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Abstract

Despite sequences being core to NLP, scant work has considered how to handle noisy sequence 

labels from multiple annotators for the same text. Given such annotations, we consider two 

complementary tasks: (1) aggregating sequential crowd labels to infer a best single set of 

consensus annotations; and (2) using crowd annotations as training data for a model that can 

predict sequences in unannotated text. For aggregation, we propose a novel Hidden Markov Model 

variant. To predict sequences in unannotated text, we propose a neural approach using Long Short 

Term Memory. We evaluate a suite of methods across two different applications and text genres: 

Named-Entity Recognition in news articles and Information Extraction from biomedical abstracts. 

Results show improvement over strong baselines. Our source code and data are available online1.

1 Introduction

Many important problems in Natural Language Processing (NLP) may be viewed as 

sequence labeling tasks, such as part-of-speech (PoS) tagging, named-entity recognition 

(NER), and Information Extraction (IE). As with other machine learning tasks, automatic 

sequence labeling typically requires annotated corpora on which to train predictive models. 

While such annotation was traditionally performed by domain experts, crowdsourcing has 

become a popular means to acquire large labeled datasets at lower cost, though annotations 

from laypeople may be lower quality than those from domain experts (Snow et al., 2008). It 

is therefore essential to model crowdsourced label quality, both to estimate individual 

annotator reliability and to aggregate individual annotations to induce a single set of 

“reference standard” consensus labels. While many models have been proposed for 

aggregating crowd labels for binary or multiclass classification problems (Sheshadri and 

Lease, 2013), far less work has explored crowd-based annotation of sequences (Finin et al., 

2010; Hovy et al., 2014; Rodrigues et al., 2014).

In this paper, we investigate two complementary challenges in using sequential crowd labels: 

how to best aggregate them (Task 1); and how to accurately predict sequences in 

unannotated text given training data from the crowd (Task 2). For aggregation, one might 

1Soure code and biomedical abstract data: www.github.com/thanhan/seqcrowd-acl17, www.byronwallace.com/EBM_abstracts_data
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want to induce a single set of high-quality consensus annotations for various purposes: (i) 

for direct use at run-time (when a given application requires human-level accuracy in 

identifying sequences); (ii) for sharing with others; or (iii) for training a predictive model.

When human-level accuracy in tagging of sequences is not crucial, automatic labeling of 

unannotated text is typically preferable, as it is more efficient, scalable, and cost-effective. 

Given a training set of crowd labels, how can we best predict sequences in unannotated text? 

Should we: (i) consider Task 1 as a pre-processing step and train the model using consensus 

labels; or (ii) instead directly train the model on all of the individual annotations, as done by 

Yang et al. (2010)? We investigate both directions in this work.

Our approach is to augment existing sequence labeling models such as HMMs (Rabiner and 

Juang, 1986) and LSTMs (Hochreiter and Schmidhuber, 1997; Lample et al., 2016) by 

introducing an explicit “crowd component”. For HMMs, we model this crowd component by 

including additional parameters for worker label quality and crowd label variables. For the 

LSTM, we introduce a vector representation for each annotator. In both cases, the crowd 

component models both the noise from labels and the label quality from each annotator. We 

find that principled combination of the “crowd component” with the “sequence component” 

yields strong improvement.

For evaluation, we consider two practical applications in two text genres: NER in news and 

IE from medical abstracts. Recognizing named-entities such as people, organizations or 

locations can be viewed as a sequence labeling task in which each label specifies whether 

each word is Inside, Outside or Beginning (IOB) a named-entity. For this task, we consider 

the English portion of the CoNLL-2003 dataset (Tjong Kim Sang and De Meulder, 2003), 

using crowd labels collected by Rodrigues et al. (2014).

For the IE application, we use a set of biomedical abstracts that describe Randomized 

Controlled Trials (RCTs). The crowdsourced annotations comprise labeled text spans that 

describe the patient populations enrolled in the corresponding RCTs. For example, an 

abstract may contain the text: we recruited and enrolled diabetic patients. Identifying these 

sequences is useful for downstream systems that process biomedical literature, e.g., clinical 

search engines (Huang et al., 2006; Schardt et al., 2007; Wallace et al., 2016).

Contributions

We present a systematic investigation and evaluation of alternative methods for handling and 

utilizing crowd labels for sequential annotation tasks. We consider both how to best 

aggregate sequential crowd labels (Task 1) and how to best predict sequences in unannotated 

text given a training set of crowd annotations (Task 2). As part of this work, we propose 

novel models for working with noisy sequence labels from the crowd. Reported experiments 

both benchmark existing state-of-the-art approaches (sequential and non-sequential) and 

show that our proposed models achieve best-in-class performance. As noted in the Abstract, 

we have also shared our sourcecode and data online for use by the community.

