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Introduction and background to 
chronic postsurgical pain
Over the past 20 years, persistent pain arising solely as 
a result of a surgical intervention has been highlighted 
by several authors and investigators, with incidences 
varying from 10% to almost 80%.1,2,3 Patients are very 
often left suffering in pain, long after their operative 
procedure is over, with chronic pain interfering with 
their life and work, sometimes for many years. 
Clinicians are left frustrated by their inability to explain 
CPSP in simple terms, as well as not being able to 
understand the poor response to multiple medication 
trials. Although several mechanisms have been pro-
posed involving both the patient and the surgical pro-
cedure, the link between genetics and CPSP has only 

been getting the attention of researchers and clinicians 
in the past 10 years or so.

Acute pain, following surgery or a traumatic event, 
gives rise to a cascade of events both in the peripheral 
and central nervous systems, resulting in rapid gene 
expression profile changes in the ensuing period. This 
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Abstract
Persistent or chronic postsurgical pain (CPSP) has been defined as ‘pain persisting beyond 2 months’. 
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is believed to activate over 1000 genes in the dorsal 
root ganglia (DRG) alone. The genes responsible are 
believed to be involved in the immunological response/
inflammatory cytokine expression, glucocorticoid 
receptor (GR) function, pain regulatory enzymes and 
opioid receptor regulation and function.4 If one takes 
into consideration the patient’s pre-existing psychoso-
cial profile, epigenetic factors can be considered to 
influence the development of CPSP at any stage of the 
patient’s journey, well before the proposed surgical 
intervention. Anxiety, depression, somatisation, cata-
strophising and so on have been shown by various 
authors, in several studies, to be some of the consistent 
predictive factors for the development of CPSP.5 
Multiple stressors have the potential to change the 
‘epigenetic landscape’ in the vulnerable patient and 
influence his or her response to further stress as in sur-
gery, with pain persisting in varying intensity and dura-
tion.6 Other patient-related factors include concurrent 
or past pain,7 as well as fear of pain following the sur-
gery.8 Both single nucleotide polymorphisms (SNPs – 
subtle changes in the nucleotide sequences in the 
genome, which can lead to abnormal protein synthesis 
and/or function of receptors leading to downstream 
consequences) and epigenetics (change in the function 
of DNA, without any change in the core structure. Can 
affect various functions in the processing, inflamma-
tory, corticosteroid/stress response as well as involving 
the pain matrix (both bottom to top and top to bottom 
regulation)) have been shown to influence the progres-
sion of acute pain to chronicity, at various stages of the 
susceptible patient’s journey.

This article will try to trace the ‘vulnerable’ patient’s 
journey and will try to link genetic factors, either SNPs 
or epigenetics or both, at each stage, with an attempt to 
explain the development of chronic postsurgical pain 
(CPSP).

Despite extensive knowledge of the mechanisms 
linking inflammation, peripheral and central sensitisa-
tion and pain, in both human and animal models, as 
well as advances in understanding the human genetic 
code, we are still not fully able to answer why some 
patients are prone to develop CPSP, why one incision 
becomes painful or indeed why a repeat operation 
becomes more painful.9 Several studies over the past 
few years have demonstrated the growing evidence of 
the influence of anxiety, depression,10,11 catastrophis-
ing, somatisation12–14 as well as pre-existing pain and 
pain from previous surgeries on the development of 
CPSP. Various investigators have shown the impact of 
chemo/radiotherapy in the chronification of pain, 
either given pre- or post-operatively, with the possible 
involvement of mitochondrial RNAs in chemotherapy 
following cancer surgery.15–18 Studies in patients 
developing CPSP after total knee replacement have 

shown that the presence of chronic widespread pain, 
depression, higher body mass index (BMI), younger 
age, and female gender were all risk factors.19 In a 
study looking at the predictive values of patient coping 
and expectations about recovery after traumatic tibial 
fracture and the subsequent development of CPSP, 
high Somatic Pre-Occupation and Coping (SPOC) 
questionnaire scores at 6 weeks following the fracture 
were associated with significant pain interference at 
1 year.20 Many patients coming in for a surgical proce-
dure could already have widespread pain due to long-
term opioids, resulting in the well-recognised 
phenomenon of ‘opioid induced hyperalgesia’, and 
this can make post-operative pain control difficult and 
can possibly lead to CPSP.21

