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Abstract
Accurate nodal staging at the time of diagnosis of 
prostate cancer is crucial in determining a treatment plan 
for the patient. Pelvic lymph node dissection is the most 
reliable method, but is less than perfect and has increased 
morbidity. Cross sectional imaging with computed 
tomography (CT) and magnetic resonance imaging 
(MRI) are non-invasive tools that rely on morphologic 
characteristics such as shape and size of the lymph nodes. 
However, lymph nodes harboring metastatic disease may 
be normal sized and non-metastatic lymph nodes may be 
enlarged due to reactive hyperplasia. The optimal strategy 
for preoperative staging remains a topic of ongoing 
research. Advanced imaging techniques to assess lymph 
nodes in the setting of prostate cancer utilizing novel MRI 
contrast agents as well as positron emission tomography 
(PET) tracers have been developed and continue to be 
studied. Magnetic resonance lymphography utilizing 
ultra-small super paramagnetic iron oxide has shown 
promising results in detection of metastatic lymph nodes. 
Combining MRL with diffusion-weighted imaging may also 
improve accuracy. Considerable efforts are being made 
to develop effective PET radiotracers that are performed 
using hybrid-imaging systems that combine PET with CT 
or MRI. PET tracers that will be reviewed in this article 
include [18F]fluoro-D-glucose, sodium [18F]fluoride, 
[18F]choline, [11C]choline, prostate specific membrane 
antigen binding ligands, [11C]acetate, [18F]fluciclovine, 
gastrin releasing peptide receptor ligands, and androgen 
binding receptors. This article will review these advanced 
imaging modalities and ability to detect prostate cancer 
metastasis to lymph nodes. While more research is 
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needed, these novel techniques to image lymph nodes in 
the setting of prostate cancer show a promising future in 
improving initial lymph node staging.
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Core tip: Accurate nodal staging at time of prostate 
cancer diagnosis is crucial in determining a treatment 
plan for the patient. This review article highlights the 
newest imaging techniques that have been and are being 
developed for imaging of lymph nodes in the initial staging 
of prostate cancer. Magnetic resonance lymphography 
utilizing ultra-small super paramagnetic iron oxide has 
shown to detect metastatic disease in normal sized lymph 
nodes. Considerable efforts are being made in molecular 
imaging to develop effective positron emission tomography 
radiotracers that may be combined with computed tomo
graphy or magnetic resonance to detect prostate meta
stasis as well as potential therapeutic applications. 

Zarzour JG, Galgano S, McConathy J, Thomas JV, Rais-Bahrami 
S. Lymph node imaging in initial staging of prostate cancer: 
An overview and update. World J Radiol 2017; 9(10): 389-399  
Available from: URL: http://www.wjgnet.com/1949-8470/full/v9/
i10/389.htm  DOI: http://dx.doi.org/10.4329/wjr.v9.i10.389

Introduction
Prostate cancer is the most common cancer in American 
men and is associated with a significant likelihood 
of cure when patients have organ-confined disease 
through the use of local definitive therapy such as 
radical prostatectomy or radiation therapy[1]. However, 
once prostate cancer spreads beyond the gland to the 
lymphatic tissues, the opportunity for cure with a local 
therapy is lost in most cases and significantly diminished 
in others[1]. Due to the adverse prognostic implications 
associated with lymph node metastasis, detection of 
clinically occult lymph node metastasis is of extreme 
importance[2]. Risk assessment tools are used to predict 
patients who are at risk for higher pathologic stage and 
use inputs such as PSA, biopsy Gleason sum, percent 
positive biopsies, and magnetic resonance imaging 
(MRI) findings[3-5]. The prostate health index (PHI) test 
utilizes three forms of PSA (total PSA, free PSA and 
p2PSA) and the 4K panel (total PSA, free PSA, single 
chain intact PSA, and human kallikrein 2) have been 
shown to more accurately predict higher-grade prostate 
cancer[6,7]. Patients who are deemed low risk, defined 
as a predicted < 5% (or in some more conservative 
guidelines ≤ 2%) for lymph node metastasis usually 
undergo definitive treatment with curative intent without 

any further radiological imaging or lymph node 
dissection[1]. Patients determined to be at higher risk for 
systemic disease need to undergo nodal staging. The 
most reliable method is pelvic lymph node dissection; 
however, this is invasive and may be associated 
with increased morbidity and risk of complications[1]. 
Furthermore, pelvic lymph node dissection is less than 
perfect as several studies have reported positive lymph 
nodes outside the routine dissection template[8-11]. Even 
extended pelvic lymph node dissections have been 
shown to miss up to 13% of metastatic lymph nodes[12].

