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Molecular imaging enables the visualization and quantitative analysis of the alterations of biological procedures atmolecular and/or
cellular level, which is of great significance for early detection of cancer. In recent years, deep leaning has been widely used in
medical imaging analysis, as it overcomes the limitations of visual assessment and traditional machine learning techniques by
extracting hierarchical features with powerful representation capability. Research on cancer molecular images using deep learning
techniques is also increasing dynamically. Hence, in this paper, we review the applications of deep learning in molecular imaging
in terms of tumor lesion segmentation, tumor classification, and survival prediction. We also outline some future directions in
which researchersmay developmore powerful deep learningmodels for better performance in the applications in cancermolecular
imaging.

1. Introduction

With increasing incidence and mortality, cancer has always
been a leading cause of death for many years. According to
American Cancer Society, there are around 1,685,210 new
cases and 595,690 deaths in 2016 [1]. It was reported that the
5-year survival rate for the cancer patients diagnosed in early
stage was as high as 90% [2]. In this regard, early and precise
diagnosis is critical for better prognosis of cancer.

Molecular imaging is an imaging technique to visualize,
characterize, andmeasure biological procedures at molecular
and/or cellular level [3] and has been considered as a
powerful tool for early detection of cancer. Compared with
anatomical imaging techniques, molecular imaging is more
promising in diagnosing cancer in the early stage, as it is
capable of signaling themolecular or physiological alterations
in cancer patients which may happen before the obvious

anatomical changes. Molecular imaging is also helpful in
individualized therapy as it can reflect the treatment response
at themolecular level.Therefore, molecular imaging has been
widely used in cancer management.

The current molecular imaging modalities in clinical
practice include contrast-enhanced computed tomography
(CT), contrast-enhanced magnetic resonance (MR) imaging,
MR spectroscopy, and nuclear medicine such as single pho-
ton emission computed tomography (SPECT) and positron
emission tomography (PET). Visual assessment conducted by
the radiologists is the most common way to analyze these
images. However, subtle changes in molecular images may
be difficult to detect by visual inspection as the target-to-
background ratio in these images is not that significant. In
addition, visual interpretation by clinicians not only is time-
consuming but also usually causes large variations across
interpreters due to the different experience.
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The emerging intelligent techniques are of great potential
in solving these problems by making the image interpreta-
tion automated. Machine learning-based image processing
has been widely used in the domain of medical imaging
analysis. Conventional machine learning techniques require
the artificial intervention of feature extraction and selection
and thus are still somehow subjective. In addition, the subtle
and distributed changesmay be ignored with artificial feature
calculation and selection. Fully automated techniques are
expected to integrate the local and global information for
more accurate interpretation. Deep learning as a state-of-
the-art machine learning technique may solve the challenges
aforementioned by abstracting higher level features and
improving the predictions from data with deep and complex
neural network structures [4].

1.1. Deep Learning. The deep architectures and algorithms
have been summarized [5, 6]. Compared with the conven-
tional machine learning techniques, deep learning has shown
some advantages [5, 6]. First, deep learning can automatically
acquire much richer information in a data-driven manner
and these features are usually more discriminative than
the traditional hand-crafted features. Second, deep learning
models are usually trained in an end-to-end way; thus the
feature extraction, feature selection, and classification can
be conducted and gradually improved through supervised
learning in an interactive manner [7]. Therefore, deep learn-
ing is promising in a wide variety of applications including
cancer detection and prediction based onmolecular imaging,
such as in brain tumor segmentation [8], tumor classification,
and survival prediction. Deep learning-based automated
analysis tools can greatly alleviate the heavy workload of
radiologists and physicians caused by the popularity of
molecular imaging in early diagnosis of cancer as well as
enhance the diagnostic accuracy, especially when there exist
subtle pathological changes that cannot be detected by visual
assessment.