The perioperative period
A number of surgical factors have been shown to be 
associated with CPSP, by various investigators. These 
include size, site as well as the number of incisions, 
including the complexity of operations. Other factors 
such as increased duration of surgery, low versus high 
volume surgical units, open surgical versus laparoscopic 
techniques, intra-costal versus peri-costal stitches and 
intraoperative nerve damage have also been highlighted 
as potential risk factors for developing CPSP.7

The intraoperative use of opioids, especially 
remifentanil, and excessive use of opioids both peri-
and post-operatively, could possibly contribute to 
CPSP.22 Some patients who are already on long-term 
opioids could have developed opioid-induced hyper-
algesia, resulting in poorly controlled postsurgical 
pain, with increased opioid requirements and a risk of 
developing CPSP. A recent review by Fletcher and 
Martinez23 on opioid-induced hyperalgesia in post-
operative patients suggests that high intraoperative 
doses of remifentanil are associated with small but 
significant increases in acute pain after surgery. 
Another systematic review on the intraoperative use 
of remifentanil by Kim et al.24 also urged caution and 
recommended further studies to investigate the con-
tribution of remifentanil-induced hyperalgesia to the 
chronicity of pain.

The post-operative period
Several factors such as poor post-operative pain con-
trol,25 presence of drains, post-operative infection3 and 
delay in introducing established anti-neuropathic med-
ications (patient’s regular medication) have all been 
shown to influence the development of CPSP.26 The 
presence of post-operative infection, with raised 
inflammatory markers or raised C-reactive protein 
(CRP), poorly controlled postsurgical pain especially 
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in patients on long-term opioids,27 prolonged hospi-
talisation and increased post-operative opioid use28 
have also been shown to influence the development of 
CPSP by different genetic mechanisms.29

Postsurgical exposure to chemotherapeutic medica-
tions has been shown to cause painful neuropathy and, 
in vulnerable patients, worsen the already developing 
CPSP.30

The genetic links in CPSP
The transition of acute pain to chronic is a complex pro-
cess involving multiple steps including recent evidence of 
glial cell activation in the central nervous system (CNS), 
and as yet, there is no single genetic cause identified.31 It 
is believed to be a complex interaction between multiple 
genetic factors,32 involving SNPs and epigenetics.33 The 
epigenetic mechanisms involve DNA methylation,  
histone modifications and micro RNA interference. 
Advances in genome-wide association studies (GWAS – 
it identifies the genetic locations (SNPs) that differ sig-
nificantly between cases and controls for a specific 
phenotype),34 as well as the success in the selective 
breeding of rodents with different ‘pain traits’ in recent 
years by several labs, are giving us more clues into the 
complex interaction between genetics and pain.35,36

SNPs and their role in CPSP
SNP is a DNA sequence variation that occurs when a 
single nucleotide (Adenine, Thymine, Cytosine or 

Guanine) in the genome sequence is altered. The vast 
majority of human genetic association studies linking 
pain (both acute and chronic) have been on a few 
SNPs.37 It is important to realise that rather than 
directly causing a chronic pain disease, most of the 
studied SNPs modulate susceptibility to it.38 Although 
approximately 100 genes have been linked to possible 
modification of pain, only a handful have been studied 
in humans using GWAS.

Gain of function and loss of function by 
SNPs
SNPs are considered to alter pain experience by  
modulation – either by increasing postsurgical pain 
levels or by lowering pain levels, the so-called ‘gain of 
function’ or ‘loss of function’ modulation. There have 
been numerous candidate genes studies in the pain lit-
erature, including a few on CPSP, to date.39 Most of 
the well-investigated SNPs have been known to have 
complex interactions (Tables 1–3).40

In a recently published GWAS study in patients 
complaining of neuropathic pain following total knee 
replacement, a variant in the protein-kinase C alpha 
gene (PRKCA) was reported by Warner et  al.57 This 
finding could be of relevance, as the PRKCA gene has 
been associated with long-term potentiation, synaptic 
plasticity, chronic pain and memory in the literature.

