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UV-induced damage to DNA: effect of cytosine methylation
on pyrimidine dimerization
Lara Martinez-Fernandez1, Akos Banyasz2, Luciana Esposito1, Dimitra Markovitsi2 and Roberto Improta1

Methylation/demethylation of cytosine plays an important role in epigenetic signaling, the reversibility of epigenetic modifications
offering important opportunities for targeted therapies. Actually, methylated sites have been correlated with mutational hotspots
detected in skin cancers. The present brief review discusses the physicochemical parameters underlying the specific ultraviolet-
induced reactivity of methylated cytosine. It focuses on dimerization reactions giving rise to cyclobutane pyrimidine dimers and
pyrimidine (6–4) pyrimidone adducts. According to recent studies, four conformational and electronic factors that are affected by
cytosine methylation may control these reactions: the red-shift of the absorption spectrum, the lengthening of the excited state
lifetime, changes in the sugar puckering modifying the stacking between reactive pyrimidines and an increase in the rigidity of
duplexes favoring excitation energy transfer toward methylated pyrimidines.
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INTRODUCTION
Methylation occurring at the 5 position of cytosine (C5-methyla-
tion; Figure 1) plays a key role in epigenetic mechanisms involved
in the regulation of a variety of biological processes ranging from
cell differentiation to gene expression. DNA methylation is also
one of the most extensively studied epigenetic modifications in
cancer.1 As the degree of methylation varies during the cell cycle,
5-methylcytosine (5mC) is considered as the fifth ‘dynamic’ letter
of the genetic code.2–4 The functions involving 5mC,5 and the
associated signal transduction, may be highly perturbed by
chemical alteration of cytosines provoked by ultraviolet (UV)
radiation. In contrast to genetic changes, epigenetic modifications
are frequently reversible, which provides opportunities for
targeted treatment using specific inhibitors. In this respect, the
specificity of 5mC lies in the fact that, although it represents at
most 5% of the bases in the human genome, it has been
described as an endogenous mutagen.6,7 CpG sites contribute to
~ 35% of all point mutations in the germline 8 and are important
hotspots for acquired somatic mutations leading to cancer.6–13

The degree of correlation between methylation and cancer
depends on the tumor type.6 In particular, recent studies show
that ~ 40% of melanomas are connected with C5-methylation.12 It
is well known that 5mC is a mutable site, involved in inherited
diseases and in tumors, because it can undergo spontaneous
deamination to thymine.14,15 Concerning UV-induced mutations,
that is the focus of the present contribution, methylation has been
correlated with the formation of cyclobutane pyrimidine dimers
(CPDs) (Figure 1) occurring in X5mCG sequences, where X
represents a thymine (T) or a cytosine (C).6,16–18

In a more general way, CPDs may be formed via a direct or an
indirect mechanism.19 The former involves absorption of photons
directly by DNA, while in the latter photons are absorbed by other
molecules present in cell, which subsequently react with the
nucleic acids. The indirect mechanism is context dependent, being
affected by factors such as metabolism, pollution or drugs.

In contrast, the direct mechanism corresponds to an intrinsic
property of DNA and deserves particular attention.
UV-induced reactions establishing chemical bonds between

neighboring pyrimidines lead mainly to two families of dimers
(Figure 1): cyclobutane pyrimidine dimers, which may be formed
as cis-syn (c,s CPDs) and trans-syn (t,s CPDs) stereoisomers, and
pyrimidine (6-4) pyrimidone adducts (64PPs). Both types of
photoproducts have been detected in dinucleoside monopho-
sphates when one of the reacting pyrimidines is 5mC.20 The
resulting CPDs may deaminate giving rise to the corresponding
thymine photoproducts.17,20–22 Such secondary reactions occur-
ring in DNA sequences in which both T5mC and TT repeats are
present render the direct correlation between cytosine methyla-
tion and dimerization delicate.
A few studies, performed on model systems, genomic and

cellular DNA, investigated how methylation affects reaction yields
and/or induction20,23–25 and reported that it enhances CPD
formation, especially for UVB irradiation. Accordingly, among the
numerous studies searching the reasons for the increased UV-
induced mutagenicity associated with 5mC, one direction explores
the very first steps of the complex cascade of events, intervening
between photon absorption by DNA and chemical reactions.
Performed in vitro or in silico, such investigations focus on the
elementary processes, trying to describe the fate of the photon
energy within DNA.
The purpose of the present article is to provide a critical review