Deep learning-based methods mainly include con-
volutional neural networks (CNN), restricted Boltzmann
machines (RBMs), autoencoder, and sparse coding [9].
Among them, CNN and autoencoder have been widely
applied in cancer molecular imaging. To our best knowl-
edge, CNN models are especially the most commonly used
methods with more powerful architecture and flexible con-
figuration to learn more discriminative features for more
accurate detection [10]. A typical CNN architecture for image
processing consists of three types of neural layers, including
the convolutional layers, the pooling layers, and the fully
connected layers. The convolutional layer contains a series of
convolution filters, which can learn the features from training
data through various kernels and generate various feature
maps. A pooling layer is generally applied to reduce the
dimension of feature maps and network parameters, and a
fully connected layer is used to combine the feature maps as
a feature vector for classification. Because the fully connected
layers require a large computational effort during the training
process, they are often replaced with convolutional layers to
accelerate the training procedure [11, 12]. On the other hand,
autoencoder is based on the reconstruction of its own inputs

and is optimized by minimizing the reconstruction error
[9].

1.2. Literature Selection and Classification. The papers on
diverse applications of deep learning in different molecu-
lar imaging of cancer published from 2014 onwards were
included. This review contains 25 papers and is organized
according to the application of deep learning in cancer
molecular imaging, including tumor lesion segmentation,
cancer classification, and prediction of patient survival.
Table 1 summarizes the 13 different studies on tumor lesion
segmentation, while Table 2 summarizes the 10 different
studies on cancer classification. Two interesting papers on
prediction of patient survival are also reviewed (Table 3). To
our best knowledge, there is no previous work making such a
comprehensive review on this issue. In this regard, we believe
this survey can present radiologists and physicians with the
application status of advanced artificial intelligent techniques
inmolecular images analysis and hence inspire more applica-
tions in clinical practice. Biomedical engineering researchers
may also benefit from this survey by acquiring the state of the
art in this field or inspiration for better models/methods in
future research.

2. Deep Learning in Tumor
Lesion Segmentation

Accurate tumor segmentation plays an essential role in treat-
ment planning and the assessment of radiotherapy treatment
efficacy. Studies have focused on tumor segmentation based
on deep learning andmolecular imaging, aiming at providing
powerful tools for clinicians to automatically and accurately
delineate lesions for better diagnosis and treatment.

Postcontrast T1W-MRI is amolecular imaging technique,
which is of great help in delineating the enhancing lesions
and necrotic regions. Indeed, deep learningmodels have been
trained with multimodality MRI data, including contrast-
enhanced T1W, to achieve better performance in brain tumor
segmentation.

Deep neural networks (DNN) were found effective for
task-specific high-level feature learning [13] and thus were
used to detect MRI brain-pathology-specific features by
integrating information frommultimodal MRI. In four brain
tumor patients, Zhou et al. [14] applied the incremental
manifold learning [15] and DNN models to predict tumor
progression, respectively. For incremental manifold learning
system, feature extraction consists of three parts: landmark
selection using statistical sampling methods, manifold skele-
ton identification from the landmarks, and inserting out-of-
bag samples into the skeleton with Locally Linear Embedding
(LLE) algorithm [16, 17]. Fisher score and Gaussian mixture
model (GMM) were employed for feature selection and
classifier training, respectively. For DNN, feature extraction,
feature selection, and classification were achieved in the same
deep model by pretraining the model in an unsupervised
way and then fine-tuning the model parameters with label.
Though the average result produced by deep neural network
models was just a little better than that of the incremental
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Table 1: Comparison of the performance of different deep learning-based segmentation methods.

Publication Type of images Proposed methods Comparison baseline
Method Results Method Results

Zhou et al. [14] Multiple MRI DNN
average = 0.864

(average of SEN, SPE
and PRE)

Manifold learning Average = 0.849

Zikic et al. [19] BRAST 2013 CNN HGG (complete):
ACC = 0.837 ± 0.094 RF HGG: ACC = 0.763 ±

0.124

Lyksborg et al. [20] Multimodal MRI CNN Dice = 0.810, PPV =
0.833, SEN = 0.825

Axially trained 2D
network

Dice = 0.744, PPV =
0.732, SEN = 0.811

Dvořák and Menze
[23] BRATS 2014 CNN HGG (complete):