Cross sectional imaging is a non-invasive tool utilized 
for nodal staging and largely relies on morphologic 
characteristics such as size and shape. A meta-analysis 
found a pooled sensitivity of 42% and specificity of 82% 
for computed tomography (CT) imaging and similar 
39% sensitivity and 82% specificity for MR imaging 
for detection of metastatic lymph nodes[1]. Utilizing CT 
and MRI, determination of metastatic lymph nodes is 
determined largely by size. A threshold of 1.0 cm in 
short axis of oval nodes and 0.8 cm for round nodes 
are generally used as indicators of likely metastatic 
disease[13]. However, more than half of lymph nodes 
involved with metastatic prostate cancer may be less 
than 1 cm[14]. Moreover, non-metastatic nodes may be 
enlarged due to reactive hyperplasia. Given the lack 
of sensitivity of both CT and MRI based on size criteria 
alone, new techniques of MR lymphography (MRL) 
have been developed as well as molecular imaging 
techniques. Herein, we will discuss these modalities for 
improved prostate cancer lymph node staging.

Lymph node imaging with MRI
MRL
High resolution MRI utilizing ultra-small super para
magnetic iron oxide (USPIO) has been utilized to improve 
sensitivity for detection of metastatic lymph nodes[15,16]. 
Lymphotropic superparamagnetic nanoparticles are avidly 
taken up by lymph nodes where they are internalized by 
macrophages[17]. Malignant nodes have a relatively paucity 
of macrophages compared to benign lymph nodes. The 
intracellular iron-containing particles cause benign lymph 
nodes to lose signal (appear dark) on T2* images (Figure 
1) while lymph nodes affected by metastatic disease do 
not take up the USPIO as effectively due to the decreased 
macrophages and hence appear bright[18]. This evaluation 
of macrophage function does not rely on nodal size to 
detect metastasis[19]. Moreover, it does not depend on 
the functional activity of cancer in the lymph nodes as it 
labels normal macrophages in the lymph nodes[20]. Given 
the high spatial resolution of MRI, more lymph nodes at 
smaller sizes can be detected and accurately characterized 
as benign or malignant with macrophage replacement by 
metastatic cancer cells[20]. 

USPIO particles have been used extensively as a 
lymphotropic contrast agent for detection of metastatic 
prostate cancer in numerous clinical trials[16,21-26]. In an 
initial study that utilized USPIO (ferumoxtran-10), nodes 
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were considered malignant when one of the following 
three criteria are present: (1) A decrease in signal 
intensity of less than 30 percent on T2-weighted fast 
spin-echo or gradient-echo sequences after the admi
nistration of USPIO; (2) a heterogeneous signal (giving 
the entire node a mottled appearance), discrete focal 
defects (isolated islands of high signal intensity), or 
both on gradient echo imaging; and (3) nodes with a 
central area of hyperintensity (excluding a fatty hilum) 
but a peripheral decrease in signal intensity[15]. This 
initial study utilizing ferumoxtran-10 demonstrated a 
sensitivity for detection of malignant lymph nodes with 
short axis diameter of 5-10 mm was increased with use 
of USPIO compared to MRI alone (96.4% vs 28.5%, 
respectively)[15]. Other studies have confirmed the 
ability of MR ferumoxtran-10-enhanced lymphography 
to detect metastatic disease in non-pathologically 
enlarged lymph nodes (< 7 mm) with high sensitivity 
and specificity[20,23,24,27-30].

Meijer et al[31] showed a better prognosis in a subset 
of patients with MRL positive lymph nodes that were < 
8 mm and better outcomes in patients in whom all MRL 
positive lymph nodes were resected. This highlights 
a window of opportunity for cure in these patients as 
those with MRL-detected positive nodes that were 
entirely removed had a five-year distant metastatic 
disease free survival of 80% compared to 35% in the 
patients who did not have all MRL-detected positive 
nodes removed[31].

