
Global Patch Matching (GPM) 
for freehand 3D ultrasound reconstruction
Weijian Cong1,2, Jian Yang1*, Danni Ai1*, Hong Song3, Gang Chen4, Xiaohui Liang2, Ping Liang4 
and Yongtian Wang1

Background
Ultrasound, computer tomography (CT) and magnetic resonance (MR) are acknowl-
edged to be the most widely used modern medical imaging techniques in clinical practice 
[1–3]. Compared with CT and MR, ultrasound imaging has several indispensable advan-
tages, such as fast imaging, no intravenous contrast agents, no ionizing radiation, inex-
pensive, convenience and so on [4]. Principally, ultrasound detects and magnifies echo 
acoustic wave that reflects from the human body. By calculating attenuation rates of the 
acoustic wave, the density distribution of the soft tissue can be effectively deduced [5].  
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Nowadays, ultrasound is widely used in the abdominal disease diagnosis and treatment 
for its safe and fast imaging properties. However, 2D ultrasound imaging cannot meet 
the clinical requirements when the physician needs to obtain the whole 3D anatomic 
structure of the organs. As the commonly used ultrasound imaging device can only 
obtain 2D cross-sectional images of the body, it is imperative for the physician to con-
ceive 3D structures of the human body in mind according to their clinical experiments. 
The approach could affect the accuracy and efficiency for clinical diagnosis and treat-
ment, especially for tissues contain some organ malformations or lesions. Compared 
with the traditional 2-D ultrasound image, the 3D ultrasound images can provide a more 
distinct and integrated information of organs and are more suitable for clinical diagnosis 
and treatment [6, 7].

Generally, there are many ultrasound reconstruction methods, which can be divided 
into three major categories: 3D probe system, mechanical scanning system and free-
hand scanning approaches [8]. For the 3D probe system, the 3D ultrasound is directly 
acquired by a series of dedicated 3D probes with an oscillating mechanism that sweep a 
predefined region of interested (ROI). This system can generate 3D ultrasound volume 
through one acquisition. However, it is expensive and incapable of scanning large-volume 
organs [9]. The mechanical scanning system usually uses the conventional 2D transducer 
for the image acquisition. During the image acquisition, the transducer is translated and 
rotated according to a stepping motor, from which the position and orientation infor-
mation are recorded synchronously in the scanning heads [10–12]. The major problem 
of the mechanical scanning devices is that its scanning range is constrained by the size 
and installation axis of the stepping motor [9]. For the freehand scanning approach, con-
ventional 2D probe is integrated with a positioning sensor for labeling the position and 
orientation of each B-scan image [13]. Hence, as the 2D probe is manipulated by hand in 
an arbitrarily manner, the freehand system can acquire images at any rotation or orien-
tation of the human body, and it allows the user to manipulate the transducer and view 
the desired anatomical section freely. A sequence of scanning images are then captured 
along with its corresponding position and orientation. Freehand 3D ultrasound has 
received increasing attention for its low-cost, inherent flexibility nature in comparisons 
with the dedicated 3D probes and mechanical scanning approaches. However, as the ori-
entation and position of the freehand probe are randomly controlled by the user, there 
is usually a large range of areas are with empty values. Hence, the main task for freehand 
scanning method is to estimate and interpolate the empty values of 3D volume from 
the irregularly sampled scanning images, which is still the most challenge task in the 3D 
reconstruction of ultrasound images.

In general, 3D reconstruction methods of freehand scanning images compose of three 
major classes [14, 15]: forward method, reverse method and function based method. The 
forward method can be defined as sequentially scanning and filling the vacant voxel in 
the 3D ultrasound volume by its neighboring voxels that already have ultrasound val-
ues. The key procedures for this method are as follows: first, the predefined 3D volume 
data is filled by the obtained 2D ultrasound slices according to their acquisition loca-
tion and orientation. Then, the voxels of the volume data are traversed and iteratively 
filled by neighboring pixels from the 2D ultrasound slices via some predefined interpo-
lation methods. The simplest method is the voxel nearest neighbor (VNN) [16], which 
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calculates the vacant voxel using its nearest neighboring voxel in the 3D volume data. 
While the distance weighted (DW) methods [14] interpolate vacant voxel by introducing 
weighting coefficients that proportional to the distance of the calculating voxels. Accord-
ing to the way of nearest neighboring voxel interpolation, a variety of methods, including 
squared distance weighted (SDW) [17], adaptive distance weighted (ADW) [18], squared 
adaptive distance weighted (ASDW) [19], distance weighted median filter (DWMF) [20], 
adaptive weighted median filter (AWMF) [20] and kernel regression (KR) [21–23] have 
been utilized for the 3D ultrasound reconstruction. The forward method is intuitive and 
easy to be implemented. However, for such method, the calculating of each vacant voxel 
need to traverse the whole volume data once, which is very much time consuming.

On the contrary, the reverse method can be defined as iterative scanning and filling 
the vacant voxels around the 2D ultrasound slices in the 3D volume data. Generally, 
there are three major procedures for the reverse methods: first, the 3D ultrasound vol-
ume data is filled by the obtained 2D ultrasound slices according to their acquisition 
location and orientation. Second, each pixel of the ultrasound slice is scanned and the 
neighboring voxels in the 3D volume are filled according to a specified interpolation 
method. Third, each voxel of the 3D volume is traversed and the vacant voxels are filled 
by their neighboring voxels. For such class of method, the simplest way for interpolation 
is the pixel nearest neighbor (PNN) based methods [24–31], which obtain the intensity 
of the vacant voxel by interpolating of closing voxels. For the interpolation procedure, 
the number of voxels utilized for the 3D reconstruction and the weighting coefficient for 
each utilizing voxels are the two major aspects. It is obvious that the number of vacant 
voxels is the key to determine the calculation efficiency of the interpolation method. To 
improve the interpolation efficiency, Toonkum et  al. [12] proposed a cyclic Savitzky-
Golay filter based method for calculating the priority of each utilizing voxels. This 
method first inserts the middle frame into the ultrasound slices for minimizing the num-
ber of the vacant voxels. From iteratively frame interpolation, the intensity of the vacant 
region can be estimated. It is important to note that during the interpolation procedure, 
if the vacant voxels are sequentially filled by their neighboring image pixels, as the pixels 
are iteratively utilized for the interpolation, the filled region may presents as low differ-
entiability. One promising solution for such a phenomenon is that utilize the neighbor-
ing pixels in a certain order that minimizes the blurring effect. Wen et al. [32] proposed 
a fast marching method (FMM) for the 3D reconstruction, which first detect the bound-
ary of the vacant voxels and then fills the outer voxels in previous and then iteratively 
fills the inner voxels. Such method can effectively improve the calculation efficiency and 
interpolation accuracy. The difference between forward approach and reverse approach 
is that the forward approach searches the vacant voxel in the whole volume data, while 
the reverse approach searches the vacant voxels around the 2D ultrasound slices in the 
volume data. Hence, the reverse approach is faster than the forward approach for the 3D 
reconstruction of ultrasound.