Dice = 0.83 ± 0.13 — —

Pereira et al. [24] BRATS 2015 CNN

LGG (complete): DSC
= 0.86, PPV = 0.86,

SEN = 0.88
HGG (complete):
DSC = 0.87, PPV =
0.89, SEN = 0.86
Combined: DSC =

0.87, PPV = 0.89, SEN
= 0.86

— —

Pereira et al. [25] BRATS 2013 CNN DSC = 0.88, PPV =
0.88, SEN = 0.89

Tumor growth model
+ tumor shape prior +

EM

DSC = 0.88, PPV =
0.92, SEN = 0.84

Havaei et al. [27] BRAST 2013 INPUTCASCADECNN Dice = 0.88, SPE =
0.89, SEN = 0.87 RF Dice = 0.87, SPE =

0.85, SEN = 0.89

Kamnitsas et al.
[29] BRATS 2015 Multiscale 3D CNN + CRF

DSC = 0.849,
PREC = 0.853,
SEN = 0.877

— —

Yi et al. [32] BRATS 2015 3D fully CNN ACC = 0.89 GLISTR algorithm ACC = 0.88
Casamitjana et al.
[33] BRATS 2015 Three different 3D fully

connected CNNs
ACC =

0.9969/0.9971/0.9971 — —

Zhao et al. [36] BRATS 2013 3D fully CNN + CRF
Dice = 0.87,
PPV = 0.92,
SEN = 0.83

CNN
Dice = 0.88,
PPV = 0.88,
SEN = 0.89

Alex et al. [38] BRATS 2013/2015 SDAE ACC = 0.85 ±
0.04/0.73 ± 0.25 — —

Ibragimov et al.
[39]

CT, MR and PET
images CNN Dice = 0.818 — —

Notes. BRAST = multimodal brain tumor segmentation dataset, including four MRI sequences (T1W, T1-postcontrast (T1c), T2W, and FLAIR); CNN =
convolutional neural networks; HGG = high-grade gliomas; ACC = accuracy; RF = random forests; DNN = deep neural network; Average = the average
values of sensitivity, specificity, and precision; LGG = low-grade gliomas; PPV = positive predictive value; SEN = sensitivity; DSC = dice similarity coefficient;
INPUTCASCADECNN = cascaded architecture using input concatenation; EM = expectation maximization algorithm; SPE = specificity; PREC = precision;
GLISRT (glioma image segmentation and registration); CRF = conditional random fields; SDAE = stacked denoising autoencoder.

manifold learning due to the limited training samples, DNN
still demonstrated great potential for the clinical applications.

Various 2D CNN and 3D CNN models were proposed
for brain tumor segmentation and were evaluated on pub-
lic databases such as brain tumor segmentation (BRATS)
challenges [18]. The data from BRATS consists of four MRI
sequences, including T1W, T1-postcontrast (T1c), T2W, and
FLAIR.

2DCNNswere firstly applied for 3Dbrain tumor segmen-
tation with consideration of less modification to the existing
models and less computational load. Zikic et al. [19] used
a standard CNN architecture with two convolutional layers:

one followed by a max-pooling layer and the other followed
by a fully connected layer and a softmax layer. Standard inten-
sity preprocessing was used to remove scanner difference
but without any postprocessing for the CNN output. They
tested the proposed method on 20 high-grade cases from
the training set of the BRATS 2013 challenge and obtained
promising preliminary results. Actually, the 2D CNNs may
not be sufficiently powerful for 3D segmentation; thus the
information extracted axially, sagittally, and coronally should
be combined. Lyksborg et al. [20] proposed a method based
on an ensemble of 2D CNNs to fuse the segmentation from
three orthogonal planes. The GrowCut algorithm [21] was
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Table 2: Comparison of the performance of deep learning-based classification methods.

