsychotic medications are reported to alter mitochondrial function although the 

molecular mechanisms are incompletely understood (see (Goncalves et al., 2014) for a 

review). Despite the rationale for mitochondrial involvement, there are not many studies 

examining mitochondrial genetic variance in AIWG. In one such study, our group reported 
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the association between the NDUFS1 mitochondrial gene with AIWG (Goncalves et al., 

2014). This study was the first to highlight the role of mitochondrial variation in AIWG and 

it prompted further, more thorough investigation of our hypothesis.

The mtDNA is a circular molecule containing 16,569 base pairs that encodes 37 genes: 13 

subunits of the mitochondrial electron transport chain and a distinct set of rRNAs and 

tRNAs, all of which are critical for life-sustaining oxidative phosphorylation and energy 

generation (Wallace, 1994). Additionally, more than 1000 nuclear-encoded mitochondrial 

genes are necessary for mitochondrial functioning and biogenesis (Wallace, 2013). Here we 

hypothesize that nuclear-encoded mitochondrial genes are enriched in variants associated 

with AIWG. We also hypothesize that variants in the mtDNA are associated with AIWG.

2. Methods

2.1. Methods for nuclear-encoded mitochondrial genes

2.1.1. CATIE GWAS imputation—The genome-wide genotyping in the CATIE samples 

was performed using Affymetrix 500 k/Perlegen's custom 164 K chips. A total of 495,172 

SNPs were available. We performed standard quality control (QC) measures in CATIE 

sample before imputation (Anderson et al., 2010; Clarke et al., 2011). Briefly, we removed 

individuals with <95% of the markers genotyped, and markers that were <95% genotyped. 

We checked cryptic relatedness, and one individual of each pair of related individuals was 

removed (PI^ HAT > 0.05), choosing preferably that individual with the missing phenotype 

or more missing genotypes. Mean heterozygosity was calculated and outliers (±4 SD) were 

removed. In a subsequent step, some SNPs were filtered out if the χ2-test for Hardy-

Weinberg equilibrium was <0.001. Multi-dimensional scaling (MDS) analysis of the 

genotypes was used to check for population stratification, and outliers were removed 

through visual inspection of scatter plots. During QC, we excluded: (1) 0 subjects for 

relatedness; (2) 3 subjects for discordant sex info; (3) 0 subjects for missing genetic data; (4) 

382 markers for low genotyping rate; and (5) 42,789 markers for minor allele frequency of 

<0.05. After QC, we had total sample of 168 individuals which also met the inclusion 

criteria for AIWG study as described below.

Whole-genome imputation was conducted using IMPUTE2 (Howie et al., 2012) in 5-Mb 

segments after pre-phasing the data in SHAPEIT2 (Delaneau et al., 2013) using the 1000 

Genomes Project Phase 3 dataset (Genomes Project et al., 2015) as reference panel. The 

imputation output (.gen) was then converted to bed/bim/fam format using PLINK2 with an 

imputation score threshold of 0.8. Post-imputation QC was performed, removing individuals 

with <95% of the markers genotyped (N = 0), and markers that were <95% genotyped (N = 

594,431). The χ2-test for Hardy-Weinberg equilibrium was <0.000001 (N = 0). A total of 

1,711,800 biallelic SNPs were available for analyses after imputation.

2.1.2. Analysis of nuclear-encoded mitochondrial gene set—The mitochondrial 

set of genes included 670 mitochondrial genes from MitoCarta v.2.0 (release 2015). For the 

gene-set competitive analysis, we also included the remaining “protein-coding genes” (i.e., 

all other genes present in our data that were not listed above). MAGMA software was used 

(default settings) for gene-based and gene-set analyses (de Leeuw et al., 2015) for our 
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imputed genotype data in the CATIE sample. MAGMA uses three basic steps to calculate P-

values for genes and pathways/gene-sets. In step #1, the PLINK binary map file is used as 

input to annotate SNPs to genes (present in human genome build 37). In step #2, P-values 

are calculated for all genes present in the data set, excluding SNPs in linkage disequilibrium 

and taking into account gene sizes. The P-values are corrected for the number of tests used 

(i.e. total number of genes (N = 670 in the current study)). Step #3 calculates P-values for 

the pathways/gene-sets of interest. A competitive analysis model was used as it corrects for 

the baseline association, and verifies whether gene sets of interest are more strongly 

associated with the phenotype than other sets of genes in the data set.