Additionally, the potential for MRL to detect meta
static lymph nodes outside of the routine dissection 
margin has potential for great clinical value including 
surgical and radiation therapy planning. In series of 269 
men with moderate to high risk for nodal metastasis, 
41% were found to have lymph node metastasis outside 
of the routine dissection area that were identified with 
MR ferumoxtran-10-enhanced lymphography[24]. MRL 
has been utilized to guide radiation therapy as another 
study showed that 53% of prostate cancer patients had 

MRL positive lymph nodes outside of the target volume 
for pelvic radiation[32]. Salvage radiation therapy is 
associated with some toxicity[33], and improved selection 
of patients and detection of nodal targets can decrease 
morbidity and improve cure rates[25]. However, despite 
these promising results, ferumoxtran-10 failed to achi
eve Food and Drug Administration (FDA) approval and 
production was halted[34]. 

Ferumoxytol is a newly released USPIO agent that 
has been more recently utilized in detection of malignant 
lymph nodes[35]. Ferumoxytol is a compound closely 
related to ferumoxtran-10 that is FDA approved as iron 
replacement therapy in patients with chronic kidney 
failure with the recommended clinical dose of 1020 mg 
(two doses of 510 mg administered intravenously 3-8 d 
apart)[35,36]. In phase Ⅰ and Ⅱ clinical trials, ferumoxytol 
was associated with low adverse event rate which the 
most common events including nausea, dizziness, and 
diarrhea[37], although more serious reactions such as 
hypotension and anaphylaxis have been reported[38,39]. 
This has led to the FDA releasing a safety communication 
recommending modifications to give ferumoxytol as a 
dilute infusion[40]. 

Due to its large size, ferumoxytol remains in a rela
tively steady concentration within the intravascular 
space for several hours (circulating half-life is 14-15 h) 
and then is gradually cleared by macrophages from the 
blood pool over several days[41]. Following macrophage 
breakdown, the iron oxide particles are taken up by the 
reticuloendothelial system[41]. In a recent phase I dose 
escalation trial, it was shown that the signal intensity 
of normal lymph nodes drop in a dose dependent ma
nner with the optimal dose determined to be 7.5 mg 
Fe/kg[35]. A pilot study quantitatively compared the 
ability of ferumoxytol and ferumoxtran-10 to suppress 
signal intensity in normal lymph nodes (in patients 
with high risk prostate cancer) and showed that signal 
suppression was weaker for ferumoxytol MRL than for 
ferumoxtran-10 MRL[42]. This study was limited in that 

Figure 1  Selected imaged from a ferumoxytol enhanced magnetic resonance imaging in a 59-year-old man who underwent transrectal ultrasonography 
prostate biopsy for elevated PSA (10.8 ng/mL) which showed Gleason 3 + 4 disease of 4 cores. A: Initial prostate multiparametric T1 weighted post gadolinium 
magnetic resonance imaging (MRI) showed a 1.8 cm × 0.9 cm right external iliac chain lymph node that was suspicious base on size criteria (arrowhead); B: 24 h post 
injection of ferumoxytol (7.5 Fe/kg dose), T2* weighted MRI showed decreased signal intensity within the node (arrowhead), consistent with uptake of ferumoxytol. 
This was considered a benign lymph node based on these results. The patient underwent computed tomography guided biopsy for confirmation and the node was 
negative for malignancy. 
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only 4 patients received ferumoxytol and the dose was 
6.0 mg Fe/kg, but further research is needed to validate 
the accuracy of ferumoxytol MRL[42]. Ferumoxytol MRL 
has also been preliminarily evaluated in non-human 
primates for use as an intraprostatic injection to directly 
map lymph nodes draining the prostate gland, with 
a potential of guiding lymphatic drainage patterns for 
specific gland segments[43]. 

MRL may have false positive results in the setting of 
reactive nodal hyperplasia or granulomatous diseases 
in which there are decreased number of macrophages 
in otherwise benign lymph nodes that may lead to 
mischaracterization of lymph nodes as malignant sus
picion on imaging[44] (Figure 2). 

Diffusion-weighted imaging
In diffusion-weighted imaging (DWI), the Brownian motion 
of water molecules within a voxel of tissue is imaged 
and can be quantitatively expressed using the apparent 
diffusion coefficient (ADC) value. DWI can be performed 
quickly without the need of a contrast medium. Malignant 
tissue tends to have increased cellularity with enlarged 
nuclei and an abundance of macromolecular proteins, 
resulting in restricted diffusion[45]. Typical malignant lesions 
appear hyperintense on images acquired at high b-values 
(800-1000 s/mm2) and hypointense on the corresponding 
ADC maps.