However, a recent study by Montes et al. could not 
replicate many of the previous studies linking various 
well-established SNPs and outcomes (both favourable 

Table 1.  Frequently studied and well-documented SNPs involved in pain modulation in humans.

Gene Function References

COMT Neurotransmission Kim et al.41

SCN9A Neurotransmission Edwards42

GCH1 Metabolism Edwards42

IL10 and IL1R2 Immune response Stephens et al.43

KCNS1 Neurotransmission Edwards42, Costigan et al.44, Young et al.45

OPRM1 Neurotransmission Kolesnikov et al.46

P2RX7 Neurotransmission Foulkes and Wood47

CACNG2 ‘Stargazin’ gene Neurotransmission Nissenbaum et al.48

SCN9A: gene coding for voltage-gated sodium channel subtype 1.7; KCNS1: gene coding for potassium channel; CACNG2: gene coding for 
the ς2 subunit of the voltage dependent Ca2+channel; COMT: catechol-O-methyltransferase.

Table 2.  Pain-related genes associated with neurotransmitter (NT) systems.49

Gene name NT system affected Pain phenotype

GCH1 Serotonin, dopamine, nor-epinephrine, 
epinephrine, nitric oxide

↓ Sensitivity to experimental pain
↓ Postsurgical pain

COMT Serotonin Varying response

GCH1: gene encoding cyclohydrolase 1; COMT: catechol-O-methyltransferase.
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and unfavourable). Their aim was to identify CPSP risk 
factors and functional genetic polymorphisms to pre-
dict the risk of developing CPSP. The authors conclude 
by suggesting the systematic use of clinical factors for 
predicting and managing the risk for CPSP until equiv-
ocal genetic predictors are identified.58 In another 
study, where the investigators tried to link the associa-
tion of genetic and psychological factors with persistent 
pain after cosmetic thoracic surgery in previously pain-
free patients, common genetic variants previously asso-
ciated with, or functionally related to, pain perception 
could not ‘significantly’ predict the development of 
CPSP.59 The investigators looked at the relative contri-
bution of several SNPs in pain-related genes for post-
surgical pain chronification. Recently, Liu et  al. 
evaluated the association between spinal cathepsin G 
(CTSG) polymorphisms and the risk of developing 
CPSP in 1152 surgical patients. Patients with polymor-
phisms in the CTSG gene had a ‘lower risk’ for CPSP.60

Epigenetics and its influence on 
CPSP
Epigenetics is a term first defined by Conrad 
Waddington in 1942,61 and is used to describe modifi-
cations to the function of a gene which do not alter the 
sequence of the gene itself. There is increasing evi-
dence, mostly from rodent models, in the involvement 
of epigenetics in modifying acute pain and leading to 
the development of CPSP (Table 4).62

A variety of factors are known to initiate epigenetic 
processes in the peripheral nervous system, spinal 
cord and brain, which include drugs, toxins, diet and 
psychological stressors.63 The principal mechanisms 
involved are DNA methylation, histone modification 
and miRNA interference (RNA – directed gene 
silencing). These multiple layers of regulatory mecha-
nisms are functionally interrelated to ‘activate’ a gene 
or ‘silence’ a gene4 (switching on and off). Possible 
sites of epigenetic influence during and after nerve 
injury could include immunological and inflamma-
tory cytokine expression, GR function, pain regula-
tory enzymes and opioid receptor regulation and 
function as these are all known to be under epigenetic 
control.64 GR function and expression have been 
implicated in long-lasting epigenetic changes very 
early in life (poor maternal care and grooming, diet 
and early life stresses as the ‘nurturing’ mechanisms), 
possibly predisposing vulnerable individuals to 
develop chronic pain states later in life, especially in 
the context of surgery. GR dysfunction is also pro-
posed to play a role in development of chronic fatigue, 
chronic pain states and the syndrome of fibromyalgia, 
thus providing a potential link between injury, envi-
ronmental stressors and severity of chronic pain. 
Perhaps these cohorts of patients have a higher risk of 
developing CPSP since we have current evidence that 
pre-existing pain elsewhere and patient factors like 
anxiety, depression and other stressors have a strong 
association with development of CPSP.