of various fundamental physicochemical aspects involved in the
intrinsic photoreactivity of methylated DNA, exploiting some very
recent contributions that combine computational methods
(quantum chemistry and molecular dynamics simulations) with
optical spectroscopy.
The first section is dedicated to the effect of C5-methylation on

the static and dynamic properties of the 5mC monomer excited
state, which could affect its photochemical behavior. Then, after
concisely discussing the electronic grounds that control photo-
dimerization reactions, we examine systems with increasing
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complexity. Starting from small oligonucleotides (dinucleotides
and trinucleotides) and going to longer single and double strands,
we analyze how conformational and electronic modifications
induced by C5-methylation influence the studied reactions. Finally,
we try to provide a simple and general picture of the present
knowledge on the effect of C5-methylation on the photoactivated
reactivity of DNA and discuss the main perspectives in this field.

5MC MONOMER
As shown in Figure 2, C5-methylation leads to a noticeable red-
shift (ca. 10 nm) of the absorption maximum of the nucleosides.
For both nucleosides dC and 5mC, this band arises from an
electronic transition with a predominant HOMO→ LUMO char-
acter, that is, involving the excitation of an electron from the
highest occupied molecular orbital (HOMO) to the lowest
unoccupied molecular orbital (LUMO; Figure 2). This result has
been rationalized by recent calculations26 showing that the
5-methyl substituent provides an antibonding contribution to
the HOMO (as identified by the out-of-phase combination with
respect to the C5 =C6 π bond), decreasing its stability and,
therefore, the HOMO/LUMO gap. The red shift of the cytosine
absorption spectrum upon methylation has been considered to be
the cause of the increased photoreactivity of 5mC observed in
cells.27

In addition to the spectral modification, C5-methylation also
leads to a noticeable increase of the excited state lifetime. In water
solutions, the lowest energy ππ* excited state of dC (S1) decays
mainly on the sub-ps time scale, whereas the average excited
state lifetime of 5mC amounts to several ps.28–30 For cytosine, an
almost barrierless path on S1 leads to a crossing region with the
ground electronic state (S0), giving account of the very short
lifetime and of the very low fluorescence quantum yield. In
contrast, in the case of the methylated analog, as discussed in
detail in a forthcoming contribution,31 the potential energy
surface of the lowest excited state contains a minimum, separated
from the crossing region with S0 by a sizeable energy barrier
(0.15–0.3 eV), explaining the increase of the S1 lifetime. Since the
S1 excited state is involved in the photodimerization reaction, as

we explain below, a longer lifetime could, in principle, enhance
the quantum yield of the reaction. But so far, it has not been
possible to assess the significance of this effect on the ground of
relevant experimental and computational studies on duplexes.

PHOTODIMERIZATION: 5MC CONTAINING SHORT
OLIGONUCLEOTIDES
Before analyzing the effect of C5-methylation on the photodimer-
ization quantum yields, it is useful to provide information on the
electronic states involved in these reactions. For what concerns
CPD formation, several studies on di-pyrimidine steps (including
TC and T5mC steps)32–40 show that when two bases are stacked,
their S1 excited states (the HOMO→ LUMO transitions depicted in

Figure 1. Formation of T5mC dimeric photoproducts. CPD, cyclobutane pyrimidine dimers (c,s stereo isomers); 64PP, pyrimidine (6-4)
pyrimidone photoproducts, sugars are represented by triangles, phosphate groups by a circle.