Malignant lymph nodes have been shown to have 
a lower ADC value when compared to benign lymph 
nodes[46,47], but show less promising results in normal 
sized lymph nodes with a wide range of ADC values[45,48]. 
In a study of 29 patients with prostate cancer and a 
total of 118 lymph nodes evaluated by DWI-MRI, a 
cut off value of 1.3 × 10-3 mm2/s yielded a sensitivity 
of 86% and specificity of 85%[46]. ADC values can be 
elevated in necrotic nodes due to the free diffusion 
of water, which can lead to misclassification[49]. While 
some authors have reporting the combination of nodal 
size and the relative ADC value nodes is more useful in 

detecting pelvic lymph node metastasis[50], others have 
found less promising results[45]. Nevertheless, there can 
be an overlap of ADC values in benign and malignant 
lymph nodes[51].

In a more recent prospective study utilizing a 3T MRI 
system and a non-quantitative approach to evaluation 
DWI and ADC maps, revealed 94% specificity and 41% 
sensitivity for anatomical region based analysis (mean 
positive lymph node size was 1.2 cm)[52]. In a prospective 
evaluation of detection of normal sized metastatic 
lymph nodes in initial staging of prostate and bladder 
carcinoma, there was increased detection utilizing DWI 
when compared to conventional cross-section imaging 
techniques with detection of metastasis in 64%-79% of 
patients[51]. Evaluating additional morphologic features 
at MR imaging such as round shape, irregular border, 
low T2 signal may improve specificity than relying only 
on diffusion weighted imaging[51]. Further advances in 
DWI-MRI technique will require standardization of the 
technique, image acquisition and sequence parameters 
of different scanner platforms[53].

Combining DWI-MRI with other techniques such 
as USPIO or choline show perhaps the most promising 
results[30,54]. In a study evaluating 2,993 normal sized 
lymph nodes in patients with prostate or bladder cancer, 
combining DWI-MRI with USPIO improved sensitivity 
and specificity (65%-75% and 93%-96%; compared to 
55%-65% and 71%-91%, respectively) and decreased 
imaging interpretation time compared to USPIO alone[30].

PET tracers for initial nodal 
staging of prostate cancer
PET
Considerable efforts are currently being made to develop 
effective radiotracers to image prostate cancer in both 
the setting of primary staging as well as biochemical 
recurrence. Although not the focus of this paper, there is 
substantial evidence supporting the use of PET tracers for 

Figure 2  Selected images from a ferumoxytol enhanced magnetic resonance imaging in a 65 years old man status post magnetic resonance imaging/
ultrasound fusion guided prostate biopsy revealing 3 + 3 prostate cancer and PSA 16.6 ng/mL. A: Baseline T2* weighted magnetic resonance imaging 
(MRI) showed a rounded lymph node anterior to the bladder (arrowhead) that measured 1.5 cm and was hyperintense. Lobular mass like lesion (arrow) lateral to 
the suspicious lymph node corresponds to hernia mesh; B: 24 h post injection of ferumoxytol (7.5 Fe/kg dose) enhanced MRI shows persistent heterogeneous 
hyperintensity within the node (arrowhead). The lack of ferumoxytol uptake within the node was suspicious for malignant involvement. Pathology revealed castleman's 
disease (false positive). Arrow again indicates hernia mesh.
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biochemical recurrence, and two PET tracers [(11C)choline 
and (18F)fluciclovine] have been approved by the FDA 
for the detection and staging of biochemical recurrence. 
However, there has been less investigation regarding the 
use of PET in the initial nodal staging of prostate cancer. 
A wide range of PET tracers have been developed and 
investigated for prostate cancer imaging, and this section 
summarizes PET tracers that have demonstrated utility 
for detecting lymph node metastases from prostate 
cancer. These tracers and their key properties are 
summarized in Table 1.

Positron emission tomography (PET) is currently 
performed using hybrid imaging systems that combine 
PET with CT or MRI for attenuation correction and 
anatomic localization of the PET findings. In PET imaging, 
a positron emitting radiotracer is administered to the 
patient, which then emits 511 keV gamma rays through 
annihilation of the positron with an electron in the tissue 
which can be localized through coincidence detection[55]. 
Compared to conventional planar scintigraphy and single 
photon computed tomography (SPECT), PET provides 
higher spatial and temporal resolution. One of the 
limitations of PET is resolution, with decreased sensitivity 
of the detection and characterization of PET tracer uptake 
in lesions less than 8 mm. However, the use of hybrid 
imaging PET/CT or PET/MRI allows the combination of 
anatomical imaging from the CT or MRI with molecular 
information from PET.