The function based methods usually construct determined relationship between loca-
tion and its intensity for the vacant voxel in the 3D volume data. Such method usually 
first interpolates 2D ultrasound slices into the 3D volume data according to their acqui-
sition orientation. Then, the functional relationships between location and intensity dis-
tribution of the voxels are constructed according to the filled voxels in the volume data. 
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By statistical analysis, the coefficients of the constructed function are estimated, which 
hence is utilized to calculate the intensity of the vacant voxels. The most widely used 
function for the interpolation is the radial basis function (RBF) [33] and Rayleigh [34]. 
Huang et al. [35] have designed a fast interpolation method for 3D US with sparse scan-
ning based on Bezier interpolation (BI). The advantage of the function based method 
is that it can obtain high reconstruction precision, but as it needs to estimate the func-
tional coefficients by statistical analysis of all filled voxels, such method is usually with 
low calculation efficiency.

To improve the reconstruction efficiency and accuracy, this paper proposes a novel 
Global Path Matching (GPM) method for the 3D reconstruction of freehand ultrasound 
images. The proposed method composes of two main steps: bin-filling scheme and hole-
filling strategy. For the bin-filling scheme, the vacant voxels around each pixel of the 2D 
ultrasound image in the 3D volume is filled by weighted combination of its neighboring 
pixels that with eigenvalue less than a predefined threshold. It is commonly known that 
there are large amounts of random noise in the ultrasound image, and the existence of 
the noise may greatly interfere the 3D reconstruction accuracy. To improve the interpo-
lation accuracy, this study introduces two operators, including the median absolute devi-
ation (MAD) and the inter-quartile range absolute deviation (IQRAD) [39], to calculate 
the invariant features of each voxel in the 3D ultrasound volume. As the two features are 
insensitive to the ultrasound noise, the feature response of each voxel can be defined as 
the weighted combination of the MAD and IQRAD. Hence, the best contribution range 
for current calculating voxel can be defined as the Euclidian distance between the pixel 
with minimum feature response and current voxel. Once the best contribution range is 
obtained, the intensity of current vacant voxel can be obtained by weighted combina-
tion of the pixels within the best contribution range, for which the weights are inverse 
proportional to the distance between the vacant voxel and the pixels in the best contri-
bution range. The merit of the proposed bin-filing scheme is as follows: (a) the boundary 
vacant voxel is determined by the neighboring pixels within the best contribution dis-
tance, which hence can effectively minimize the blurring effects. (b) The best contribu-
tion distance is automatically determined by the invariant features of the pixels, which 
is more robust and objective than the threshold based methods. (c) The intensity of the 
vacant voxel is determined by the weighted combination of pixels within the best contri-
bution distance, for which the weights are inverse proportional to the Euclidian distance 
between current voxel the vacant voxel. Hence, the intensity of the vacant voxel is deter-
mined by all its neighboring voxels, which can effectively smooth the whole volume data.

The hole filling strategy is defined to fill the vacant voxels in the 3D ultrasound vol-
ume data through finding the best matching patch in the whole 3D ultrasound volume 
data. The vacant voxels in the 3D ultrasound volume are first marked through trav-
erse the whole volume data, and the vacant region are labeled by calculating connect-
ing relationship between neighboring vacant voxels. Then, three conditions, including 
the confidence term, the data term and the gradient term, are designed to calculate the 
weighting coefficient of the matching patch. More in detail, the confidence term repre-
sents the gray scale distribution, and the data term is utilized to represent contour infor-
mation, while the gradient term is utilized to represent the intensity variation. This study 
assumes that the differences between the matched patches should be the minimum for 
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all the three condition terms. Based on this assumption, the best matching patch for the 
vacant voxel is obtained by finding patches with identical combined matching conditions 
in the whole 3D volume data. Then, the intensity of the vacant voxel is replaced by vox-
els in the matching patch, for which the voxels in the patch are weighted contributed to 
the boundary voxels. Finally, the whole volume data is filled by iteratively repeating the 
above processing procedures. The merits of the designed 3D hole filling strategy method 
are as follows: (a) the filling patch of the vacant region is obtained by searching the best 
matching in the whole volume data, which hence can effectively improve the reconstruc-
tion accuracy. (b) As the hole filling is initiated from the boundary region with maxi-
mum weighting coefficients, hence, the filling process can achieve high reconstruction 
accuracy and effectively preserve the continuity of the texture information of the whole 
ultrasound volume data.

Methods
In this paper, the ultrasound reconstruction is performed in two major stages, as can be 
seen in Fig. 1. In the bin-filling scheme, we first insert every ultrasound slices into the 
ultrasound volume according to the location and orientation of the ultrasound slice. And 
the best contribution range and contribution distance are calculated by the predefined 
invariant feature of each pixel. Then, the intensity of each voxel in ultrasound volume 
can be determined and updated. In the 3D hole-filling strategy, we first detect the edge 
of vacant region and calculate the filling weight of all voxels on the edges. And the best 
matching patch for the vacant voxel is obtained by finding patches in the whole volume, 
and the intensity of the vacant voxel is replaced by voxels in the matching patch. Then, 
the filling weight of the voxel on the edge is updated, and all the vacant voxels are itera-
tively filled by repeating the above processing procedures.