Publication Type of images Proposed methods Comparison baseline
Method Results Method Results

Reda et al. [40] DW-MRI SNCAE ACC = 1, SEN = 1, SPE =
1 𝐾

∗ ACC = 0.943, SEN =
0.943, SPE = 0.944

Reda et al. [41] DW-MRI SNCAE ACC = 1, SEN = 1, SPE =
1, AUC ≈ 1 𝐾

∗

ACC = 0.943, SEN =
0.962, SPE = 0.926,

AUC = 0.93

Zhu et al. [42] T2-weighted, DWI
and ADC SAE

SBE = 0.8990 ± 0.0423,
SEN = 0.9151 ± 0.0253,
SPE = 0.8847 ± 0.0389

HOG features

SBE = 0.8814 ±
0.0534, SEN = 0.9191
± 0.0296, SPE =
0.8696 ± 0.0563

Akkus et al. [43] T1-postcontrast (T1C)
and T2 Multiscale CNN ACC = 0.877, SEN =

0.933, SPE = 0.822 — —

Pan et al. [44] BRATS 2014 CNN SEN = 0.6667, SPE =
0.6667 NN SEN = 0.5677, SPE =

0.5677
Hirata et al. [45] FDG PET CNN ACC = 0.88 SUVmax ACC = 0.80
Hirata et al. [46] MET PET CNN ACC = 0.888 ± 0.055 SUVmax ACC = 0.66

Teramoto et al. [47] PET/CT CNN SEN = 0.901, with 4.9
FPs/case Active contour filter SEN = 0.901, with 9.8

FPs/case

Wang et al. [48] FDG PET CNN

ACC = 0.8564 ± 0.0809,
SEN = 0.8353 ± 0.1385,
SPE = 0.8775 ± 0.1030
AUC = 0.9086 ± 0.0865

AdaBoost + D13

ACC = 0.8505 ±
0.0897, SEN = 0.8565
± 0.1346, SPE =

0.8445 ± 0.1261 AUC
= 0.9143 ± 0.0751

Antropova et al.
[51] DCE-MRI CNN ConvNet AUC = 0.85 — —

Notes. DW-MRI = diffusion-weighted magnetic resonance images; SNCAE = stacked nonnegativity-constrained autoencoders; ACC = accuracy; SEN =
sensitivity; SPE = specificity; AUC = area under the receiver operating characteristic curve;𝐾∗ =𝐾-Star, a classifier implemented inWeka toolbox [59]; DWI =
diffusion-weighted imaging; ADC = apparent diffusion coefficient; SAE = stacked autoencoder; SBE = section-based evaluation; HOG = histogram of oriented
gradient; CNN= convolutional neural network; BRATS =multimodal brain tumor segmentation dataset, including fourMRI sequences (T1W, T1-postcontrast,
T2W, and FLAIR); NN = neural network; FDG = fluorodeoxyglucose; PET = positron emission tomography; SUVmax =maximum standardized uptake value;
MET = 11C-methionine; CT = computed tomography; FP = false positive; AdaBoost = adaptive boosting; D13 = 13 diagnostic features.

Table 3: Comparison of the performance of deep learning-based survival prediction methods.

Publication Type of images Proposed methods Comparison baseline
Method Results Method Results

Liu et al. [52] MRI CNN + RF ACC = 0.9545 CHF ACC = 0.9091
Paul et al. [54] Contrast-enhanced CT CNN + SUFRA + RF AUC = 0.935 TQF + DT AUC = 0.712
Notes. MRI = magnetic resonance imaging; CNN = convolutional neural network; RF = random forest; ACC = accuracy; CHF = conventional histogram
feature; CT = computer tomography; SUFRA = symmetric uncertainty feature ranking algorithm [60]; AUC = area under the receiver operating characteristic
curve; TQF = traditional quantitative features; DT = decision tree.

also applied to smooth the segmentation of the complete
tumor for postprocessing. They achieved better performance
than axially trained 2D network and the ensemble method
without GrowCut on BRATS 2014. It is worth noting that the
combination of information fromdifferent orthogonal planes
and the application of postprocessing algorithm contributed
to this enhancement.

Instead of applying a known postprocessing algorithm
such as Markov Random Fields (MRF) [22] for smoother
segmentation, useful information provided by the neighbor-
ing voxels can also be integrated through the local structure
prediction by taking the local dependencies of labels into
consideration. Dvořák and Menze [23] proposed a method

combining local structure prediction and CNN, where 𝐾-
means was used for generation of the label patch dictionary
and then CNN was used for input prediction. Both labels of
the neighboring pixels and the center pixels were taken into
account in thismethod.They obtained state-of-the-art results
on the BRATS 2014 dataset for brain tumor segmentation.