Figure 2. Effect of cytosine methylation on the absorption spectra
of nucleosides in water:30 dC (black) and 5mC (violet). The red-arrow
indicates the irradiation wavelength (255 nm) used in the experi-
ments providing the data reported in Tables 1 and 2. The
absorbance of the lower absorption peak is set to 1. Inset: computed
TDDFT absorption spectra.26
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Figures 2 and 3) interact, giving rise to an electronic transition
delocalized over the two pyrimidines. As shown in Figure 3a, this
transition involves the excitation of an electron from a molecular
orbital (MO) corresponding to the combination of the highest
energy π bonding orbitals of the two bases, to a MO deriving from
the combination of the two LUMO’s (exciton). Interestingly, this
latter orbital has a clear bonding character between the two C5/
C5′ and C6/C6′ pairs of the two bases. Light absorption, promoting
an electron to this orbital, thus makes the dimerization reaction
much easier than in the ground electronic state. Actually, time
resolved experimental studies showed that the CPD formation in
thymine single strands is ultrafast; the two new bonds are formed
essentially within 1 ps after light absorption.41,42 In addition,
according to quantum mechanical calculations, for certain
stacking arrangements of the bases, CPD formation on the S1

potential energy surface (PES) is barrierless (Figure 4).32–40,43

Consequently, this photodimerization reaction is mainly governed
by the ground state conformation: the couple of bases that are in
a suitable conformation undergo ultrafast CPD reaction. In
particular, it has been proposed that the photo-dimerization is
governed by the relative frequency of structures exhibiting short
distances between the reactive bonds.44–46 More recent contribu-
tions also highlight the importance of the sugar puckering
adopted by each reactive nucleotide,32,34 which affects the
stacking geometry of the dipyrimidine steps. Thus, it appears
that several conformational parameters are important for CPD
formation.
The 64PP formation has been investigated less thoroughly

compared to CPDs and mostly for TT steps. There are indications
that it proceeds through the so-called oxetane intermediate47

followed by 64PP formation on the ms time-scale.48 Experiments
showed that oxetane formation is faster than 200 ns48 but the
precise dynamics of the reaction has not been characterized so far.
QM studies suggest that the oxetane in the case of TT steps or the
azetidine for TC steps are formed on the PES of an electronic state
with charge transfer character.32,33 The latter can be described as
arising from the transfer of an electron from the HOMO of the
pyrimidine on the 5′-end toward the LUMO of that on the 3′-end
(Figure 3b)33 The presence of an energy barrier either in the step

Figure 3. Frontier orbitals involved in the electronic transitions leading to CPD (a) and 64PP (b) formation.

Figure 4. Schematic description of the barrierless path leading to
CPD formation.

Table 1. Quantum yields ϕ (×103) determined for the formation of
dimeric photoproducts following irradiation at 255 nm

TCG32 T5mCG32 n-ss50 m-ss50 n-ds50 m-ds50

ϕCPD (c,s) 0.5 0.7 1.3 1.3 0.6 1.1
ϕ64 0.6 0.4 1.4 0.3 0.7 0.1

Abbreviations: CPD, cyclobutane pyrimidine dimer; 64, pyrimidine (6-4)
pyrimidone adducts; ds, double strand; m, methylated; n, non-methylated;
ss, single strand.
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leading to the oxetane formation,33 or in that leading to the final
photoproduct can explain the smaller yield of 64 PP than CPD.49

Coming to the experimental results on pyrimidine photodimer-
ization in short oligomers, the first study, performed on 1994 for
5mC-containing dinucleoside monophosphates,20 noticed that C5-
methylation enhances CPD formation. Two decades later,
dimerization quantum yields ϕ (and not simple yields), which
are necessary for the assessment of the intrinsic reactivity of 5mC,
were reported for trinucleotides containing the biologically
relevant sequence T5mC and compared to those observed for
the non-methylated analogs TCG.32 As in the case of the early
study, trinucleotides were irradiated at 255 nm. The quantum
yields determined for both CPDs (ϕCPD) and 64PPs (ϕ64) are shown
in Table 1. In line with what was found for dinucleotides, a higher
ϕCPD was determined for T5mCG compared to TCG.
According to its definition, the quantum yield equals to the

number of formed dimers divided by the number of absorbed
photons. Thus, in order to check to what extent the observed
variations of quantum yields arise from the modification of the
absorption spectrum of cytosine upon methylation, its contribu-
tion can be quantified by the following new parameter:32

Im=ϕmψn/ϕnψm, where ϕm and ϕn are the quantum yields found
for the methylated and the corresponding non-methylated
system, respectively (Table 2). We remark that the Im values
determined for c,s CPDs and 64PPs, 1.7 and 0.8, respectively, being
significantly different than 1, reveal that other factors independent
from the photon absorption, affect also the pyrimidine dimeriza-
tion. It is worth-noticing that in contrast to C5-methylation,
N4-methylation of cytosine in trinucleotides enhances the yield of
64PPs.51