We used an independent sample (N =151) to replicate our findings from gene-based 

analysis. This sample was described elsewhere (Tiwari et al., 2016). Briefly, we conducted 

genome-wide genotyping using the Illumina Omni 2.5 M Array. In total, 2,370,667 SNPs 

were genotyped for 237 participants at The Centre for Applied Genomics (TCAG) at The 

Hospital for Sick Children in Toronto, Canada. QC methods were selected according to 

Anderson et al. (Anderson et al., 2010) and Clarke et al. (Clarke et al., 2011) and which we 

have applied in previous studies (Maciukiewicz et al., in press). Across individuals within 

our sample, we investigated sex discordance, individual genotype missingness rates (<5%), 

heterozygosity rate, relatedness (i.e. identity-by-descent, IBD) and genetic ancestry to 

confirm self-reported ancestry, as well as to control for fine population structure. To avoid 

issues of sample contamination or the possibility of inbreeding, we ensured a heterozygosity 

rate of ±3 standard deviations from the mean. Furthermore, we restricted individual 

genotype missingness to <5%. To avoid spurious associations due to population 

stratification, we confirmed self-reported ancestry with genetic ancestry using MDS in 

PLINK. We plotted our sample versus the HapMap reference populations for Europeans and 

African Americans using R. We defined ethnic outliers as those individuals located ±6 

standard deviations from the mean. After individual QC, we excluded: (1) 5 subjects with 

excessive relatedness; (2) 8 subjects with discordant sex info; (3) 2 subjects with low 

genotyping rate; (4) 10 subjects with missing genetic data and ancestry different than 

African American or European. Some of individuals failed more than one QC step. As a 

result, we had a total sample of 202 individuals (51 and 151 of African-American and 

European ancestry respectively). An analytical workflow for nuclear-encoded mitochondrial 

genes is shown in the Fig. 1.

2.2. Methods for mtDNA

2.2.1. CATIE sample—The description of the Clinical Antipsychotic Trials of 

Intervention Effectiveness (CATIE) sample has been previously published (Lieberman et al., 

2005). We sequenced the mtDNA of 113 individuals from the CATIE sample. However in 

the association analysis, we included individuals who fulfilled the following criteria: study 

medication with at least medium or high risk for weight gain (risperidone, quetiapine or 

olanzapine), no marked obesity (BMI < 40 kgm−2) at study baseline, no medication with 

high risk for weight gain before baseline (start of the study) for >14 days, European ancestry 

and more than one weight measure available after baseline. This excluded patients who had 

received antipsychotics (ziprasidone or perphenazine) that are not associated with significant 

weight gain. Similarly, patients with baseline BMI ≥ 40 kgm−2, and with prior exposure to 
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medication with high weight gain risk (Olanzapine) are less likely to gain weight during the 

course of the study (Brandl et al., 2016). After the exclusion of confounding factors, our 

refined sample size was 74. Demographic and clinical characteristics of the samples are 

provided in Table 1. Weight gainers were defined as those individuals who showed weight 

gain greater than or equal to 7% from baseline (N= 24).

2.2.2. Next-generation sequencing (NGS)—We sequenced the mtDNA genome in 113 

schizophrenia subjects using methods described previously (Sequeira et al., 2012). Briefly, 

the mitochondrial genome was initially enriched by long-range PCR amplification of two 

overlapping amplicons, which were then purified and sequenced on the Illumina HiSeq 2500 

according to manufacturer's protocols. Reads from the Illumina HiSeq 2500 (single end 

fastaQ) were analyzed using mtDNA-Server v.1.0.6 (https://mtdnaserver.uibk.ac.at/

index.html) with default parameters. mtDNA-Server is a free web tool for mtDNA NGS 

analysis (for details see (Kloss-Brandstatter et al., 2015), (Weissensteiner et al., 2016)). 