The main challenges of CNN lie in overfitting caused
by the large amount of parameters and time-consuming
training process. Some studies have applied appropriate
training strategies to solve these problems. Pereira et al. [24,
25] used a deep CNN for the segmentation of gliomas in
multisequence MRI and applied Dropout [26], leaky rectifier
linear units, and small convolutional kernels to address
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Figure 1: Framework of the proposed method. Image courtesy of Sérgio Pereira, Adriano Pinto, Victor Alves, and Carlos A. Silva, University
of Minho.
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Figure 2: Example of brain tumor segmented into different tumor classes (green, edema; blue, necrosis; yellow, nonenhancing tumor; red,
enhancing tumor) by the proposed method. Image courtesy of Sérgio Pereira, Adriano Pinto, Victor Alves, and Carlos A. Silva, University of
Minho.

overfitting (Figure 1). They used different CNN architectures
for low-grade glioma (LGG) and high-grade glioma (HGG).
The convolutional layers were halved in the architecture for
LGG. Data augmentation was employed in this study and
was found useful. The examples of segmentation were shown
in Figure 2. They obtained the first place on a 2013 public
challenge dataset, and the second place in an on-site 2015
challenge. Proper structure improvement can accelerate the
training process. Havaei et al. [27] proposed a variety of CNN
models based on two-pathway and cascaded architectures,
respectively, for tackling brain tumor segmentation, incorpo-
rating both local features andmore global contextual features
simultaneously. Their CNN allowed a 40-fold speed up using
a convolutional implementation of a fully connected layer as a
final layer. In addition, a 2-phase training procedure can solve
the problem due to the imbalance of tumor labels. Compared
to the currently published state-of-the-art methods, the
results that Havaei et al. [27] reported on the 2013 BRATS
test dataset was over 30 times faster. In addition, the cascaded
method made refinement for the probability maps generated

by the base model, which made them one of the top 4 teams
in BRATS 2015 [28].

To make full use of 3D information, 3D CNNs have been
also developed in the recent two years for better segmentation
performance. With consideration of the limitations in the
existing models, a 3D CNN with a dual pathway and 11 layers
was devised by Kamnitsas et al. [29]. The computational
load of processing multimodal 3D data was also reduced
by an efficient training scheme with dense training [30].
Due to conditional random fields (CRF) with the strong
regularization ability for improving the segmentation, a 3D
fully connected CRF [31] was incorporated with the proposed
multiscale 3D CNN to remove false positive effectively.
The proposed model was employed on BRATS 2015 for
generalization testing and achieved top ranking performance.

Limited sample size is a key factor affecting the CNN
performance. Yi et al. [32] proposed a 3D fully CNN with
a modified nontrained convolutional layer that was able
to achieve the enlargement of the training data size by
incorporating information at pixel level instead of patient
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level. The proposed method was evaluated on BRATS 2013
and BRATS 2015 and achieved superior performance.

Casamitjana et al. [33] tested three different 3D fully
connected CNNs on the training datasets of BRATS 2015.
The three models were based on the VGG architecture [34],
learning deconvolution network [35], and a modification of
multiscale 3D CNN [29] presented above, respectively. All
thesemodels obtained promising preliminary results, with an
accuracy of 99.69%, 99.71%, and 99.71%, respectively.

Zhao et al. [36] proposed a method based on the integra-
tion of fully CNN and CRF [37]. In addition, this slice-by-
slice tumor segmentation method enabled the acceleration
of the segmentation process. The proposed method finally
achieved comparative performance with the combination of
FLAIR, T1c, and T2 images from BRATS 2013 and BRATS
2016 than those results on the combination of FLAIR, T1c, T1,
and T2 images, which suggested that the proposed method
was powerful and promising.

