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Unscheduled cell cycle reentry of postmitotic neurons has been described in cases of mild cognitive impairment 
(MCI) and Alzheimer’s disease (AD) and may form a basis for selective neuronal vulnerability during disease 
progression. In this regard, the multifunctional protein regulator of cell cycle (RGCC) has been implicated in 
driving G1/S and G2/M phase transitions through its interactions with cdc/cyclin-dependent kinase 1 (cdk1) and 
is induced by p53, which mediates apoptosis in neurons. We tested whether RGCC levels were dysregulated in 
frontal cortex samples obtained postmortem from subjects who died with a clinical diagnosis of no cognitive 
impairment (NCI), MCI, or AD. RGCC mRNA and protein levels were upregulated by ~50%–60% in MCI 
and AD compared to NCI, and RGCC protein levels were associated with poorer antemortem global cognitive 
performance in the subjects examined. To test whether RGCC might regulate neuronal cell cycle reentry and 
apoptosis, we differentiated neuronotypic PC12 cultures with nerve growth factor (NGF) followed by NGF 
withdrawal to induce abortive cell cycle activation and cell death. Experimental reduction of RGCC levels 
increased cell survival and reduced levels of the cdk1 target cyclin B1. RGCC may be a candidate cell cycle 
target for neuroprotection during the onset of AD.
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INTRODUCTION

Several lines of evidence suggest that cell cycle reac-
tivation occurs in postmitotic neurons in Alzheimer’s 
disease (AD) and its putative prodromal stage, mild cog-
nitive impairment (MCI). The AD brain is characterized 
by neuronal expression of cell cycle regulatory proteins1–3 
and DNA replication4–6, whereas we have demonstrated 
the presence of the cell cycle proteins proliferating cell 
nuclear antigen (PCNA), cyclin D1, and cyclin B1 in neu-
rons in vulnerable brain regions in subjects with MCI7. 
Mechanistically, a link has been established between 
unscheduled cell cycle reentry and neuronal apopto-
sis, suggesting a pathogenic mechanism for neuronal 
selective vulnerability8–13. Moreover, the activation of 
several cell cycle-related kinases, including cdc2/cyclin- 
dependent kinase 1 (cdk1), cdc2-like kinase, cdk2, and 
cdk5, has been shown to phosphorylate tau and promote 
tau aggregation14–17.

The mechanisms underlying aberrant neuronal cell 
cycle reentry during the onset of AD have not been firmly 
established, but various stressors such as DNA damage 
and neurotrophin dysregulation have been proposed18–22. 
Notably, the tumor suppressor protein p53, which induces 
cell cycle arrest and DNA repair in damaged proliferat-
ing cells, facilitates apoptosis when the neuronal milieu 
is presented with toxic insults23–25. Although the link 
between p53, cell cycle dysregulation, and apoptosis is 
unclear, p53 induces the expression of the multifunc-
tional protein regulator of cell cycle (RGCC)26,27, which 
is highly expressed in many cancerous tissues28. RGCC 
has been shown to either induce S phase entry and mito-
sis or promote differentiation in nonneuronal cells, which 
appears to be context dependent27–32. Whether RGCC dys-
function might represent a novel pathway linking aber-
rant cell cycle activation and apoptosis in neurons during 
the progression of AD remains undetermined. In the  
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present study, we measured RGCC mRNA and protein 
levels in frontal cortex samples obtained postmortem 
from individuals who died with an antemortem diagnosis 
of no cognitive impairment (NCI), MCI, or AD. We also 
tested whether RGCC expression impacted cell survival 
in an in vitro experimental paradigm for neuronal cell 
cycle-induced apoptosis.