Fig. 1  Outline of the ultrasound reconstruction algorithm
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Image acquisition system

The freehand 3D ultrasound imaging acquisition system consists of three main devices: 
a conventional 2D ultrasound scanner (DC-7, Mindray Medical International Ltd., Shen-
zhen, China), an electromagnetic spatial sensing device (Aurora, NDI Ontario, Canada), 
and a workstation with custom-designed software for data acquisition, volume recon-
struction, and visualization. The receiver of the spatial sensing device is attached to the 
4.5 MHz hand-held probe of the ultrasound scanner. The spatial information (location 
and orientation) between the receiver and transmitter is recorded and transferred from 
the Aurora system control unit to the workstation through a USB port.

During data acquisition, spatial data and digitalized 2D ultrasound images are simultane-
ously recorded and collected. Since the devices for the collection of 2D ultrasound and spatial 
data are independent, the temporal delay between the two data streams cannot be avoided. 
Meanwhile, the spatial relationship between the ultrasound image plane and magnetic posi-
tion sensor needs to be determined. The temporal and spatial relationships for the designed 
freehand 3D ultrasound imaging system are calibrated by the methods presented in [36, 37].

Generally, there are three coordinates in the reconstruction system: the coordinate 
of the 3D ultrasound volume (O − XYZ), the coordinate of the 2D ultrasound slices 
(O′ −UV ) and the coordinate of the spatial sensing device (OS − XSYSZS). The transfor-
mation between O′ −UV  and OS − XSYSZS can be determined by the information that 
provided by the spatial sensing device. Suppose (uji, vji) is the ith pixel in the jth ultra-
sound slice, (NjU ,NjV ) is the size of the jth ultrasound slice, (SjU , SjV ) is the image spac-
ing of the jth ultrasound slice, (XSj ,YSj ,ZSj ) is the spatial position of the jth ultrasound 
slice with respect to the information obtained from the spatial sensing device. As illus-
trated in Fig. 2, the position (XSji ,YSji ,ZSji) of the pixel in the coordinate OS − XSYSZS 
system can be obtained by the following equations:

(1)
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YSji = YSj − (NjV − vji)× SjV

ZSji = ZSj

Fig. 2  Relationship between ultrasound slices and 3D volume
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Let R, t and r represent the parameterized transformation between coordinates 
O − XYZ and OS − XSYSZS, then, the coordinate of (Xj ,Yj ,Zj) in the system O − XYZ 
corresponding to the point (XSj ,YSj ,ZSj ) in the coordinate system OS − XSYSZS can be 
obtained as follows:

As the location and orientation of each ultrasound image are recorded by the elec-
tromagnetic spatial sensing device, the combined 3D ultrasound volume hence can 
be obtained by transform each pixel of the 2D ultrasound image into the normalized 
coordinate.

Bin‑filling scheme

Features extraction

The bin-filling scheme is designed to fill the 3D volume data by the ultrasound slices 
according to its acquisition location and orientation. As the obtained image slices are 
discrete and may intersect with each other, the aim of the bin-filling is to fill the vacant 
voxels by their neighboring pixels in the 2D ultrasound images. As there are large 
amounts of noise in the ultrasound image, which may interfere the 3D reconstruction 
accuracy. Hence, this study introduces the median absolute deviation (MAD) [38] and 
the inter-quartile range absolute deviation [39] (IQRAD) to calculate the invariant prop-
erty of pixels in the ultrasound image, which aims to find the unique representation of 
the local patch that has minimum interference of the noise.

The MAD is utilized to represent the intensity difference between current and its 
neighboring pixels in a predefined patch. Suppose there are N pixels surrounding the 
calculating pixel ui in the predefined patch, uji, (j ∈ N ) is the jth neighboring pixel of 
ui, while I(ui) represents the intensity of ui. Let umid

i  represents the pixel with median 
intensity value in the neighboring patch of ui, then, the MAD of ui can be calculated as 
follows:

IQRAD represents the average intensity difference of pixel ui in its neighboring patch. 
Suppose Imax(ui) and Imin(ui) represent maximum and minimum intensities in the 
neighboring patch of ui, then, pixels with intensity in the ranges of 25 to 75% of the max-
imum intensity can be calculated as follows:

Hence, the IQRAD of the pixel ui can be defined as follows:

where n is the number of pixels in the ranges of 25 to 75% of the maximum intensity.
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It can be seen that MAD and IQRAD both utilize all pixels in the patch to calculate the 
property of ui, which hence are very robust to noise and outliers. To calculate the unique 
property of each patch, this study combines MAD and IQRAD as follows:

where α and β are weighting coefficients of MAD and IQRAD, and they can be deter-
mined by the following equations:

Pixel contribution determination

It is obvious that different patch size may lead to different value of the combined 
response of H(ui), while the robust patch should have the minimum H(ui). Hence, this 
study adaptively calculates H(ui) in the predefined ranges that determined by the dis-
tance between ui and its neighboring pixels. In this study, the distances between current 
pixel and its neighboring pixels are indexed as eight classes. Then, the best contribution 
range Ω(ui) of the pixel ui in the patch can be defined as:

It is obvious that the best contribution range depicts that the pixels in this range have 
the minimum intensity differences with the central pixel. Hence, the best contribution 
distance can be calculated as follows:

where d(ui, v) represents the Euclidian distance between ui and v in the best contribu-
tion range. Once the best contribution range is determined, the local intensity response 
of H(ui) can be obtained by calculating the integrated response of each pixel to ui in 
the spherical ball with radius of d(ui). While the relative response of two pixels in the 
spherical ball can be calculated by the following equation:

where I(ui) is the intensity of the pixel ui.

Voxel updating

Hence, the vacant voxel in the 3D ultrasound volume can be obtained by integrating the 
relative responses of each pixel in the best contribution range, and we have the following 
equation:

Compared with the other interpolation method, the propose bin-filling method 
weighted combines the pixels in the best contribution range centered at current pixel, 

(6)H(ui) = α ×MAD(ui)+ β × IQRAD(ui),

(7)α =

3
4 (N+1)

N + n+1
, β =

1
4 (N + 1)+n

N + n+ 1
.