Computational analysis, combining quantum mechanical calcu-
lations on TC/T5mC dinucleotides and molecular dynamics
simulations on TCG/T5mCG trinucleotides, shows indeed that
C5-methylation induces weak, but noticeable structural effects,
modulating the conformational equilibria of the dipyrimidine
steps. For example, the C2′endo-C1′exo (c2c1) conformer is more
stable than the C2′endo-C2′endo (c2c2) one for T5mC, while the
opposite is found for TC.32 In general, C5-methylation induces a
decrease of the pseudo-rotation phase angle, measuring the sugar
ring puckering.32 Excited state QM calculations show that,
independently of C5-methylation, c2c2 conformations are not
reactive, since the favored decay path involves localization of the
excitation on a single base, followed by ultrafast decay to S0
(monomer like decay pathway). On the opposite, for c2c1
arrangement a barrierless path on S1 leads to CPD formation.
Shortly, C5-methylation favors puckering combinations and, thus,
stacking arrangements, that are favorable to CPD formation but
less prone to 64PP formation. The role of C5-methylation in
modulating the relative importance of ‘monomer like’ and
‘dimerization’ paths has been highlighted in QM studies of other
dipyrimidine sequences.40

LONGER SEQUENCES CONTAINING 5MC
Mitchel determined the induction time of CPDs and 64PPs in
various model duplexes and concluded that C5-methylation
enhances the formation of both types of dimers.23 However, it is
not possible to correlate the induction time, which is a
phenomenological parameter, with physico-chemical factors
underlying the reaction mechanisms. Moreover, the conclusions
regarding the 64PP enhancement contrasts with an in vivo
study.52

Only one study reports the effect of C5-methylation on the CPD
yields in naked human genomic DNA in solution.24 Performed
in vitro, under conditions where solely the direct mechanism is
operative and discriminating clearly dimers arising from methy-
lated/non-methylated cytosines, this investigation revealed an
interesting point: upon 254 nm irradiation the same CPD yield was
observed for methylated and non-methylated DNA, although at
this wavelength the molar absorption coefficient of dC is 30%
higher than that 5mC.
The above point was further investigated using suitably tailored

oligonucleotides: single strands (T5mCGTA)3 and (TCGTA)3 and
duplexes (T5mCGTA)3·(TACGA)3 and (TCGTA)3·(TACGA)3.

50 Their
sequence was chosen in a way that pyrimidine dimers arise only
from sites that can be methylated so that to avoid confusion with
dimers arising from TT sites. The most striking finding is that the Im
(Table 2) value (representing the change in the reactivity of
cytosine upon methylation) determined for duplexes is higher at
the shorter wavelength; it is 2.4 at 255 nm and only 1.3 at 282 nm.
In contrast, in the case of single strands, although the irradiation
wavelength affects ϕCPD, it does not have a noticeable effect on Im.
Thus, the observation on duplexes demonstrate, in a more
pronounced way than for short systems and longer single strands,
that several other factors are responsible for the modification of
dimerization efficiency following C5-methylation. From the con-
formational point of view, molecular dynamics simulations have
been applied to DNA fragments with a different extent of
methylation (either fully methylated or hemimethylated) and with
different sequences (either with repetitive CG sequences, or
segments containing interdispersed CG sequences),53–57 focusing
mainly on CG steps. All these studies agree that C5-methylation
decreases the DNA flexibility.
For what concerns the TCG containing long sequences, whose

photodimerization quantum yields and Im values are also reported
in Tables 1 and 2, respectively, MD simulations have shown that
the trends found in trinucleotides are maintained in longer single-
stranded stretches.32,50 In particular, C5-methylation destabilizes
the stacking of CG step, favors cytidine C1′exo versus C2′endo
conformers, giving rise to a larger population of molecules
with short distances between reactive bonds involved in CPD
formation. On the other hand, though the average structural
features of duplexes are less impacted by C5-methylation, the
amplitude of conformational motions is significantly smaller in
methylated structures, confirming the results obtained on other
sequences.53–57 In particular, the increased rigidity of the 5mC-
containing duplexes is also revealed by the lower s.d. of the
distribution of the distances between the ‘photo-reactive’
bonds.32