MATERIALS AND METHODS

Subjects

Brain tissues from NCI (n = 14), MCI (n = 11), and 
mild/moderate AD (n = 11) cases from both genders 
were obtained from participants in the Rush Religious 
Orders Study, a longitudinal clinical pathologic study of 
aging and AD in elderly Catholic clergy33. Demographic, 

clinical, and neuropathological characteristics of the sub-
jects are summarized in Table 1. Details of cognitive 
evaluations and diagnostic criteria have been extensively 
published33–36. Briefly, a team of investigators performed 
annual neuropsychological performance testing includ-
ing the Mini Mental State Exam (MMSE) and 17 addi-
tional neuropsychological tests referable to five cognitive 
domains: orientation, attention, memory, language, and 
perception. A Global Cognitive Score (GCS), consisting 
of a composite z-score calculated from this test battery, 
was determined for each participant. A board-certified 
neurologist with expertise in the evaluation of the elderly 
made the clinical diagnosis based on impairments in each 
of the five cognitive domains and a clinical examination. 
The diagnosis of dementia or AD met recommendations 
by the joint working group of the National Institute of 

Table 1. Clinical, Demographic, and Neuropathological Characteristics by Diagnosis Category

Clinical Diagnosis

Characteristics NCI (n = 14) MCI (n = 11) AD (n = 11) p Value Pairwise

Comparison
Age (years) at death 0.1* –

Mean ± SD 83.9 ± 4.5 84.4 ± 5.2 86.2 ± 5.1
Range 76–92 72–91 78–95

Number (%) of males 6 (43%) 6 (54%) 6 (54%) 0.5† –
Years of education 0.1* –

Mean ± SD 19.1 ± 2.9 18.9 ± 4.3
Range 15–22 8–24 14–21

Number (%) with ApoE e4 allele 2 (14%) 2 (18%) 5 (45%) 0.01† AD > NCI, MCI
MMSE <0.0001* NCI, MCI > AD

Mean ± SD 28.1 ± 0.9 26.8 ± 2.6 15.1 ± 7.7
Range 26–29 22–30 0–27

Global cognitive score <0.0001* NCI, MCI > AD
Mean ± SD 0.0 ± 0.3 −0.37 ± 0.4 −1.8 ± 0.6
Range −0.5 to 0.4 −1.2 to 0.3 −2.8 to −0.7

Postmortem interval (h) 0.3* –
Mean ± SD 4.7 ± 2.9 6.0 ± 3.3 5.4 ± 3.4
Range 2.2–12.0 2.7–13.0 2.7–12.0

Distribution of Braak scores 0.1*
0 0 0 0
I/II 5 4 2
III/IV 8 6 6
V/VI 1 1 3

NIA-Reagan diagnosis (likelihood of AD) 0.2*
No AD 0 0 0
Low 6 6 5
Intermediate 6 5 5
High 2 0 1

CERAD diagnosis 0.2*
No AD 3 4 3
Possible 3 2 2
Probable 6 3 5
Definite 2 2 1

*Kruskal–Wallis test, with Bonferroni correction for multiple comparisons.
†Fisher’s exact test, with Bonferroni correction for multiple comparisons.
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Neurologic and Communicative Disorders and Stroke/AD 
and Related Disorders Association (NINCDS/ADRDA)37. 
The MCI population was defined as subjects who exhib-
ited impairment on neuropsychological testing but did 
not meet the criteria for AD or dementia. These crite-
ria for MCI are consistent with those used by others in 
the field38.

Tissue samples were accrued as previously reported34,39,40. 
At autopsy, tissue from one hemisphere was immer-
sion fixed in 4% paraformaldehyde (Sigma-Aldrich, 
St. Louis, MO, USA) in 0.1 M phosphate buffer (pH 
7.2) for 24–72 h at 4°C. Tissue slabs from the opposite 
hemisphere were frozen at −80°C prior to collection of 
frontal cortex samples for quantitative polymerase chain 
reaction (qPCR) and biochemical analysis. A series of 
fixed tissue sections were prepared for neuropathologi-
cal evaluation including visualization and quantitation 
of neocortical and hippocampal amyloid plaques and 
neurofibrillary tangles (NFTs) using antibodies directed 
against the Ab peptide (Ab; 4G8; Covance, Princeton, 
NJ, USA), tau (PHF1; a gift from Dr. Peter Davies)33,40, 
as well as thioflavine-S (Sigma-Aldrich) histochemistry 
and a modified Bielschowsky silver stain (components 
from Fisher Scientific, Pittsburgh, PA, USA). Additional 
sections were stained for Lewy bodies using antibodies 
directed against ubiquitin and a-synuclein. Exclusion 
criteria included argyrophilic grain disease, frontotem-
poral dementia, Lewy body disease, mixed dementias, 
Parkinson’s disease, stroke, and hippocampal sclerosis. 
A board-certified neuropathologist blinded to the clini-
cal diagnosis performed the neuropathological evalua-
tion. Neuropathological criteria were based on National 
Institute on Aging (NIA)-Reagan, Consortium to Establish 
a Registry for Alzheimer’s Disease (CERAD), and Braak 
staging41–43. Amyloid burden and apolipoprotein E (ApoE) 
genotype were determined for each case as described 
previously33,40.