(8)Ω(ui) = min(Hk(ui)), k = 1, 2, . . . , 8

(9)d(ui) = maxv∈Ω(ui)(d(ui, v)),

(10)I(ui, xj) = I(ui)/d(ui, xj),

(11)V (xj) =

n
∑

i=1

I(ui, xj)

n
∑

i=1

D(ui, xj)

=

n
∑

i=1

I(ui)/D(ui, xj)

n
∑

i=1

D(ui, xj)

.
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which guarantees that the interpolated voxel is most similar and has minimum varia-
tions to its neighboring pixels.

Hole‑filling strategy

After the bin-filling process, the 3D volume data is filled with the 2D ultrasound slices 
according to their imaging orientation and location. As the obtained ultrasound slices 
are not continuous, it is obvious that there are a lot of holes and empty voxels in the 3D 
volume data. The goal of the hole-filling stage is to fill the gaps using available informa-
tion from its surrounding known voxels. Most of current methods usually utilized the 
neighboring voxels in the 3D ultrasound volume instead of the global information of the 
volume data [40–44]. To obtain the best filling effect of the 3D volume data, this study 
proposed a novel global patch matching method, which search the most similar voxels in 
the whole ultrasound volume data.

The basic idea of the proposed hole filling method is that for any vacant voxel in the 
3D volume data, the filling intensity of the voxel is obtained by searching a patch that is 
with the most similar intensity distribution around the vacant voxel in the whole volume 
data. First, for the vacant voxel, we construct a rectangular patch by setting the vacant 
voxel as the center. Then, priority weight of the filling is calculated for each voxel in the 
patch according to the vacant voxel number, isophotes of the center voxel and the gra-
dient distribution of the patch. Second, the hole-filling is initiated from the voxel with 
maximum priority weights. The best matching patch to the patch centered at current 
voxel is iteratively scanned in the whole volume data by maximizing the similarity meas-
ure. Third, the vacant voxels of the current patch are customized by the corresponding 
voxels in the best matching patch. Then, the priority weight of the whole image is recal-
culated. The filling process repeats the above procedures until all the vacant voxels are 
assigned with intensity values.

Let I denotes the given input image, Ω denotes the target region that needs to be filled 
(the dashed area), and δΩ denotes the surface of the region Ω. Then, the source region Φ 
can be calculated as the entire image minus the target region (Φ = I−Ω), as can be seen 
in Fig. 3. In this figure, the regions of blue, green and yellow represent different intensity 
values in the ultrasound volume. p represents the border pixel for the three regions, Ψp 
represents the patch centered at p, while Ψq′ and Ψq′′ represent the best matching two 
patches with Ψp. Then, the filling value of Ψp should be determined by Ψq′ and Ψq′′ that 
rest on the border of the neighboring patches. The detail filling processes are as follows:

Filling weight determination

For the ultrasound reconstruction method, it is obvious that different repairing order 
may lead to different repairing accuracy. Hence, the repairing order is the priority step 
to be determined before the proceed of the repairing process. As the proposed method 
searches the most similar patches in all the voxels filled with intensity values, there 
are three main aspects need to be taken into consideration for the design of repairing 
process: first, if there are more voxels filled with intensity values, the global searching 
procedure may obtain more accurate repairing accuracy. Hence, if a patch with more 
filled voxels, the filling priority of the patch will be higher than the other voxels. Second, 
the isophotes is usually taken to represent the continuousness and smoothness. Hence, 
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to guarantee the continuity and smoothness of the ultrasound volume, the voxel with 
higher filling priority should rest on the isolux curve. Third, if the gradient of a voxel is 
larger than the others, the edge points can usually be identified. Hence, the patch with 
the larger summary of the gradient should be with higher priority. Based on the above 
analysis, three terms, including confident term C(p), data term D(p) and gradient term 
G(p), are included to calculate the priority weight of the center point p of the patch Ψp.

The confident term C(p) is utilized to measure the intensity distributions of existing 
voxels. It is commonly known that if there are more voxel existed in the whole ultra-
sound volume, the patch matching will be more accurate. Also, if there are more voxels 
in the matching patch, the global patch searching will be more accurate. Hence, the con-
fident term can be defined by all the intensity accumulation divided by the size of the 
patch. We have:

The data term D(p) is utilized to measure the smoothness of the region Ω that need to 
be filled. It is obvious that the value of D(p) is proportional to the isophotes of the inten-
sity, which depicts the propagation information of the ultrasound structures. The involv-
ing of the data term guarantees that the path with linear structure will be repaired in 
prior, hence, the filling structure can be attained linear connection. Broken lines tend to 
connect, thus it realizes the connectivity principle of the vision psychology [45–47]. Let 
α represents the normalization factor, np denotes a unit vector orthogonal to the front 
δΩ in the point p, and ⊥ denotes the orthogonal operator. The data term D(p) can be 
calculated by the following equation:

(12)C(p) =

∑

q∈Ψp∩(I−Ω) C(q)

|Ψp|
.

(13)D(p) =
|∇I⊥p · np|

α

Fig. 3  The hole filling method based on image texture
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The gradient term G(p) is utilized to represent the variability of the intensity in the 
patch Ψp. For the vacant region of the ultrasound volume, if the edge section is defi-
cient, the edge section needs to be repaired preferentially. And edge information can be 
effectively detected by the gradient of the patch. Let Iqx, Iqy and Iqz represent the three 
components of the gradient vector of point p in the directions of x, y and z, respectively. 
Then, the gradient term can be calculated by the following equation:

So far, the repairing priority weight of the voxel p can be calculated by combining the 
confident term, data term and gradient term. We have:

Once the priority weights of all the vacant voxels are calculated, the hole filling process 
can be started at the patch Ψp̂ with highest priority.

Matching patch optimization

For the vacant voxel with largest priority weight, the intensity utilized to fill the vacant 
voxel is obtained by finding patches with the largest intensity similarity in the whole 
ultrasound volume. And the similarity is defined by the inverse of the absolute intensity 
difference of the two comparing patches. Hence, we have the following equation:

where Ψq is the patch that needed to be filled, Ψ⌢
p
 is any patch with identical size of Ψq in 

the ultrasound volume. d(Ψa,Ψb) represents the absolute intensity difference of the two 
patches. If the source exemplar Ψq̂ is determined, the value of each pixel that to be filled 
p′|p′ ∈ Ψp̂∩Ω is copied from its corresponding position inside Ψq̂. Iteratively repeats the 
filling process, the structure and texture information can be gradually propagated from 
the source Φ to the target region Ω.