Briefly, the server validates the input format (fastaQ/BAM) and aligns the reads to revised 

Cambridge Reference Sequence (rCRS, GenBank accession number NC_012920) using 

Burrows-Wheeler Aligner Maximum Exact Match algorithm (BWA MEM). Then, the bases 

(only with PHRED score ≥ 30) for each position relative to the rCRS are extracted. Details 

regarding the parameters used by the server can be found on the website (https://mtdna-

server.uibk.ac.at/index.html#!pages/help). Homoplasmic variants were defined as those with 

the major allele found to differ from the rCRS and constituted 95–100% of the reads.

2.2.3. Statistical analysis—Linear regression was used to test the association of 

genotypes with weight change (%) using an additive genetic model (Purcell et al., 2007). 

Weight change (%) from baseline was used as the dependent variable, and genotypes were 

entered as predictors. To account for multiple tested, the number of independent SNPs (N = 

167) was estimated using SNP Spectral Decomposition Lite (Nyholt, 2004), and a 

Bonferroni-corrected significance threshold of 0.0003 was applied. Haplogroups were 

identified using HaploGrep through the mtDNA-Server. All of them were assigned with a 

quality score of 0.8 or higher by HaploGrep. Due to the small sample size, phylogenetically 

related haplogroups were combined and analyzed together. Thus, three European groups 

were tested for association with weight change (%): (“H-HV-V”, “J-T”, and “K-U”). 

Individuals assigned as non-European based on their haplogroups were filtered out (N = 14). 

The association between haplogroups and weight change (%) was tested using linear 

regression in the Statistical Package for the Social Sciences (SPSS) v24 (IBM Corporation, 

Armonk, N.Y., USA). Rare variant analyses on the genotyped markers was performed using 

Sequence Kernel Association Test (SKAT) (Ionita-Laza et al., 2013), as described previously 

(Gonçalves et al., under review). We did not observe differences in allele calls when 

comparing cell lines with blood-derived mtDNA. However, in cell lines, there is a trend for 

increasing heteroplasmy compared to blood-derived mtDNA (Vawter, M., unpublished 

observation). Since heteroplasmy was not analyzed in this study, this observation does not 

affect the present results. Power was calculated using Quanto (Morrison, 2006) assuming an 

additive model and using the following parameters: mean weight change of 4% (±8.62), 

sample size of N = 74, the observed beta and minor allele frequency of the SNP. An 

analytical workflow for mtDNA variants is shown in the Fig. 2.
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3. Results

3.1. Analysis of nuclear-encoded mitochondria gene set

Nuclear-encoded mitochondrial genes were investigated for enrichment across variants 

associated with weight change (%). MAGMA annotated SNPs in 11,980 genes present in 

our CATIE imputed data (this included 670 mitochondrial genes). In the gene-based analysis 

(which tests the association of each gene with the phenotype), we identified 30 

mitochondrial genes with P-value < 0.05, although these observations did not survive 

multiple-testing correction (Table 2). We performed the gene-based analysis in our second 

independent data set. While the gene-set analysis showed no enrichment of variants 

associated with weight change (%) for the nuclear-encoded mitochondrial gene set (N=670 

genes; P-value=0.88), we were able to replicate three of the 30 mitochondrial genes (P-value 

<0.05) from the CATIE data set: (1) ClpB Homolog, Mitochondrial AAA ATPase 

Chaperonin (CLPB), (2) Presenilin Associated Rhomboid Like (PARL), and (3) Acyl-

coenzyme A dehydrogenase 10 (ACAD10) (Table 3).