qPCR

Total RNA from frozen frontal cortex (Brodmann area 
10) samples was extracted using guanidine-isothiocyanate 
lysis (PureLink; Ambion, Waltham, MA, USA), and RNA 
integrity and concentration were verified using Bioanalysis 
(Agilent Technologies, Santa Clara, CA, USA). Samples 
were assayed on a real-time (RT)-PCR cycler (ABI 7500; 
Applied Biosystems, Foster City, CA, USA) in 96-well 
optical plates as described previously44–47. qPCR was 
performed using TaqMan hydrolysis probe primer sets 
(Applied Biosystems) specific for amplification of the fol-
lowing human transcripts: rgcc (probe set Hs00204129_
m1), tumor protein p53 (tp53; Hs01034249_m1), and 
cdk1 (Hs00938777_m1). A primer set specific for human 
glyceraldehyde 3-phosphate dehydrogenase (gapdh) 
(Hs02758991_g1) was used as a control housekeeping 

transcript. For PC12 cell culture experiments (see below), 
total RNA was extracted and assayed as described above 
using primers specific for rat cyclin b1 (ccnb1; probe set 
Rn01494180_g1; Applied Biosystems) and rat gapdh 
(Rn01775763_g1). The D–D Ct (ddCT) method was 
employed to determine relative levels of each ampli- 
con44–46,48. Variance component analyses revealed rela-
tively low levels of within-case variability, and the aver-
age value of the triplicate qPCR products from each case 
was used in subsequent analyses. Alterations in PCR 
product synthesis were analyzed by one-way analysis of 
variance (ANOVA) with Bonferroni correction for post 
hoc comparison. The level of statistical significance was 
set at a = 0.05 (two sided).

Western Blotting

Frozen frontal cortex tissue samples from the same 
cases used for qPCR were sonicated in ice-cold homog-
enization buffer [20 mM Tris, 1 mM ethylene glycol-
bis(b-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), 
1 mM ethylenediaminetetraacetic acid (EDTA), 10% 
sucrose, pH 7.4] containing protease inhibitors (2 mg/
ml leupeptin, 0.01 U/ml aprotinin, 1 mg/ml pepstatin A, 
1 mg/ml antipain, 2.5 mg/ml chymostatin, 10 mM ben-
zamidine, 0.1 mM PMSF, 0.4 mg/ml TPCK, 0.4 mg/ml 
TLCK, 0.4 mg/ml soybean trypsin inhibitor, 0.1 mM 
sodium fluoride, and 0.1 mM sodium orthovanadate). All 
chemicals were purchased from Sigma-Aldrich. Samples 
were prepared by centrifugation at 100 ́  g for 10 min at 
4°C. The protein concentration of the resulting S1 super-
natant was determined by the Bradford method (Bio-Rad, 
Hercules, CA, USA), which uses bovine serum albumin 
(BSA) as the protein standard. Sample proteins from the 
S1 fraction were denatured in sodium dodecyl sulfate 
(SDS; Fisher Scientific) loading buffer to a final concen-
tration of 5 mg/ml. Proteins (25 µg/sample) were sepa-
rated by SDS polyacrylamide gel electrophoresis (10%; 
Lonza, Basel, Switzerland), transferred to Immobilon-FL 
membranes (Millipore, Billerica, MA, USA), blocked in 
Tris-buffered saline (pH 7.4) containing 0.1% Tween 20 
(Fisher Scientific) and 2% nonfat milk, and then incu-
bated overnight at 4°C with rabbit polyclonal antiserum to 
RGCC (1:500; Novus Biologicals, Littleton, CO, USA). 
Blots were then incubated for 1 h with near-infrared- 
labeled goat anti-rabbit immunoglobulin G (IgG) second-
ary antiserum (IRDye 680LT; 1:10,000; Licor, Lincoln, 
NE, USA) and analyzed on an Odyssey imaging system 
(Licor). Following imaging, the membranes were stripped 
and reprobed with a mouse monoclonal b-actin antibody 
(1:20,000; Millipore) overnight followed by a 1-h incu-
bation with near-infrared-labeled goat anti-mouse IgG 
secondary antiserum (IRDye 680LT; 1:10,000; Licor) and 
Odyssey imaging. Signals for RCGG were normalized to 
b-actin for quantitative analysis34,47,49.