Filling weight updating

Once a vacant patch is filled with new pixel value, the distribution of the vacant region 
is changed. Hence, the priority weight of each vacant voxel in the whole ultrasound vol-
ume needs to be recalculated so as to find the best region that needs to be filled. For the 
proposed method, we only need to recalculate the priority weights of the neighboring 
voxels of the previous filled patch. Then, the filling process iteratively repeats until all 
the vacant voxels are filled. The pseudocode of the proposed algorithm can be found in 
Table 1.

Compared with traditional ultrasound reconstruction method, the proposed method 
finds the best matching patch from the whole ultrasound volume, which can effectively 
prevent the over smoothing of the image. Moreover, the proposed method repairs the 
patch with more filled voxels and the patch with apparent gradient variations, which 
hence can obtain accurate reconstruction accuracy.

(14)G(p) =

∑

q∈Ψp∩(I−Ω)

√

I2qx + I2qy + I2qz

|Ψp ∩ (I−Ω)|
.

(15)P(p) = C(p)D(p)G(p).

(16)Ψq̂ = arg min
Ψq∈Φ

d(Ψ⌢
p
,Ψq),
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Experimental results
To evaluate the performance of the proposed GPM method for the 3D reconstruction 
of freehand ultrasound, a series of experiments is designed and tested on phantom data 
and in vivo scanned ultrasound in clinical practice. The proposed method is compared 
with the up-to-date algorithms, including VNN [16], PNN [14], DW [14], FMM [32], 
KR [21–23] and BI [35] methods, and the accuracies of the comparing methods are 
evaluated via average interpolation error of the vacant voxels. The entire algorithm was 
implemented by the C++ programming language under the Linux platform, and all the 
experiments were performed on a relative low-cost desktop computer with an i7-4770 
processor and 16G memory.

Table 1  Pseudocode for the proposed GPM algorithm
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In this study, three groups of data sets, including ultrasound volume generated from 
phantom data (data 1), in vivo data set (data 2), are employed for the experiments. The 
ultrasound volume of a simulation model is generated from a realistic brain phantom 
created from polyvinyl alcohol cryogel (PVA-C) by Sean Jy-Shyang Chen et  al. [48]. 
PVA-C has been widely used for validating image processing methods, including seg-
mentation, reconstruction, registration, and denoising, for its mechanically similar to 
the soft tissues of the human body. The phantom was cast into a mold designed from the 
left hemisphere of the Colin27 brain data set and contains deep sulci, a complete insular 
region, and an anatomically accurate left ventricle. The author released the CT, MRI and 
ultrasound images of the phantom. All the volume data sets are with the resolution of 
339 × 299 × 115, and corresponding imaging angles of ultrasound. The in vivo data set 
(data 1) is obtained from the Medical Imaging Group, University of Cambridge [49]. The 
data set include 135 frames B-model ultrasound slices and spatial information.

In additional to the visual assessment, we measure the performance of the various 
reconstruction algorithms through computing the average intensity difference as defined 
as follows [14]:

where N  is the total number of voxels within the reconstructed volume. While ν and ν′ 
are the gray value of voxel n of the reconstructed and the phantom volume data sets, 
respectively. It is obvious that a smaller V  indicates a better performance of the recon-
struction algorithm.

Evaluation of hole‑filling results

This part is designed to test the effectiveness of the proposed hole-filling algorithm by 
comparing with the up-to-date algorithms, including VNN, PNN, DW, FMM, KR and 
BI. The experiments utilize data set 2, and three predefined sizes of volumes, includ-
ing two cubes (20 × 20 × 20 and 15 × 50 × 20) and a tetrahedron (as can be seen in 
Fig.  4) are removed from the original data set. Figure  4 demonstrates the reconstruc-
tion results of the VNN, PNN, DW, FMM, KR, BI and the proposed GPM methods. Fig-
ure 4A1 gives the volume rendering result of the utilized 3D ultrasound data set, from 
which the main arteries can be effectively visualized. Figure 4A2 shows the cross-section 
of the ultrasound volume, while Fig. 4A3 shows one single slice of the ultrasound vol-
ume. Figure 4A4 shows the ultrasound slice with predesigned holes. Figure 4B–H give 
the reconstruction results of the VNN, PNN, DW, FMM, KR, BI and GPM methods. It 
can be seen that all the five methods capable of filling the holes by intensities similar to 
their neighboring pixels. However, from the enlarged views of the filled hole, it can be 
seen that there are apparent boundaries for the results of VNN, PNN and KR methods. 
Compared with VNN and PNN methods, there are no obvious boundaries for the filled 
and the neighboring regions for the DW method. The filled region of the FMM and BI 
method seems clearer than that of the DW method. Compared with the other methods, 
it can be seen that the proposed GPM method not only effectively preserves the detail 
of the filling region, but also, the filled regions are naturally mixed with the neighboring 

(17)V =
1

N

N
∑

n=1

|νn − ν′n|,
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pixels. There are no distinct boundaries for the filling regions. Obvious, the proposed 
GPM method can obtain the best reconstruction results for all the comparing methods.

Table  2 compares the reconstruction errors of the NN, PNN, DW, FMM and the 
proposed GPM methods with respect to mean error and standard deviation. From the 
table, it can be seen that the mean errors for NN, PNN, DW, FMM, KR, BI and GPM are 
7.319, 7.144, 6.926, 6.381, 5.915, 6.094 and 5.368, respectively. While the standard devia-
tion for NN, PNN, DW, FMM, KR, BI and GPM are 8.163, 7.842, 7.167, 7.031, 6.511, 
6.606 and 5.655, respectively. Obvious, NN and PNN produce worse results than the 
other three methods. We can conclude that the nearest neighbor interpolated method 
utilized by VNN and PNN induces the reconstruction error. For all the three classes of 
patches, it can be seen that the proposed GPM method steadily produces the minimum 

Fig. 4  Comparison of different reconstruction methods over data 1. A1 3D rendering of ultrasound volume. 
A2 Cross-section of the ultrasound volume. A3 Ultrasound slice. A4 Ultrasound slice with holes. B–H Corre-
spond to reconstruction results of the VNN, PNN, DW, FMM, KR, BI and the proposed GPM methods. The third 
column shows the magnified regions of interest corresponding to the second column
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reconstruction error. For the triangle, rectangle and square patches, the reconstruction 
errors for the GPM method are 4.517, 6.061 and 5.803, respectively. While for all the 
comparing methods, the proposed GPM method produces the minimum reconstruction 
error, for which the mean and standard deviation are 5.368 and 5.655, respectively.