3.2. Analysis of variants in mtDNA

We analyzed 74 complete mtDNA sequences. The average coverage for the variants was 

12,000× (min = 1,895×, max = 38,894×).

3.2.1. Homoplasmic variants in mtDNA—A total of 293 homoplasmic variants were 

identified in our sample. Of these, 282 were transitions (95.3%) and 11 were transversions 

(4.7%) (Ti/Tv ratio is 25:1). This ratio is within the expected range of between 20:1 and 38:1 

for humans (Guo et al., 2012; Pereira et al., 2009). A total of 56 were non-synonymous 

based on MutPred (Li et al., 2009) and Selection Score (Pereira et al., 2011), and 19 were 

classified as harmful in both tools (Supplemental Table 1).

Eighty-seven of 293 variants were uniquely found in weight gainers, and 18 of the 87 were 

non-synonymous substitutions (Table 4). There was no statistically significant difference for 

the proportion of synonymous versus non-synonymous SNPs between weight gainers and 

non-weight gainers in our sample (0.19 versus 0.18, P-value= 1).

We next performed linear regression with the weight change (%) as the dependent variable 

and the mtDNA genotypes as predictors. The raw sequence data was converted to VCF files 

and then to PLINK format to perform single SNP analysis. There were 75 bi-allelic variants 

identified by mtDNA NGS with MAF of at least 5%. From the association analysis, no SNPs 

were found to be significant in association with weight change (P < 0.05) (see Table 5 for 

top hits). Rare variant analysis conducted (N = 308 SNPs, MAF ≤ 5%) using SKAT (Ionita-

Laza et al., 2013) yielded a P-value of 0.8. Considering that age can be a confounder for 

analysis of mtDNA variants, a Pearson correlation was performed to assess the relationship 

between age and weight change (%). There was no significant correlation between the two 

variables (r = −0.168, N = 74, P = 0.15), and thus, age was not included in our model.

3.2.2. Haplogroup analysis—Sixty-eight unique haplogroups were found in our sample 

set. Association was tested between mtDNA phylogenetic groups and weight change (%). 

Mittal et al. Page 6

Schizophr Res. Author manuscript; available in PMC 2017 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



None of the groups tested (i.e. H-HV-V, J-T, and K-U) was significantly associated with the 

phenotype (see Table 6).

4. Discussion

In this study, we examined the hypothesis that nuclear-encoded mitochondrial genes are 

associated with AIWG. The gene-set analysis did not show enrichment of mitochondrial 

variants to be associated with weight change (%). However, the analysis of genes 

individually revealed 30 nominally significant for the phenotype, of which three were 

replicated in an independent sample.

The most interesting finding was with the gene CLPB, which is a member of the ATP-ases 

(AAA+) superfamily. It cooperates with Hsp70 in the disaggregation of (misfolded) protein 

aggregates. Although the protein function is not completely understood in humans, variants 

in CLPB appear to disrupt the integrity of mitochondrial membrane by allowing abnormal 

protein aggregation (Kanabus et al., 2015).

PARL is a mitochondrial intermembrane Rhomboid protease. Its function is associated with 

maintenance of mitochondrial morphology and apoptosis. Reduced PARL protein levels was 

associated with diabetes, possibly due to an imbalance between mitochondrial biogenesis 

and degradation, which in turn reduces mitochondrial mass and alters mitochondrial 

dynamics (Civitarese et al., 2010). Mitochondrial dynamics (i.e., mitochondrial fusion, 

fission, and motility) regulates important processes including mitochondrial morphology, 

mitophagy, mtDNA stability, ROS generation and cellular stress response. It has been shown 

that disturbance in the integrity of mitochondrial membranes and mitochondrial dynamics 

promotes mitochondrial dysfunction, which leads to a variety of metabolic stresses and 

disorders (Nasrallah and Horvath, 2014).

ACAD10 is involved in the beta-oxidation of fatty acids in mitochondria. Variants in 

ACAD10were associated with type-2 diabetes and insulin resistance in Pima Indians, 

possibly due to impaired lipid oxidation and/or increased adipocytes size (Bian et al., 2010). 