696 COUNTS AND MUFSON

PC12 Cell Culture

PC12 cultures (a gift of Dr. Richard Burry, Ohio State 
University, Columbus, OH, USA) were maintained in 
Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% horse serum (Gibco, Grand Island, NY, 
USA), 5% FetalClone I bovine serum (Hyclone, Logan, 
UT, USA), and 1% penicillin/streptomycin (Gibco). 
Cultures were plated at 10 K/cm2 onto Matrigel-coated 
dishes (1%; Collaborative Biomedical; Becton Dickinson, 
Frankin Lakes, NJ, USA) in DMEM with 1.5% serum. 
PC12 cultures were grown for 1 week in the presence of 
400 pm (~50 ng/ml) mouse 7S nerve growth factor (NGF; 
Alomone Labs, Jerusalem, Israel). Media were replaced 
on days 3 and 5 in vitro. On day 7, PC12 cells were rinsed 
and incubated with 50 nM RGCC or scrambled siRNA 
(Origene, Rockville, MD, USA)/1% Lipofectamine 
RNAiMAX (Life Technologies, Carlsbad, CA, USA) in 
OptiMEM (Gibco)/400 pm NGF for 18 h48, then rinsed 
and exchanged into DMEM/1.5% serum without NGF 
for 48 h. Cultures were assayed for cell viability using the 
LIVE/DEAD assay (Thermo Fisher Scientific, Waltham, 
MA, USA). Sister cultures were analyzed for cyclin B1 
(ccnb1) expression, as described above.

Statistical Analysis

Demographic variables (Table 1) were compared among 
clinical diagnostic groups by Kruskal–Wallis or Fisher’s 
exact tests with Bonferroni correction for pairwise com-
parisons. Transcript levels (qPCR), protein levels (Western 
blotting), and cell viability measures were compared 
among groups by one-way ANOVA with Bonferroni post 
hoc testing. The level of statistical significance was set at 
p < 0.05. RGCC protein levels across diagnostic groups 
were tested for associations with clinical and pathological 
variables using Spearman rank correlations. The level of 
statistical significance was set at p < 0.01.

RESULTS

Subject Demographics

The clinical diagnostic groups did not differ by age, 
gender, years of education, or postmortem interval 
(Table 1). There were significantly more subjects with an 
ApoE 4 allele in the AD (45%) group than in the NCI 
(14%) or MCI (18%) group. AD cases had significantly 
lower MMSE scores compared to both NCI and MCI 
( p < 0.001), whereas the latter two groups did not differ 
statistically (Table 1). GCS z-scores were significantly 
lower in the AD compared to the NCI and MCI cases 
( p < 0.0001). Subjects in the different clinical diagnostic 
groups displayed considerable overlap with respect to 
pathological diagnostic criteria. Pathological examina-
tion revealed that 64% of NCI, 64% of MCI, and 82% of 
AD cases were classified as Braak stages III–VI. Using F

ig
ur

e 
1.

 p
53

 (
tp

53
) 

an
d 

pr
ot

ei
n 

re
gu

la
to

r 
of

 c
el

l c
yc

le
 (

rg
cc

) 
ge

ne
 e

xp
re

ss
io

n 
le

ve
ls

 a
re

 in
cr

ea
se

d 
in

 m
ild

 c
og

ni
tiv

e 
im

pa
ir

m
en

t (
M

C
I)

 a
nd

 A
lz

he
im

er
’s

 d
is

ea
se

 (
A

D
).