Quantification of slice repairing results

This part is designed to evaluate the performance of vacant slice repairing for all the 
comparing methods. The experiments utilize data 2, for which we randomly delete one 
to eight continuous slices from the ultrasound volume data. Totally, six patches are 
removed from the data set. Then, VNN, PNN, DW, FMM, KR, BI and GPM methods are 
utilized to reconstruct the vacant voxels. As the original data contains the vacant voxels 
that to be reconstructed, the performance of the comparing methods hence can be effec-
tively evaluated.

Figure 5 shows the reconstruction results of the VNN, PNN, DW, FMM, KR, BI and 
GPM methods on data 2. Figure 5A1 shows volume rendering of the ultrasound data, 
while Fig.  5A2 shows the ultrasound volume with vacant patches. Figure  5A3 is the 
cross-sections of the ultrasound volume, Fig.  5A4 provides the ultrasound slice with 
vacant patches, and Fig. 5A5 shows the original ultrasound slice. Figure 5B–H show the 
reconstruction results of the VNN, PNN, DW, FMM, KR, BI and GPM methods. The 
third column shows the magnified regions of interest corresponding to the second col-
umn. From the figure, it can be seen that all methods capable of repairing the vacant 
patches by similar intensities that approach to their neighboring pixels. However, the 
boundaries of the vacant area can be clearly identified for the VNN, PNN, and KR meth-
ods, and the filled regions seem to have the same gray scale distribution. Comparably, 
the boundaries of the reconstructed region are not as clear as that of the VNN, PNN 
and KR methods. However, the reconstructed regions of the DW method seems more 
blurred and homogeneous than that of the VNN, PNN, KR methods. While for the 
FMM and BI method, there are numerous stripe-like patches in the reconstructed are. 
Also, the boundary for the reconstructed region can be clearly visualized for the patches 
with a large number of vacant voxels. Compared with the VNN, PNN and DW methods, 
the blurred areas reduce clearly, there are still protruding and recessed areas can be visu-
alized. In all the comparing methods, it is obvious that the proposed GPM method pro-
duces the best reconstruction results. For the GPM method, the reconstructed region is 
seamlessly merged with the neighboring pixels. And even the boundary is hardly identi-
fied in the reconstructed regions.

From the above experiments, it can be seen that the larger the vacant region is, the 
larger the reconstruction error will be. To quantify the performance of the reconstruc-
tion methods, we randomly delete one to eight continuous slices from the ultrasound 
volume data. Then, all the five evaluating methods, including VNN, PNN, DW, FMM, 
KR, BI and GPM, are utilized to reconstruct the ultrasound data. Table 3 provides the 
reconstruction errors for all the evaluating methods. It can be seen that the reconstruc-
tion error increase with the increase of the removing slices for all the five reconstruc-
tion methods. From one to eight removing slices, the reconstruction errors increase 
about 66.8, 68.5, 74.0, 71.5, 61.8, 65.3 and 55.4% for the VNN, PNN, DW, FMM, KR, BI 
and GPM methods, respectively. From the table, it also can be seen that error decreases 
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regularly from the VNN to the GPM method. It is obvious that all the comparing meth-
ods are very stable for the reconstruction of the vacant region in the ultrasound volume 
data. Comparably, the proposed GPM method is the best method, for which the mini-
mum reconstruction error is generated for each level of vacant patches.

To further quantify the performance of the proposed method, we randomly remove 
patches with the size of 25, 50, 75 and 100% of the cross-section slice from the volume 
data. While 200 to 500% represent removing two to five cross-sections from the volume 
data. Figure 6 compares the mean reconstruction error of the VNN, PNN, DW, FMM, 
KR, BI and GPM methods. It can be seen that the reconstruction error increase with the 
increase of size and number of the deleting patches. For the removing patch size of 25%, 
the reconstruction means errors for VNN, PNN, DW, FMM, KR, BI and GPM meth-
ods are 8.14, 7.75, 6.86, 5.90, 5.84, 5.84 and 5.82, respectively. While for the removing 

Fig. 5  Comparison of different reconstruction results for data 2. A1 Volume rendering of the ultrasound data. 
A2 Ultrasound volume with vacant patches. A3 Cross-sections of the ultrasound volume data. A4 Ultrasound 
slice with vacant patches. A5 Original ultrasound slice. B–H Reconstruction results of the VNN, PNN, DW, 
FMM, KR, BI and GPM methods. The third column shows the magnified regions of interest corresponding to 
the second column
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patch size of 500%, the reconstruction means errors for VNN, PNN, DW, FMM, KR, 
BI and GPM methods are 13.38, 13.31, 12.15, 9.97, 9.51, 9.76 and 9.03, respectively. It 
can be seen that the performances of the VNN and PNN are quite closed to each other, 

Table 3  Comparison of  the reconstruction results for  different methods over  different 
number of vacant slices