Quantum mechanical calculations on fragments of these
duplexes show that the UV absorption populates excited states
delocalized over two or more bases.50 The electronic transitions
contributing to the maximum of the experimental absorption
peak (around 260 nm) are significantly coupled with potentially
photochemically active excited states, delocalized over bis-
pyrimidine steps. There are thus hints that energy transfer takes
place; internal conversion among exciton states (intraband
scattering) leads to the bottom of the exciton band, as found
experimentally for several nonmethylated DNA duplexes and
G-quadruplexes.58,59 C5-methylation can enhance the efficiency of

Table 2. Quantification of the effect of C5-methylation on the
pyrimidine dimerization following irradiation at 255 nm by the
parameter Im=ϕmψn/ϕnψm accounting for the different absorption
spectra of C and 5mC; ϕm and ϕn are the quantum yields found for the
methylated and the corresponding non-methylated system,
respectively (Table 1); ψm and ψn represent the fraction of photons
absorbed by a reactive 5mC or C

Trinucleo tides32 Single strands50 Double strands50

CPDs (c,s) 1.7 1.3 2.4
64PPs 0.8 0.3 0.3

Abbreviations: CPD, cyclobutane pyrimidine dimer; 64, pyrimidine (6-4)
pyrimidone adducts.
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intraband scattering, either by increasing the rigidity of the duplex
structure (as discussed above), or by decreasing
the energy of the lowest energy excited states in reactive
dipyrimidine steps.

CONCLUDING REMARKS AND PERSPECTIVES
In this contribution, we have provided a general picture regarding
the effect of C5-methylation on pyrimidine dimerization and
discussed the various physico-chemical factors that may underlie
this effect. These factors are schematically illustrated in Figure 5.
It is clear that the experimentally observed effects cannot be
explained by a single cause and that a subtle interplay among
various factors governs the reactivity of methylated DNA.
The red shift of the absorption spectrum induced by

C5-methylation (Figure 5a), due to energy destabilization of the
HOMO orbital, is certainly an important factor intervening in both
dimerization reactions, but it is not the only factor into play. The
lengthening of the excited state lifetime (Figure 5b) could
contribute to CPD enhancement, but so far there are no available
experimental results on duplexes supporting this point. For all
types of methylated systems, structural effects, favoring con-
formations more reactive toward CPD formation (Figure 5c) and
modulating the role of the flanking bases,60,61 are certainly a key
factor. Finally, C5-methylation increases the duplex rigidity
(Figure 5d), facilitating the energy transfer from non-reactive
bases to reactive ones, via delocalized excited states (excitons).
The role of the above-mentioned factors is more easily assessed

in the case of CPDs, whose formation takes place in a single step
via delocalized excited states.
As 64PP formation takes place via a two-step mechanism (the

first involving a charge transfer excited state between the two
reactive pyrimidines) and the experimental observations concern
so far the overall reaction, the direct correlation of calculated
parameters with experimental observations is delicate.
Notwithstanding the significant advances made since the

beginning of the 21st century in our understanding of how DNA
methylation affects pyrimidine dimerization caused by direct

absorption of UV radiation, several important issues remain to be
elucidated.
Starting from photon absorption, it would be interesting to

explore the absorption of methylated systems in the UVA spectral
domain. In the case of non-methylated systems, it was shown
recently that, in contrast to the isolated bases, both naked
genomic DNA and model duplexes absorb in this spectral domain.
This absorption, giving rise to CPDs,62,63 was correlated to charge
transfer transitions among reactive pyrimidines,34 which may be
vibronically coupled to ππ* transitions.
Regarding the role of the excited state lifetime, ultrafast

spectroscopy, probing the IR spectral domain, already used for
the study of thymine CPDs, could bring valuable information for
the dynamics of dimerization reactions.
The conclusions concerning the role of conformation and

energy transfer were drawn from joint experimental and
theoretical investigations on systems containing the sequence
TCG/T5mCG. Similar studies on other sequences, as for example
CCG/C5mCG, would allow checking in which extent these
conclusions have a general validity.
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