The requirement of large training database with manual
labels constrains the application of CNN-basedmodels, since
manual annotations are usually unavailable or intractable in a
large dataset.Therefore, semisupervised orweakly supervised
learning should be considered as a substitute to supervised
learning. Autoencoder-based models have shown advantage
in model training with unlabeled data. Alex et al. [38]
proposed a method based on weakly supervised stacked
denoising autoencoders to segment brain lesion as well as
reduce false positive. Due to the LGG samples in a limited
size, transfer learning was employed in this study. LGG
segmentation was achieved using a network pretrained by
large HGG data and fine-tuned by limited data from 20
LGG patients. The proposed method achieved competitive
performance on unseen BRATS 2013 and BRATS 2015 test
data.

Besides lesion detection, accurate segmentation is also
essential to radiotherapy planning. For head and neck can-
cer, Ibragimov et al. [39] proposed a classification scheme
for automated segmentation of organs-at-risk (OARs) and
tongue muscles based on deep learning and multimodal
medical images including CT, MR, and PET. The promising
results presented in this comprehensive study suggested that
deep learning has great potential in radiotherapy treatment
planning.

Regarding tumor segmentation, deep learning models
can learnmore abstract information or high-level feature rep-
resentation from images and thus achieve better performance
than those methods based on shallow structures. In addition,
the combination of deep and shallow structures is more
powerful than the single deep learning model. However, the
challenges of deep learningmodels mainly lie in how to avoid
overfitting and to accelerate the training process. Specific
techniques such as Dropout, Leaky Rectifier Linear Units,
and small convolutional kernels have been developed to
address overfitting, and proper improvements of deep learn-
ing architectures have been made to accelerate the training.
It is worth noting that the dataset used in these studies were
multimodal; thus the information provided by the molecular
imaging and anatomical imaging can be integrated effectively.
The integrated informationmay be utilized efficiently by deep

learning models and thus contribute to better segmentation
performance.

Since 2013, the dataset of BRATS benchmark was divided
into five classes according to the pathological features pre-
sented in different modalities. Each class has a specific man-
ual label, including healthy, necrosis, edema, and nonenhanc-
ing and enhanced tumor. In addition, three tumor regions
were defined as the gold standard of segmentation, including
complete tumor region (necrosis, edema, and nonenhancing
and enhanced tumor), core tumor region (necrosis and
nonenhancing and enhanced tumor), and enhancing tumor
region (enhanced tumor). Generally, deep learning mod-
els achieved best performance in HGG segmentation. The
relatively poor performance in LGG segmentation may be
caused by sample imbalance, since less LGG patients were
included in the BRATS benchmark. Besides, the inherent
class imbalance of the dataset was also likely to lead to the
poor performance in enhancing tumor region segmentation.
For example, the real proportion of five classes in BRATS
2015 is 92.42%, 0.43%, 4.87%, 1.02%, and 1.27% for healthy,
necrosis, edema, and nonenhancing and enhancing tumor,
respectively [29].

3. Deep Learning in Cancer Classification

For early detection of prostate cancer, deep learning tech-
niques such as CNN and stacked autoencoders (SAE) have
been applied on diffusion-weighted magnetic resonance
images (DW-MRI) and multiparametric MRI. Reda et al.
[40] used the cumulative distribution function (CDF) of
refined apparent diffusion coefficient (ADC) for the prostate
tissues at different 𝑏-values as global features and trained
a deep autoencoder network with stacked nonnegativity-
constrained autoencoders (SNCAE) for classification of
benign and malignant prostate tumors. Reda et al. [41] also
proposed an automated noninvasive CAD system based on
DW-MRI and SNCAE for diagnosing prostate cancer. There
were three steps for the proposed scheme: (i) localizing and
segmenting prostate with a deformable nonnegative matrix
factorization- (NMF-) based model; (ii) constructing the
CDF of estimated ADC as extracted discriminatory char-
acteristics; (iii) classifying benign and malignant prostates
with SNCAE classifier (Figure 3).The SNCAE-based method
proposed by Reda et al. [41] has achieved excellent classifica-
tion performance on the DW-MRI data from 53 subjects, but
this method still needs several preprocessing steps leveraging
hand-crafted features, which may greatly affect the compu-
tational load of the classification. Zhu et al. [42] proposed a
method based on SAE and multiple random forest classifiers
for prostate cancer detection, in which a SAE-based model
was employed to extract latent high-level feature represen-
tation from multiparametric MR images for the first step;
then multiple random forest classifiers were implemented for
refinement of prostate cancer detection results. Though the
proposed method has been proved effective on 21 prostate
cancer patients, it should still be further validated on a large
sample.