PET tracers for prostate cancer imaging have 
been labeled with several different radionuclides that 
vary in terms of their physical half-life (t1/2) and their 
chemistries. PET radionuclides include are carbon-11 (t1/2 

= 20 min), fluorine-18 (t1/2 = 110 min), and gallium-68 
(t1/2 = 68 min). Carbon-11 and fluorine-18 are produced 
using cyclotrons while gallium-68 is produced using a 
generator system. Fluorine-18 is widely available, and 
its long half-life facilitates production of large batches 
of PET tracers and distribution to sites that do not have 
onsite production capabilities.

The most commonly used radiotracer for clinical 
oncologic imaging is 2-deoxy-2-(18F)fluoro-D-glucose 
(FDG), but this tracer is of limited utility for the initial 
staging of prostate cancer due to the low metabolic 
activity in the early phase of the disease which results 

in poor sensitivity[56]. Another disadvantage of FDG 
is urinary excretion, potentially decreasing sensitivity 
for pelvic lymph nodes[57]. For the evaluation of bony 
metastases, sodium(18F) fluoride (NaF) has been used 
for skeletal scintigraphy which takes advantage of higher 
spatial resolution when compared with conventional 
planar (99mTc)methyldiphosphinate (MDP). Several 
studies have demonstrated that cross-sectional skeletal 
scintigraphy with fluoride-PET/CT or MDP-SPECT/CT 
have superior sensitivity and specificity for detection of 
osseous metastases when compared to conventional 
planar bone scans (96% and 98%, respectively)[58]. 
The uptake of (18F)fluoride is based on bone turnover 
with increased binding to newly deposited mineralize 
bone matrix that occurs in bone metastases, particularly 
osteoblastic metastases. While (18F)fluoride-PET/CT may 
be useful in preoperative skeletal staging in prostate 
cancer, this tracer is not useful for the detection of lymph 
node metastases.

Choline is a naturally-occurring small molecule that 
is incorporated into tumor cells after phosphorylation by 
choline kinase, which is up regulated in prostate cancer[59]. 
(11C)choline uptake in metastatic lymph nodes occurs in 
the presence of viable malignant tissue, and (11C)choline 
has been approved by the FDA for use in the detection 
and localization of suspected biochemically recurrent 
prostate cancer. This PET tracer has been used for prostate 
cancer with a pooled sensitivity of 49.2% and specificity of 
95% for detection lymph node metastasis[60]. Results are 
better for larger nodes, but sensitivity is limited in lymph 
nodes smaller than 7 mm[20]. Several studies combining 
(11C)choline PET/CT and diffusion weighted MRI showed 
that sensitivity remained too low to be clinically useful for 
initial staging[54,61]. 

Fluorinated analogues of choline have been deve
loped to take advantage of the longer half-life of flu
orine-18 [e.g., (18F)fluorocholine and 2-(18F)fluoroethyl 
choline]. However, these fluorinated choline analogues 
have similar limited capability in detecting lymph node 
metastasis (sensitivity 40% and specificity 96%)[62,63]. 
Combining 18F-choline PET and MRI may help improve 
the results of choline PET imaging, but further research 
is needed[64,65]. The value of choline for the detection of 
recurrent prostate cancer in patients with low PSA levels 
(< 2.5 ng/mL) is limited[66,67]. Additionally, 18F-labeled 
analogues of choline are eliminated via the kidney and 
urinary tract activity, which is undesirable for pelvic 
imaging.

Acetate is a naturally occurring metabolic substrate 
that can enter the fatty acid metabolic pathway which is 
overexpressed in prostate cancer cells[68]. Most research 
has been done with (11C)acetate and has shown 
sensitivity of 68% and specificity of 78% in one study of 
intermediate and high risk prostate cancer[69], but has 
the disadvantage of requiring an on onsite cyclotron to 
due to the short half-life of 20 min. 