Number of vacant slices VNN PNN DW FMM KR BI GPM

1

 Mean 8.011 7.793 6.818 5.803 5.694 5.719 5.617

 SD 8.144 7.750 6.861 5.896 5.835 5.840 5.820

2

 Mean 8.425 8.493 7.972 6.509 6.437 6.513 6.360

 SD 8.461 8.439 8.055 6.835 6.541 6.658 6.396

3

 Mean 9.331 9.152 8.700 7.519 7.262 7.380 7.058

 SD 9.634 9.442 8.707 7.612 7.355 7.557 7.285

4

 Mean 10.689 10.283 9.500 8.277 7.729 7.905 7.539

 SD 10.616 10.257 9.463 8.227 7.816 8.044 7.773

5

 Mean 11.844 11.109 10.319 9.063 8.479 8.616 8.145

 SD 11.867 11.172 10.269 8.983 8.650 8.843 8.155

6

 Mean 12.604 12.211 11.343 9.618 8.881 9.272 8.554

 SD 12.897 12.427 11.326 9.742 9.026 9.533 8.511

7

 Mean 13.151 12.817 11.642 9.719 8.945 9.252 8.629

 SD 13.117 12.727 11.569 9.979 9.177 9.510 8.729

8

 Mean 13.365 13.128 11.863 9.953 9.345 9.618 8.727

 SD 13.385 13.308 12.153 9.973 9.508 9.762 9.033

Fig. 6  Comparing of the five reconstruction errors with respect to different size of removing patches
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especially for low ratios of the removing patch. Moreover, it can be seen that DW per-
forms better than that of the VNN and PNN methods. And the removing ratio less than 
50%, the performance of the FMM and GPM are very close, but GPM achieves lower 
reconstruction errors than that of the FMM, KR and BI method for removing ratio larger 
than 50%. For all the seven methods, the proposed GPM method is the best, which can 
obtain the minimum reconstruction error for all the mission ratios of the volume data.

Figure 7 shows the reconstruction results of the GPM methods. The experiments uti-
lize data set 1 and data set 2, and three predefined sizes of volumes, including a cube, a 
sphere, a tetrahedron and an ellipsoid (as can be seen in Fig. 7) are removed from the 
original data set. Figure 7A1, B1, C1, D1 show four ultrasound slices with predesigned 
holes. Figure 7A2, B2, C2, D2 give the reconstruction results of the GPM methods. Fig-
ure  7A3, B3, C3, D3 give the original four ultrasound slices. The right column shows 
the magnified regions of interest corresponding to the second column. From the figure, 
it can be seen that the GPM method capable of repairing the vacant patches by simi-
lar intensities that approach to their neighboring pixels, and the reconstructed region 
is seamlessly merged with the neighboring pixels. Therefore, it is obvious that the 

Fig. 7  The reconstruction results with GPM method
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proposed GPM method can produce good reconstruction results for different size or 
shape of vacant regions in the ultrasound volume data.

Quantification of abnormality reconstruction results

The state and location of the lesion can be preliminarily demonstrated according to the 
abnormality in the ultrasonic image. Thus, the abnormalities should be reconstructed 
accurately to provide precise information of lesion for the clinical diagnosis. The process 
of vacant patch repairing is the most important step for the reconstruction. The effec-
tiveness of the proposed GPM to reconstruct the abnormality is verified by the following 
experiments.

A predefined size of cubes (20 ×  20 ×  115) is removed from the edge area of the 
abnormality in data set 2. Figure 8A1–A4 show four slices extracted from the original 
ultrasound volume. And the corresponding voxel removed slices are shown in Fig. 8C1–
C4. Figure 8E1–E4 show the results of the GPM methods. The corresponding details of 
the vacant patch area are enlarged and shown in Fig. 8B1–B4, D1–D4, F1–F4, separately. 
It is clear that the vacant patches can be accurately repaired and the edge of the abnor-
mality is seamlessly merged with the neighboring pixels. No blur is caused. The recon-
struction errors for each ultrasound slices and the mean reconstruction error are shown 
in Fig.  9. The reconstruction errors and the standard deviation are 7.154 and 7.248, 
respectively. The reconstruction errors of seventy-five percent are in the range of [5.028, 
8.718]. The experimental results demonstrate that the abnormality can be reconstructed 
precisely. Furthermore, the reconstruction result is not affected by noise because the 
size of noises is typically one voxel but the size of a patch used to repair empty voxel is 
9 × 9 × 9. The noise has no effect on the repairing calculation and the best matching 
patch selection. Therefore, it is obvious that the proposed GPM method can produce 
good reconstruction results for the abnormality regions in the ultrasound volume data. 

Fig.8  The abnormality reconstruction results with GPM method
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Computation complexity analysis

The efficiency is crucial for the 3D freehand ultrasound reconstruction in clinical usage. 
To perform an objective evaluation of the computation time, let O represents the com-
putational complexity of the algorithm,Nu,Nv represent the dimensions of the B-scan 
slices in u, v direction. Nx,Ny,Nz represent the dimensions of the volume grid in x, y, z 
direction. Np represents the number of the acquired 2D b-scan images, R is the size of 
the spherical interpolation region. T is the time for optimizing the parameters of Bezier 
curve. Table  4 lists the computational complexity of VNN, PNN, DW, FMM, KR, BI 
and the proposed GPM methods. From the pseudo-code described in [15], it is notice-
able that the VNN, PNN, DW, FMM and KR approaches traverse each voxel to assign 
voxel value. Thus, the loop number can be utilized to represent the total number of the 
reconstructed volume grid. Moreover, the VNN, DW and BI approaches require find-
ing the shortest distance to each B-scan for each voxel in each loop. As the size of sam-
pled B-scans is usually several hundreds, such shortest-distance-finding processes in the 
inner loop hence may dramatically increase the computation time. While the loop num-
ber of FMM interpolation algorithm is O(M · log(M) · R) (as can be seen in Ref. [50, 51]).

Table  5 shows the average computational times (in seconds) for VNN, PNN, DW, 
FMM, KR, BI and GPM algorithms in the process of 3D ultrasound volume reconstruc-
tion of data set 1 and 2. It can be seen that the computational time of the VNN algorithm 
is 115.0 s, which is the fastest among all the testing method. The fast computational effi-
ciency of the VNN algorithm come from that it only needs to traverse the whole ultra-
sound volume once according to the space distribution of the pixels in ultrasound slices. 
The computational time of the DW algorithm is 263.6 s because that the construction 
process of DW algorithm includes the Bin-filling scheme and the Hole-filling strategy. 
After the bin-filling scheme, there are a lot of holes and empty voxels in the 3D volume 
data and the neighboring voxels are utilized to fill the empty voxels. The computational 
time of the KR and BI algorithm are 2937.0 and 2163.4  s, respectively. It takes a long 
time to optimize the parameters of kernel and Bezier curve. The computational time of 
the GPM algorithm is 240.95 s, which is also with large time burden. The reason is that 

Fig. 9  The abnormality reconstruction errors with GPM method
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the hole filling strategy of GPM algorithm is to fill the vacant voxels in the 3D ultrasound 
volume data through finding the best matching patch in the whole 3D ultrasound vol-
ume data.