CNN has been widely used in brain tumor evaluation,
grading, and detection. The codeletion of chromosome arms
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Figure 3: Framework of the DW-MRI CAD system for prostate cancer classification. Image courtesy of Islam Reda et al.

1p/19q status prediction is clinically important for it plays
an important role in treatment planning of LGG. To find
out a potential noninvasive alternative to surgical biopsy
and histopathological analysis, Akkus et al. [43] applied
multiscale CNN to predict 1p/19q status for effective treat-
ment planning of LGG based on T1c and T2W images. The
results suggested that artificial data augmentation potentially
enhance the performance by improving generalization ability
of themultiscale CNNand avoiding overfitting. Pan et al. [44]
compared the performance of Neural Networks (NN) and
CNN for brain tumor grading.They found that CNN outper-
formed NN for grading, but the more complex structure of
CNN did not show better results in the experiment. Because
different treatment strategies are needed for glioblastoma and
primary central nervous system lymphoma, it is clinically
important to differentiate them form each other. Hirata et
al. [45] applied CNN for differentiation of brain FDG PET
between glioblastoma and primary central nervous system
lymphoma (PCNSL). The method supplemented by the
manual-drawing ROIs achieved higher overall accuracy on
both slice-based and patient-based analysis than that without
ROI masking, which suggested that CNN may be more
powerful combined with an appropriate tumor segmentation
technique. To achieve fully automated quantitative analysis
of the brain tumor metabolism based on 11C-methionine
(MET) PET, Hirata et al. [46] applied CNN to extract
the tumor slices from the whole brain images based on
MET PET and achieved better classification performance
than maximum standardized uptake value (SUVmax) based
method. With high specificity, the CNN technique has been
proven to be effective in detecting the slices with tumor
lesions on MET PET from 45 glioma patients as a slice
classifier.

CNN has been applied in computer-aided detection of
lung tumors. Teramoto et al. [47] proposed an ensemble
false positive- (FP-) reductionmethod based on conventional
shape/metabolic features and CNN technique. The proposed
method removed approximately half of the FPs in the
previous methods. Wang et al. [48] compared CNN and
four classical machine learning methods (random forests,
support vector machines, adaptive boosting, and artificial

neural network) for the classification of mediastinal lymph
nodemetastasis of non-small-cell lung cancer (NSCLC) from
18F-FDG PET/CT images. In this study, it was reported that
CNN was not significantly different from the best traditional
methods or human doctors for classifying mediastinal lymph
node metastasis of NSCLC from PET/CT images.

The training data of a small size is considered as the
main reason for the limited performance of deep learning.
Khan and Yong [49] reported that the hand-crafted features
outperformed the deep learned features in medical image
modality classification with small datasets. Cho et al. [50]
presented a study on determining howmuch training dataset
is necessary to achieve high classification accuracy. With
CNN, the accuracy of different body part (like brain, neck,
shoulder, etc.) classification based on CT images was greatly
improved as the training sample size increased from 5 to
200. CNN with deeper architecture might outperform other
approaches by increasing the training data and applying
the training strategy of transfer learning and fine-tuning
[13]. Transfer learning has been used in medical imaging
applications, as a key strategy to solving the problem of
insufficient training data. Antropova et al. [51] used the CNN
architectureConvNet pretrained byAlexNet on the ImageNet
database for breast cancer classification on dynamic contrast-
enhanced MR images (DCE-MRI) and showed that transfer
learning can enhance the predicting performance of breast
cancer malignancy. Transfer learning is commonly used
in CNN-based models for network initialization when the
training data is limited and the fine-tuning of the parameters
is usually required for the specific tasks. However, the the-
oretical understanding on why transfer learning accelerates
the learning process and improves the generalization ability
remains unknown.