 B
ox

 p
lo

ts
 

sh
ow

 r
el

at
iv

e 
ex

pr
es

si
on

 l
ev

el
s 

of
 (

A
) 

tp
53

, 
(B

) 
rg

cc
, 

an
d 

(C
) 

cd
c/

cy
cl

in
-d

ep
en

de
nt

 k
in

as
e 

1 
(c

dk
1)

 n
or

m
al

iz
ed

 t
o 

gl
yc

er
al

de
hy

de
 3

-p
ho

sp
ha

te
 d

eh
yd

ro
ge

na
se

 (
ga

pd
h)

 l
ev

el
s 

(m
ea

n 
± 

m
ax

/m
in

; a
rb

itr
ar

y 
un

its
) i

n 
to

ta
l R

N
A

 d
er

iv
ed

 fr
om

 n
o 

co
gn

iti
ve

 im
pa

ir
m

en
t (

N
C

I)
, M

C
I,

 a
nd

 A
D

 c
as

es
. *

p 
< 

0.
05

 v
er

su
s 

N
C

I,
 v

ia
 o

ne
-w

ay
 a

na
ly

si
s 

of
 v

ar
ia

nc
e 

(A
N

O
V

A
) 

w
ith

 B
on

fe
rr

on
i p

os
t h

oc
 c

om
pa

ri
so

ns
.



REGULATOR OF CELL CYCLE IN MCI 697

the NIA-Reagan criteria, 57% of NCI, 45% of MCI, and 
55% of AD cases were classified as intermediate to high 
likelihood of AD (Table 1). For CERAD diagnosis, 57% 
of NCI, 45% of MCI, and 55% of AD cases received a 
diagnosis of probable/definite AD. Statistical analysis did 
not reveal any differences in pathology among the NCI, 
MCI, and AD groups.

RCGG Expression Levels in MCI and AD

qPCR analysis was performed to quantify RGCC 
(rgcc), p53 (tp53), and CDK1 (cdk1) gene expression 
levels in frozen frontal cortex tissue samples accrued 
from NCI, MCI, and AD subjects (Fig. 1). A significant 
~55%–60% increase in rgcc transcript levels was mea-
sured in MCI compared to NCI cases ( p < 0.05), whereas 
rgcc levels were upregulated by ~50% in AD compared 
to NCI ( p < 0.05) (Fig. 1A). By contrast, tp53 expression 
levels were significantly increased by ~55%–60% in MCI 
and AD compared to NCI ( p < 0.05) (Fig. 1B), whereas 
there were no differences in cdk1 expression across the 
diagnostic groups (Fig. 1C).

To test whether RCGG protein levels were also upreg-
ulated in the MCI and AD cases, quantitative Western 
blotting was performed on tissue extracts from the same 
cases (Fig. 2). RGCC immunoreactivity (~15-kDa band) 
was higher in the MCI and AD frontal cortex compared 
to NCI (Fig. 2A). Quantitative analysis of the Western 
blots showed that normalized RGCC protein levels were 
significantly increased by ~50%–55% in MCI and AD 
( p < 0.05). Spearman rank correlations showed no associ-
ation between RGCC protein levels and age, gender, PMI, 
or ApoE status (data not shown). By contrast, increased 
RGCC protein levels were associated with poorer cog-
nitive performance as measured by the MMSE (r = 0.39, 
p = 0.002) and GCS (r = 0.43, p = 0.005), but not with Braak, 
NIA-Reagan, or CERAD neuropathological criteria.

Inhibition of RGCC Protects PC12 Cells From Nerve 
Growth Factor Withdrawal

Neuronotypic differentiation of rat PC12 cells with 
NGF, followed by NGF deprivation in low/no serum, 
results in aberrant cell cycle entry and apoptosis8,50–53. 
In order to assess whether RGCC might play a role in 
neuronal apoptosis related to cell cycle reentry, we dif-
ferentiated PC12 cells and then treated the cultures with 
rgcc-specific siRNA or scrambled control siRNA prior 
to NGF withdrawal (Fig. 3). There was an overall ~75% 
decrease in the cell survival of PC12 cultures subjected 
to NGF withdrawal compared to cultures maintained on 
NGF (p < 0.01). By contrast, rgcc downregulation res-
cued the PC12 cultures from NGF deprivation, resulting 
in an ~25% decrease in cell survival compared to NGF-
maintained cultures (Fig. 3A). To assess the extent of 
cell cycle activation in the cultures, we used qPCR to 
measure expression levels of cyclin b1 (ccnb1), a CDK1 
binding partner that is downregulated during NGF-
induced differentiation and upregulated during NGF 
withdrawal and apoptosis of PC12 cells54,55. There was 
an overall ~80% increase in cyclin B1 levels in PC12 
cultures subjected to NGF withdrawal compared to cul-
tures maintained on NGF (p < 0.05). By contrast, rgcc 
downregulation prevented cyclin B1 upregulation dur-
ing NGF deprivation (Fig. 3B).