Prostate specific membrane antigen (PSMA) is a 
protein expressed by the prostate and overexpressed 
in prostate cancer[70]. The initial molecular imaging 

Table 1  Selected positron emission tomography tracers used 
for prostate cancer imaging

PET tracers Mechanism of action

[18F]FDG Glucose metabolism
Sodium [18F]fluoride Chemisorption to bone matrix
[18F]choline, [11C]choline Cell membrane metabolism
[18F]DCFBC, [68Ga]HBED-CC PSMA binding
[11C]acetate Fatty acid metabolism
[18F]fluciclovine Amino acid transport
[68Ga]DOTA-bombesin GRPR receptor binding
[18F]FDHT Androgen receptor binding

PET: Positron emission tomography; [18F]FDG: (18F)fluoro-D-glucose; [18F]DCFBC: 
(18F)fluorobenzyl-L-cysteine; GRPR: Gastrin-releasing peptide receptor.
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agent targeting PSMA that gained widespread use 
was (111In)indium capromab pendetide, a radiolabeled 
monoclonal antibody that targets the intracellular portion of 
PSMA and is imaged utilizing SPECT/CT. While initial results 
showed improvement over conventional techniques, 
there was limited sensitivity and specificity[71,72]. However 
with the additional of MRI, sensitivity and specificity were 
increased[73]. The main disadvantage of (111In)indium 
capromab pendetide is that it targets an intracellular 
protein making imaging only a possibility upon apoptosis 
or necrosis and not in viable tissue[55,70,74]. Additionally, the 
slow kinetics of (111In)indium capromab pendetide requires 
imaging 5-7 d after injection. More recently, a great deal of 
research has been focused on small molecule ligands that 
bind to the extracellular portion of PSMA[75,76].

Novel small molecule imaging PSMA ligands have 
been developed such as N-{N-[(S)-1,3-dicarboxypropyl] 
carbamoyl}-4-(18F)fluorobenzyl-L-cysteine [(18F)DCFBC], 
which binds irreversibly to the extracellular component 
of PSMA and has been shown to improve detection of 
metastatic prostate cancer[77,78]. The most commonly 
used PSMA ligand in Europe is 68Ga-N,N’-bis [2-hydroxy-
5-(carboxyethyl)benzyl] ethylenediamine-N,N’-diacetic 
acid (HBED-CC) (Figure 3). In a study utilizing 68Ga-
labeled PSMA ligand (HBED-CC), there was improved 
accuracy of lymph node staging over conventional ima
ging with 65.9% sensitivity and 98.9% specificity[79]. 
A retrospective study examining 68Ga-PSMA PET/CT in 
initial staging of patients with high risk of lymph node 
metastasis found 33.3% sensitivity and 100% specificity 
(mean size of true positive nodes was 13.6 cm and of 
false positive node was 4.3 mm)[80].

Amino acid radiotracers can accumulate in prostate 
cancer cells through the upregulation of transmembrane 
amino acid transport in prostate cancer[81]. The most 
work with a synthetic amino acid PET radiotracer for 
prostate cancer has been with (18F)fluciclovine for de
tection of recurrent disease, and this PET tracer was 
approved by the FDA for use in biochemically recurrent 
prostate cancer in 2016 (Figure 4). Preliminary studies 
have reported results for initial staging[81,82]. In a 
multicenter phase IIb clinical trial for staging of initial 
prostate cancer, diagnostic accuracy of (18F)fluciclovine 
PET/CT was compared to conventional imaging with CT 
and bone scan[83]. Overall accuracies were similar (85.5% 
for (18F)fluciclovine PET/CT and 87.3% for conventional 
imaging); however, (18F)fluciclovine PET/CT was positive 
in 5-9 mm nodes and skeletal lesions that were not 
detected by conventional imaging. 

An additional molecular target that is currently under 
investigation is the gastrin-releasing peptide receptor 
(GRPR) which is overexpressed in prostate but has 
lower levels in benign prostate tissue including benign 
prostatic hyperplasia[84]. Initial studies demonstrate 
GRPR overexpression in 63%-100% of primary pro
state carcinomas and 50%-85% of nodal and osseous 
metastases[85]. A number of peptide based ligands for 
GRPR have been developed including the 14 amino acid 
peptide bombesin, as well as analogues of the 27-amino 

acid gastrin releasing peptide (GRP)[86]. A single human 
trial utilizing a 68Ga-labeled GRPR antagonist for pre-
operative staging has been completed[87]. This trial 
enrolled 11 patients with primary prostate carcinoma and 
three patients with evidence of biochemical recurrence, 
demonstrating a sensitivity of 88% and specificity of 
81% for detection of the primary lesion (within a sextant 
level) and found evidence of biochemical recurrence in 
lymph nodes and the prostate bed in two out of three 
patients[88].