Table 3.  Pain-related genes associated with ion channel function.49

Gene name Channel type affected Pain phenotype

SCN9A50 Voltage-gated Na+ channels ↑ Chronic pain in a mixed cohort (phantom 
limb, post-lumbar discectomy

KCNS1 Voltage-gated K+ channels ↑↑ Post-amputation pain
CACNA2D3 Voltage-gated Ca2+ channels ↓ Chronic postsurgical pain (discogenic)
CACNG2 Voltage-gated Ca2+ channels ↑ Chronic postsurgical pain (post mastectomy)

SCN9A: gene coding for voltage gated sodium channel subtype 1.7; KCNS1: gene coding for potassium channel; CACNA2D3: gene coding 
for α2δ3 subunit of voltage dependent Ca2+channel; CACNG2: gene coding for the ς2 subunit of the voltage dependent Ca2+channel.

Table 4.  Epigenetic mechanisms in CPSP and proposed sites.

Mechanism Site References

DNA methylation General Doehring et al.28

Prefrontal cortex Tajerian et al.51

Histone modification Brain stem nucleus Zhang et al.52

Spinal cord Imai et al.53

miRNA involvement Spinal cord Shi et al.54

Spinal cord Lutz et al.55

PNS, spinal cord and brain Bali and Kuner56

CPSP: chronic postsurgical pain; PNS: peripheral nervous system.
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Epigenetic changes following acute and persistent 
injury or inflammation can occur anywhere in the pain 
matrix, including areas involved in synaptic plasticity, 
learning and memory. These changes, especially in the 
‘top-down’ regulatory brain regions, such as the ante-
rior cingulate cortex (ACC), prefrontal cortex (PFC), 
periaqueductal grey (PAG) and rostroventral medial 
thalamus (RVM) could then lead to alterations in the 
balance of pain messages causing stimuli-induced acti-
vation, when there is no ongoing injury.65 Gene expres-
sion changes caused by epigenetic changes have been 
noticed in interneurones and glial cells in the spinal 
cord and brain, potentially leading to long-lasting pain 
syndromes.66

Chronicity of pain is currently known to induce 
well-characterised changes in the neurones and micro-
glia. Basic researchers and clinicians have been faced 
with one question though – Why do these changes per-
sist well after the initial injury has healed? The role of 
microglial enhancers as a hypothesis for the genomic 
memory of pain, chronicity of pain and the emerging 
role for the involvement of epigenetics in the spinal 
cord, has been recently highlighted by Denk et al.67

Glutamic acid decarboxylase 65 (GAD65) expres-
sion and its role in mediating persistent pain,52 mono-
cyte chemotactic protein 3 and its role in chronic 
neuropathic pain,53 and spinal CXCR2 signalling in 
incisional hypersensitivity68 have all been linked to epi-
genetics and CPSP by various research groups.

There is current evidence that peripheral inflamma-
tion and nerve injury can cause changes in the expres-
sion of non-coding RNAs like microRNAs and Kcna2 
antisense RNA in pain-related regions, especially in 
the DRG. Peripheral noxious stimuli induce these 
changes and possibly contribute to the development 
and maintenance of chronic pain.55

Current challenges and the future
Research in the genetics of pain is still a very young 
but rapidly expanding field, especially in the field of 
epigenetics. SNPs are fixed in the genome, which are 
not easily altered, but with the advent of drugs which 
interfere with methylation, histone modification and 
miRNA interference, one can optimistically hope for 
safer, ‘epigenetically-targeted’ drugs to be available in 
future. There are, of course, several unanswered 
questions.