Deep learning has been applied for the classification of
prostate cancer, brain tumor, lung tumor, and breast cancer
based on molecular imaging. Most studies mentioned above
have proven the better performance of deep learning, but
a few studies indicated that the results achieved by deep
learning models were not significantly better than the best
conventional methods. The various results suggested that
deep learning models with well-designed architecture have
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great potential to achieve excellent classification perfor-
mance. Besides, deep learningmodelsmay achieve better per-
formance combined with shallow structures for contextual
information integration. Sufficient training data is required
to prevent overfitting and to improve generalization ability,
which is still a challenge in many applications. In practice,
data augmentation, pretraining, and fine-tuning were often
applied to tackle these problems.

4. Deep Learning in Survival Prediction

Besides tumor segmentation and classification, deep learning
has also been employed in predicting patients’ survival. Liu
et al. [52] applied the CNN-F architecture [53] pretrained
on ILSVRC-2012 with the ImageNet dataset for predicting
survival time based on brain MR images, achieving the
highest accuracy of 95.45%. Paul et al. [54] predicted short-
and long-term survivors of non-small-cell adenocarcinoma
lung cancer on contrast CT images, with 5 postrectified linear
unit features extracted from a VGG-F pretrained CNN and
5 traditional features. They obtained an accuracy of 90%
and AUC of 0.935. With high accuracy, pretrained CNN
architectures may have potential to predict survival of cancer
patients in the future.

5. Trends and Challenges

Along with the promising performance achieved by deep
learning in molecular imaging of cancer, challenges and
inherent trends have been posed in the following aspects.

Firstly, although deep learning has outperformed other
methods based on shallow structures and achieved promising
results, the underlying theory needs to be further investi-
gated. The numbers of layers and nodes in each layer are
usually determined by experience, and the learning rate and
the regularization strength are chosen subjectively. Two key
components should be considered for devising the deep
learning model: the architecture and the depth. For model
configuration, different architectures should be evaluated for
the specific task.

Secondly, the insufficient data is a common challeng-
ing when employing deep learning techniques in many
applications. In this case, effective training schemes should
be exploited to cope with this problem. The strategies of
data augmentation, pretraining, and fine-tuning have been
applied in some studies, but the underlying mechanism of
some of these strategies still remains unclear. It is suggested
that public database of molecular imaging should be estab-
lished. In addition, integrating information frommultimodal
imaging may improve the model performance. Moreover, it
is worth noting that the sample imbalance should be avoided
during training process by keeping the balance of sample size
between the subtypes of a specific cancer.

Thirdly, as manual annotations are difficult or expen-
sive in a large dataset, semisupervised and unsupervised
learning are highly required in the future development [4].
Unsupervised learning and the generation of features layer
by layer has made the deep architecture training possible
and has improved the signal-to-noise ratio at lower levels

compared to supervised learning algorithm [55–57], while
semisupervised methods may achieve a good generalization
capability and superior performance compared to unsuper-
vised learning [14].

Finally, given that the abstract information extracted by
deep learning models is not well understood, the correlation
between the high-level feature and clinical characteristics
in molecular imaging should be established to increase
the reliability of deep learning techniques. Typically, these
clinical characteristics of molecular imaging include the
expression and activity of specific molecules (e.g., proteases
and protein kinases) and biological processes (e.g., apoptosis,
angiogenesis, and metastasis) [58]. Ideally, the relationship
between the features output in each layer and the clinical
characteristics acquired by surgical biopsy and pathological
analysis is expected to be validated. In that case, the layers
without significant correlation with clinical characteristics
can be removed, which may increase the effectiveness of the
proposed model and reduces computational resources.

6. Conclusion

We present a comprehensive review of diverse applications
of deep learning inmolecular imaging of cancer.The applica-
tions of deep learning in cancermainly included tumor lesion
segmentation, cancer classification, and survival prediction.
CNN-basedmodels aremost commonly used in these studies
andhave achieved promising results. Despite the encouraging
performance, studies are still required for further investiga-
tions about model optimization, public database establish-
ment, and unsupervised learning as well as of the correlation
between high-level features and clinical characteristics of
cancer. In order to solve these problems, clinicians and
engineers should work together by taking complementary
expertise and advantages. In conclusion, deep learning as
a promising and powerful tool will aid and improve the
application of molecular imaging in cancer diagnosis and
treatment.
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