Androgen sensitivity and receptor expression remain 
a mainstay in the diagnosis and treatment of prostate 
carcinoma. Importantly, androgen receptor expression 
plays a role in both initial treatment strategies and in 
the setting for treatment for biochemical recurrence/
metastatic disease. Preliminary human imaging studies 
have been performed using the androgen receptor 
ligand 16β-(18F)fluoro-5α-dihydrotestosterone (FDHT). 
The initial human study compared FDHT and FDG, 
which demonstrated FDHT uptake in 46/59 lesions in 
seven patients with progressive metastatic prostate 
cancer (compared to FDG uptake in 57/59)[89]. The role, 
if any, of (18F)FDHT in the pre-operative evaluation of 
prostate cancer is not yet defined.

An interesting future in targeted molecular imaging 
of metastatic prostate carcinoma is the use of PSMA 
and bombesin agents for targeted therapy with alpha-
emitters or beta-emitters (including 90Y and 177Lu). 
These agents are currently being utilized in clinical trials 
for patients with biochemical recurrence, but are not 
currently approved for use in the United States[90,91]. 
These compounds may play a future role in adjuvant 
therapy post prostatectomy as the previously described 
molecular targeted PET agents become established for 
initial staging.

An exciting development that may increase the 
impact of molecular imaging for prostate carcinoma is 
the recent FDA approval of hybrid PET/MRI scanners. 
These scanners can acquire PET and MRI data simul
taneously and combine targeted molecular imaging 
with PET with the soft tissue contrast and anatomic 
detail provided by pelvic MRI. The MRI component of 
PET/MRI can significantly increase detection of lesions 
compared to the non-contrast CT typically performed 
with conventional PET/CT. Evaluation of the prostate 
bed can also be significantly improved utilizing PET/
MRI vs PET/CT. Given the established role of MRI for 
prostate cancer staging and lesion detection, PET/MRI 
may become the preferred platform for prostate cancer 
imaging in certain clinical scenarios. However, more 
data are needed to define the role of PET/MRI in the 
initial staging of prostate cancer.

Conclusion
Conventional imaging (CT and MRI) cannot depict small 
metastases in normal sized and normal appearing 
lymph nodes. The optimal strategy for the preoperative 
staging of prostate cancer remains a topic of ongoing 
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Figure 3  Prostate specific membrane antigen. Selected images from a [68Ga]PSMA-11-PET/CT study performed prior to therapy in a man with biopsy-proven 
Gleason 9 prostate adenocarcinoma, a serum PSA of 11.6 ng/mL, and a clinical tumor stage of cT2b. The anterior maximum intensity projection (MIP) image (A) and 
the axial PET (B), fusion (C), and CT (D) images through the pelvis demonstrate focal activity in a left external iliac lymph node. This appearance is highly suspicious 
for a lymph node metastasis. Images courtesy of Tom Hope, MD, University of California San Francisco, Department of Radiology. PSMA: Prostate specific membrane 
antigen; PET/CT: Positron emission tomography/computed tomography.

Figure 4  Fluciclovine. Selected images from a (18F)fluciclovine-positron emission tomography/computed tomography study performed in a man who 
underwent prostatectomy for Gleason 8 prostate adenocarcinoma 11 years ago. He developed biochemical recurrence with a serum PSA of 0.8 ng/mL and a 
PSA doubling time of 14 mo at the time of the (18F)fluciclovine-PET/CT study. The anterior maximum intensity projection (MIP) image (A) and the axial PET (B), fusion (C), 
and CT (D) images near the level of the pelvic inlet demonstrate focal activity in a subcentimeter right common iliac lymph node. This appearance is highly suspicious 
for a lymph node metastasis. Images courtesy of Ephraim Parent MD, PhD, and David Schuster, MD, Emory University, Department of Radiology. PET/CT: Positron 
emission tomography/computed tomography.
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research. Advanced imaging techniques to assess lym
ph nodes in the setting of prostate cancer utilizing novel 
MRI contrast agents as well as PET tracers have been 
developed and continue to be studied. MRL utilizing 
USPIO has shown high sensitivity and specificity in 
detection of normal sized lymph nodes containing meta
static disease and thus a positive finding may alter the 
treatment course for the patient. Ongoing research is 
occurring in molecular imaging and continues to show a 
promising future for detection of prostate metastasis as 
well as potential therapeutic applications.
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