Can we prevent the development of CPSP with cur-
rently available drugs or pre-emptive techniques? Is 
there a role of histone deacetylase (HDAC) or DNA 
methyltransferase (DNMT) inhibitors in treating 
CPSP? This could involve targeting epigenetic pro-
cesses with the use of HDAC or DNMT inhibitors to 
prevent the progression of acute to chronic pain. These, 

and the use of other ‘epigenetic modifying’ drugs, have 
been reviewed recently.4

If there are changes in the spinal cord and brain, 
how early does this transition happen and how long do 
the changes persist? One of the mechanisms proposed 
in the progression of acute pain to persistent pain is 
‘hyperalgesic priming’. Hyperalgesic priming is a pre-
clinical model of this transition due to neuroplastic 
changes in nociceptors produced by inflammatory or 
neuropathic insults. A distinctive feature is the pro-
longed (about 72 hours) delay from the acute painful 
stimulus that induces ‘priming’ to the development of 
the long-lasting ‘primed’ state which, interestingly, can 
last for as long as 2 months. Detailed mechanisms of 
pain getting ‘imprinted’ in the memory of the pain 
matrix and possible mechanisms to erase these memo-
ries have been recently reviewed.69–71 Yukhananov and 
Kissin72 have shown that a long-lasting imprint of acute 
pain in the CNS may contribute to the transition of 
acute pain to chronicity by a mechanism of persistent 
changes in spinal cord gene expression long after 
recovery from inflammatory hyperalgesia.

Currently, there is a lack of well-documented and 
confirmative genetic factors, in the form of either SNPs 
or epigenetic markers, which can realistically predict 
the transition from acute to chronic pain.41,73 
Polymorphisms of various pain modifying genes have 
not been replicated in recent studies, although some 
studies have also shown that various SNPs may inter-
act and modify the effect of each other.39,43,45 As men-
tioned previously, a recent study by Montes et  al., 
could not find a strong association between functional 
variants of common ‘pain genes’ as a predictive factor 
for developing CPSP. Belfer et  al. recently described 
four factors which were independently found to corre-
late with CPSP in the setting of post-herniotomy pain. 
These were preoperative pain intensity, preoperative 
pain response to heat, intraoperative nerve injury and 
post-operative pain intensity.74

We still have to rely on well-evaluated and robust 
clinical scoring factors, which include procedure, age, 
preoperative quality of life and past or present experi-
ence of pain.75

Several researchers have shown the main predictors 
for developing CPSP to be female sex, age, psychoso-
cial factors, pain in the same site or anywhere else, pro-
cedural type, nerve damage or injury and intensity of 
post-operative pain.76 Preoperative anxiety and cata-
strophising have been identified as strong pain pheno-
types in their association with the development of 
CPSP.77 Many chronic pain syndromes such as fibro-
myalgia, interstitial cystitis, musculoskeletal pain, 
chronic pelvic pain, irritable bowel syndrome, migraine 
and temporomandibular joint disorders are known to 
have shared genetic factors78 and these patients could 
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be assumed to be at a high risk of developing CPSP as 
they are already primed by their pain experience. 
Multiple areas of the brain which network for pain as 
well as its inhibition are involved in the chronification 
of pain, and attempting to target one or several of these 
areas with currently available drugs is not possible.51

The study by Liu et  al.60 concluded that spinal 
CTSG is a pro-nociceptive mediator in both animal 
models and human studies, suggesting that CTSG 
represents a new target for pain control and a poten-
tial marker for the prediction of CPSP. There is 
increasing evidence in the role of miRNAs in persist-
ing pain as well as their potential for early markers in 
predicting CPSP.54,56,79The use of perfusion magnetic 
resonance imaging as a reproducible cerebral repre-
sentation of ongoing surgical pain80 has been pro-
posed by Howard and his group. Various genetic 
polymorphisms and their association with the preva-
lence and severity of CPSP have been reviewed 
recently with suggestions to conduct large scale 
GWAS studies on CPSP.81

It is also worthwhile remembering that CPSP, simi-
lar to other chronic pain syndromes, is multi-faceted, 
with a complexity of sensory-discriminative, affective-
emotive and cognitive-evaluative variables.82,83 In the 
light of current knowledge of epigenetics, all these pro-
cesses could be changing dynamically, influenced by 
past experiences, the immediate environment and 
analgesics (especially opioids). Considering chronicity 
of pain as a complex disorder of the brain, the study of 
pain epigenetics could be a promising paradigm for its 
better understanding and appropriate manage-
ment.84,85 Finally, most epigenetic studies have been 
done on rodent models and extrapolation to human 
subjects and their interpretation has to be cautious for 
obvious reasons.
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