Skip to main content
. Author manuscript; available in PMC: 2017 Oct 30.
Published in final edited form as: Med Image Anal. 2017 Jun 30;40:172–183. doi: 10.1016/j.media.2017.06.014

Table 3.

Mean ± standard deviation of quantitative results for various segmentation methods. The best performance is indicated in bold font.

LIDC Set DSC (%) ASD (mm) SEN (%) PPV (%)
Level Set 60.63± 17.39 0.48± 0.25 64.38± 22.75 71.03± 24.35
Graph Cut 68.90± 16.03 0.48± 0.30 80.81± 15.25 65.09± 22.42
U-Net 79.50± 13.95 0.24± 0.23 86.81± 18.43 78.18± 16.13
3-D-Patch Branch 79.20± 11.88 0.21± 0.17 90.93± 14.72 72.91± 13.73
2-D-Patch Branch 80.47± 11.23 0.18± 0.15 91.36± 14.40 74.64± 13.16
CF-CNN-MP 80.39± 11.90 0.18± 0.15 91.33± 14.88 74.52± 13.54
CF-CNN 82.15± 10.76 0.17± 0.23 92.75± 12.83 75.84± 13.14

GDGH Set DSC (%) ASD (mm) SEN (%) PPV (%)

Level Set 66.02± 17.21 0.78± 0.65 60.83± 17.98 79.24± 21.38
Graph Cut 74.13± 13.32 0.83± 0.56 82.94± 13.66 69.24± 16.60
U-Net 75.26± 11.82 0.49 ± 0.48 76.65± 16.42 77.21± 11.57
3-D-Patch Branch 77.89± 10.64 0.40± 0.31 81.29± 15.60 76.95± 11.62
2-D-Patch Branch 78.98± 11.96 0.38± 0.39 81.42± 16.90 79.65± 12.20
CF-CNN-MP 78.61± 12.18 0.39± 0.38 80.93± 17.07 79.38± 12.03
CF-CNN 80.02± 11.09 0.35± 0.34 83.19± 15.22 79.30± 12.09

Note: 3-D-Patch Branch and 2-D-Patch Branch represent the 3-D and 2-D branches in CF-CNN model. CF-CNN-MP represents the CF-CNN model using traditional max pooling instead of central pooling.