DISCUSSION

For over two decades, the concept of “abortive mito-
sis” has been noted as a cellular mechanism of apoptosis 
during development and neuronal cell death in neurode-
generative disease3,56,57. With respect to AD, it has been 
proposed that deleterious events such as the loss of neu-
rotrophic support needed to maintain terminal differen-
tiation, or neuronal DNA damage from oxidative stress, 
result in the transition from a quiescent G0 cell cycle 

Figure 2. Regulator of cell cycle (rgcc) protein levels are increased in mild cognitive impairment (MCI) and Alzheimer’s disease 
(AD). (A) Representative Western blot shows greater RCGG immunoreactivity (~15 kDa) in tissue extracts derived from MCI and AD 
cases compared to no cognitive impairment (NCI) cases; levels of b-actin were equivalent across samples. (B) Box plots show relative 
quantitative measurements of RGCC immunoreactivity normalized to b-actin signals (mean ± max/min; arbitrary units) in the three 
diagnostic groups. *p < 0.05 versus NCI, via one-way analysis of variance (ANOVA) with Bonferroni post hoc comparisons.
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stage into an unscheduled attempt at DNA replication 
and mitosis4,7,18–20. The consequent loss of genomic and 
cellular homeostasis ultimately triggers programmed 
cell death3,58,59. Moreover, the activation of several cell 
cycle kinases, normally under tight regulatory control 
in  postmitotic neurons, can lead to tau hyperphosphory-
lation and aggregation into NFTs14–17. Hence, the cell 
cycle continues to represent a viable target for disease-
 modifying therapies for AD21,58,59. Here we provide evi-
dence that the cell cycle regulatory protein RGCC is 
upregulated in MCI and AD, correlates with global cog-
nitive decline, and may be involved in facilitating aber-
rant cell cycle reentry induced by neurotrophin loss in 
differentiated neurons, suggesting that RGCC may be a 
candidate cell cycle target for neuroprotection during the 
onset of AD. This report may also add another provoca-
tive link to the potential mechanistic interrelationship 
between cell transformation in cancer and selective vul-
nerability in neurodegenerative disease. These diseases 
share many molecular pathogenic processes, including 
oxidative and inflammatory stress, proteostatic stress, 
and metabolic dysregulation21,60–64, and it has been postu-
lated that these pathways lead to either clonal expansion 
in proliferating cells or clonal elimination in terminally 
differentiated cells such as neurons65.

The functional and mechanistic repertoire of RGCC 
activity has not been fully elucidated. It was originally 

discovered as the RGC-32 response gene during comple-
ment activation of rat oligodendrocytes26. RGCC physi-
cally associates with and activates CDK1, a key kinase 
involved in the G1/S and G2/M phase transitions26,29,30. 
However, RGCC has also been implicated in diverse 
functions such as cellular differentiation, inflamma-
tion, vascular remodeling, and insulin resistance32,66–70. 
Interestingly, RGCC was identified as a transcriptional 
target and mediator of p53 tumor suppression in glioma 
cells27. In neurons, the p53 protein possesses multifac-
torial properties regulating DNA damage, cell cycle 
control, and apoptosis71,72. Given the evidence that p53 
protein is upregulated and possibly dysregulated due to 
structural modifications in MCI and AD73–75, we investi-
gated whether RCGG was also upregulated in these dis-
ease stages and whether it could potentially play a role in 
neuronal cell cycle dysfunction and/or apoptosis. In this 
regard, we validated p53 upregulation74 but also found 
that RGCC was upregulated in the frontal cortex in MCI 
and AD. By contrast, transcripts encoding the RGCC-
regulated cell cycle protein CDK1 were stable during 
disease progression despite a trend (p = 0.07) for upregu-
lation, consistent with the notion that RGCC regulates 
CDK1 activity rather than expression30.