These two abnormalities are correlated with insulin resistance and increased risk for type-2 

diabetes (Weyer et al., 2000). Thus, variants described for two of the genes identified in our 

study have been associated with metabolic alteration linked to mitochondrial dysfunction.

This study also investigated the association between weight change (%) and variants in 

mtDNA which is generally excluded from routine GWAS analyses. To the best of our 

knowledge, this is the first study to date to examine this hypothesis. We did not observe any 

significant association of both common and rare variants with the phenotype. However, we 

identified variants exclusively in the group with ≥7% weight gain, which should serve as 

stimulus for future AIWG studies.

There are a number of limitations with the current study. Our findings were derived from a 

modest sample size of only 74 subjects: While we carefully selected patients to be removed 

from the sample based on trial medication, and previous use of psychotropic medication, we 

did not have enough power to detect polymorphisms of small/moderate effects. Adherence 

to prescribed medication was also a potential confound. The CATIE sample also has 
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considerable diagnostic heterogeneity, and was collected across >57 sites. Additionally, 

since the CATIE DNA sample was derived from cell lines, it is possible that passage effect 

partly contributed to sample heterogeneity. Furthermore, there may be potential differences 

between blood and brain in terms of mitochondrial variants. However, for mtDNA 

homoplasmic variants, we have previously reported 100% concordant sequencing results 

between blood and different brain regions (Sequeira et al., 2012).

In summary, this study identified nuclear-encoded mitochondrial genes conferring risk for 

AIWG. Proteins involved in mitochondrial membranes and dynamics appeared to be 

candidates worthy of further examination in studies of this type. The mtDNA analysis 

showed limitations mainly due to the fact that CATIE sample was not designed for this type 

of study (AIWG). However, we were able to produce preliminary data to be further explored 

in larger samples. The analysis of the mitochondrial genes encoded by the nucleus and 

mtDNA as presented in this study holds the potential to shed light on the role of 

mitochondria in the antipsychotic-induced side effects and related phenotypes. Replication 

in larger samples and/or other ethnic groups will permit a better understanding of the role of 

mitochondria in AIWG.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overall analytical workflow for nuclear-encoded mitochondrial genes.
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Fig. 2. 
Overall analytical workflow for mtDNA variants.
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Table 1

Demographic and clinical characteristic of the sample.

Total Number Mean SD

Sex Male 61

Female 13

Age 40 11.98

Treatment duration 143 43.52

Percentage of weight gain 4% 8.62

Olanzapine 42

Risperidone 32

Individuals with >7% weight gain 24

SD: standard deviation.
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Table 6

Results from association analysis between mitochondrial DNA groups and weight change (%).

Haplogroup Beta P-value % Weight gain (SD, K)

H-HV-V −1.878 0.35 H-HV-V: 2.88% (8.54, 35) other: 4.75% (8.71, 39)

J-T 0.611 0.79 J-T: 4.33% (9.31, 18) other: 3.72% (8.48, 56)

K-U 1.112 0.64 K-U: 4.72% (9.02, 17) other: 3.61% (8.57, 57)

Schizophr Res. Author manuscript; available in PMC 2017 October 29.


	Abstract
	1. Introduction
	2. Methods
	2.1. Methods for nuclear-encoded mitochondrial genes
	2.1.1. CATIE GWAS imputation
	2.1.2. Analysis of nuclear-encoded mitochondrial gene set

	2.2. Methods for mtDNA
	2.2.1. CATIE sample
	2.2.2. Next-generation sequencing (NGS)
	2.2.3. Statistical analysis


	3. Results
	3.1. Analysis of nuclear-encoded mitochondria gene set
	3.2. Analysis of variants in mtDNA
	3.2.1. Homoplasmic variants in mtDNA
	3.2.2. Haplogroup analysis


	4. Discussion
	References
	Fig. 1
	Fig. 2
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