Discussion
3D ultrasound volume reconstruction from B-model ultrasound slices can provide clear 
and intuitive images for tissues and lesions for the clinician, which has very important 
value in clinical practice. This paper proposed a novel global patch matching method for 
the reconstructing of 3D ultrasound volume from a series of free-hand B-model ultra-
sound slices. The proposed reconstruction method includes two main steps: bin-filling 
scheme and 3D hole-filling strategy. The bin-filling scheme is aimed to fill and interpo-
late the 3D volume data by the obtained ultrasound slices. To fully utilized the orien-
tation information of each ultrasound slice and suppress the interference of the noise, 
we introduce the median absolute deviation the inter-quartile ranges absolute deviation 
to calculate the invariant property of each pixel of ultrasound image. Based on invari-
ant response of the existing ultrasound images, the optimum contribution range for 
the overlapping range can be obtained. Then, the intensity of overlapping region can be 
obtained by weighted combination of the pixels within the best contribution ranges. The 
hole-filling strategy is designed to fill holes and gaps in the 3D volume data according to 

Table 4  Computational time complexity for  VNN, PNN, DW, FMM, KR, BI and  GPM algo-
rithms

N = Nx · Ny · Nz, M = max(Nx ,Ny ,Nz)

Method Computational time complexity

Bin-filling scheme Hole-filling strategy

VNN – O(N · Np · Nu · Nv)

PNN O(Np · Nu · Nv) O(N · R)

DW – O(N · Np · R · Nu · Nv)

FMM O(Np · Nu · Nv) O(M · log(M) · R3)

KR O(Np · Nu · Nv) O(M · R6)

BI – O(N · Np · R · Nu · Nv · T )

GPM O(Np · Nu · Nv) O(N · R · N)

Table 5  Computational time for VNN, PNN, DW, FMM, KR, BI and GPM algorithms

Unit: second

Method Data set 1 Data set 2 Average

Bin-filling 
scheme

Hole-filling 
strategy

Total Bin-filling 
scheme

Hole-filling 
strategy

Total

VNN – 98.6 98.6 – 131.4 131.4 115.00

PNN 33.8 66.3 100.1 54.6 93.7 148.3 124.20

DW – 203.5 203.5 – 323.7 323.7 263.60

FMM 39.1 62.4 101.5 55.7 83.8 139.5 120.50

KR 34.9 2491.5 2524.4 55.1 3294.4 3349.5 2937.0

BI – 1715.5 1715.5 – 2611.3 2611.3 2163.4

GPM 43.5 145.6 189.1 61.1 231.7 292.8 240.95



Page 23 of 26Cong et al. BioMed Eng OnLine  (2017) 16:124 

the texture and intensity distribution of the existing ultrasound voxels. For this method, 
the priority of the filling order of the vacant region is calculated by optimizing the con-
fidence term, the data term and the gradient term. Then, hole-filling process starts from 
the voxel with the maximum priority weights. And the filling patch is obtained by find-
ing the patch with maximum similarity measures in the whole volume data.

The performance of the proposed algorithm is evaluated on both phantom data and 
in vivo ultrasound data sets. For these data sets, we randomly delete a series of prede-
fined holes and a number of continuous ultrasound slices, as the grand truths of the 
ultrasound volumes are exactly known, the reconstruction accuracy of the algorithms 
can be effectively quantified. The proposed algorithm is compared with the other four 
up to date reconstruction methods, including VNN, PNN, DW, FMM, KR, BI. From 
the experiments of the filled hole and ultrasound reconstruction, it can be seen that 
there are apparent boundaries for the results of VNN and PNN methods. The results 
may stem from both the VNN and PNN methods that utilize nearest neighboring pix-
els for the interpolation of the hole region, and the interpolated region usually has the 
same intensity values. And the intensity distribution in the interpolated region presents 
homogeneous property, which hence leads to obvious boundaries between the filled hole 
and its neighboring region. Compared with VNN and PNN methods, there are no obvi-
ous boundaries for the filled and the neighboring regions for the DW and BI method. 
As the DW and BI method utilizes a considerable number of pixels for the interpola-
tion, the filled region seems very fuzzy and the details cannot be clearly identified. The 
filled region of the FMM and KR method seems clearer than that of the DW method. It 
is because that the FMM and BI method constraint the interpolation sequence, which 
hence effectively improves the sharpness of the filled region. Compared with the other 
methods, it can be seen that the proposed GPM method not only effectively preserves 
the detail of the filling region, but also, the filled regions are naturally mixed with the 
neighboring pixels. There are no distinct boundaries for the filling regions. Experiments 
demonstrate that the proposed method is very effective and robust for reconstructing 
ultrasound images. Among all the comparing methods, the proposed GPM method can 
restore the 3D ultrasound volume with minimum difference.

Conclusion
For the proposed GPM method, the overlapping pixel is determined by the neighboring 
pixels within the best contribution range, which hence can effectively utilize the neigh-
boring similar pixels and maintain the smoothness of the interpolated voxels. And the 
vacant voxels are filled by searching the most similar patches in the whole volume data. 
Hence, the volume data is filled with high reconstruction accuracy and effectively pre-
serves homogeneous distribution of the textures. For each vacant voxel, the proposed 
GPM method needs to search the best matching patch in the whole existing volume 
data, which hence is time consuming. The future study will be focused on GPU based 
accelerating of the reconstruction algorithm.

Abbreviations
GPM: Global Patch Matching; PNN: pixel nearest neighbor; VNN: voxel nearest neighbor; DW: distance weighted; FMM: 
fast marching method; KR: kernel regression; BI: Bezier interpolation; RBF: radial basis function; MAD: median absolute 
deviation; IQRAD: inter-quartile range absolute deviation; PVA-C: polyvinyl alcohol cryogel.
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