The functional consequences of RGCC upregulation 
in MCI and AD subjects are unclear, but its role in cell 
cycle activation led us to test whether this upregulation 

Figure 3. Regulator of cell cycle (rgcc) inhibition rescues PC12 cells from cell death induced by nerve growth factor (NGF) with-
drawal. (A) Bar graph shows relative levels of cell survival as measured by the LIVE/DEAD assay [mean ± standard deviation (SD); 
arbitrary units] for PC12 cultures maintained on NGF, deprived of NGF for 48 h, deprived of NGF for 48 h in the presence of rgcc 
siRNA, or deprived of NGF for 48 h in the presence of scrambled control siRNA. (B) Bar graph shows relative levels of cyclin b1 
(ccnb1) transcript levels as measured by quantitative polymerase chain reaction (qPCR) (mean ± SD; arbitrary units) for PC12 cultures 
maintained on NGF, deprived of NGF for 48 h, deprived of NGF for 48 h in the presence of rgcc siRNA, or deprived of NGF for 
48 h in the presence of scrambled control siRNA. *p < 0.05; **p < 0.01 versus NGF, via one-way analysis of variance (ANOVA) with 
Bonferroni post hoc comparisons.
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could reflect a deleterious event promoting “abortive 
mitosis” and neuronal vulnerability. To this end, we 
used the PC12 cell culture model as a well-established 
system for NGF-mediated neuronotypic differentiation 
and NGF withdrawal-mediated cell cycle reactivation 
and apoptosis8,50–53. Using rgcc and scrambled sequence 
control siRNA, we found that rgcc knockdown protected 
PC12 cells from NGF withdrawal and prevented the 
upregulation of the CDK1 binding partner cyclin B154,55, 
suggesting that RCGG participates in cell cycle reactiva-
tion and cell death within the context of deficient neu-
rotrophin signaling.

A central concept underlying the selective vulnerabil-
ity of neurons in AD is that they are dependent on neu-
rotrophins such as NGF and brain-derived neurotrophic 
factor (BDNF) for survival76–78. NGF and BDNF are 
derived from proNGF and proBDNF precursor proteins, 
and these mature peptides interact with their cognate 
high-affinity receptors TrkA and TrkB, respectively, for 
prosurvival functions77,79,80. By contrast, proNGF and 
proBDNF have higher affinity for the pan neurotrophin 
receptor p75NTR and elicit prodeath signals81. Notably, we 
found that cortical TrkA protein levels were selectively 
reduced in mild AD compared to p75NTR 49, whereas 
cortical proNGF levels were elevated in MCI and AD 
compared to NCI82. Hence, increased cortical proNGF in 
combination with reduced cortical TrkA expression may 
result in enhanced binding between proNGF and p75NTR, 
potentially shifting away from prosurvival NGF signal-
ing to apoptotic signaling. Likewise, levels of BDNF 
and TrkB are decreased in vulnerable brain regions in 
MCI and AD39,83. This observation, combined with the 
presence of cell cycle proteins within vulnerable brain 
regions in MCI and mild AD4,7, suggests that neurotro-
phin receptor imbalance promotes a loss of neurotrophic 
support and unscheduled cell cycle reentry and apopto-
sis during the prodromal stages of AD. In this regard, 
whereas cell cycle abnormalities have been linked to  
in vitro and in vivo amyloid and tau pathology84–86, we 
did not find a significant association between RGCC  
levels and neuropathological diagnostic criteria. This 
may be due to the lack of significant differences in Braak, 
NIA-Reagan, or CERAD scores among the diagnostic 
groups (Table 1). On the other hand, they may suggest 
that neurotrophic imbalances affect RGCC and other  
cell cycle events independent of plaque or tangle burden. 
The extent to which increased RGCC levels denote its 
involvement in  neurotrophin- mediated mitotic cell death 
cascades in the MCI and AD brain is a question for future 
study. Furthermore, given the involvement of p53 in 
neuronal apoptosis following NGF withdrawal87, it will 
be interesting to explore whether a p53-RGCC-CDK1/
cyclin B cascade mediates aberrant cell cycle activation 

in postmitotic neurons. If so, this pathway may present a 
novel therapeutic target for disease modification during 
the progression of AD.
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