Nguyen et al. Page 2

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2017 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2 Related Work

We briefly review two separate threads of relevant prior work: (1) sequence labeling models; 

and (2) aggregation of crowdsourcing annotations.

Sequence labeling

Early work on learning for sequential tasks used HMMs (Bikel et al., 1997). HMMs are a 

class of generative probabilistic models comprising two components: an emission model 

from a hidden state to an observation and a transition model from a hidden state to the next 

hidden state. Later work focused on discriminative models such as Maximum Entropy 

Models (Chieu and Ng, 2002) and Conditional Random Fields (CRFs) (Lafferty et al., 

2001). These were able to achieve strong predictive performance by exploiting arbitrary 

features, but they may not be the best choice for label aggregation. Also, compared to the 

simple HMM model, discriminative sequentially structured models require more complex 

optimization and are generally more difficult to extend. Here we argue for the generative 

HMMs for our first task of aggregating crowd labels. The generative nature of HMMs is a 

good fit for existing crowd modeling techniques and also enables very efficient parameter 

estimation.

In addition to the supervised setting, previous work has studied unsupervised HMMs, e.g., 

for PoS induction (Goldwater and Griffiths, 2007; Johnson, 2007). These works are similar 

to our work in trying to infer the hidden states without labeled data. Our graphical model is 

different in incorporating signal from the crowd labels.

For Task 2 (training predictive models), we consider CRFs and LSTMs. CRFs are 

undirected, conditional models that can exploit arbitrary features. They have achieved strong 

performance on many sequence labeling tasks (McCallum and Li, 2003), but they depend on 

hand-crafted features. Recent work has considered end-to-end neural architectures that learn 
features, e.g., Convolutional Neural Networks (CNNs) (Collobert et al., 2011; Kim, 2014; 

Zhang and Wallace, 2015) and LSTMs (Lample et al., 2016). Here we modify the LSTM 

model proposed by Lample et al. (2016) by augmenting the network with ‘crowd worker 
vectors’.

Crowdsourcing

Acquiring labeled data is critical for training supervised models. Snow et al. (2008) 

proposed using Amazon Mechanical Turk to collect labels in NLP quickly and at low cost, 

albeit with some degradation in quality. Subsequent work has developed models for 

improving aggregate label quality (Raykar et al., 2010; Felt et al., 2015; Kajino et al., 2012; 

Bi et al., 2014; Liu et al., 2012; Hovy et al., 2013). Sheshadri and Lease (2013) survey and 

benchmark methods.

However, these models are almost all in the binary or multiclass classification setting; only a 

few have considered sequence labeling. Dredze et al. (2009) proposed a method for learning 

a CRF model from multiple labels (although the identities of the annotators or workers were 

not used). Rodrigues et al. (2014) extended this approach to account for worker identities, 

providing a joint “crowd-CRF” model. They collected a dataset of crowdsourced labels for a 
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portion of the CoNLL 2003 dataset. Using this, they showed that their model outperformed 

Dredze et al. (2009)’s model and other baselines. However, due to the technical difficulty of 

the joint approach with CRFs, they resorted to strong modeling assumptions. For example, 

their model assumes that for each word, only one worker provides the correct answer while 

all others label the word completely randomly. While this assumption captures some aspects 

of label quality, it is potentially problematic, such as for ‘easy words’ labeled correctly by all 

workers.

More recently, Huang et al. (2015) proposed HMM models for aggregating crowdsourced 

discourse segmentation labels. However, they did not consider the general sequence labeling 

setting. Their method includes task-specific assumptions, e.g., that discourse segment 

lengths follow some empirical distribution estimated from data. In the absence of a gold 

standard, they evaluated by checking that workers accuracies are consistent and by 

comparing their two models to each other. We include their approach along with Rodrigues 

et al. (2014) as a baseline in our evaluation.

3 Methods

We present our Task 1 HMM approach in Section 3.1 and our Task 2 LSTM approach in 

Section 3.2.

3.1 HMMs with Crowd Workers

Model—We first define a standard HMM with hidden states hi, observations vi, transition 

parameter vectors  and emission parameter vectors :

(1)

(2)

The discrete distributions here are governed by Multinomials. In the context of our task, vi is 

the word at position i and hi is the true, latent class of vi (e.g., entity or non-entity).

For the crowd component, assume there are n classes, and let lij be the label for word i 

provided by worker j. Further, let C(j) be the confusion matrix for worker j, i.e.,  is a 

vector of size n in which element k′ is the probability of worker j providing the label k′ for 

a word of true class k:

(3)

Figure 1 shows the factor graph of this model, which we call HMM-Crowd. Note that we 

assume that individual crowdworker labels are conditionally independent given the (hidden) 

true label.
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A common problem with crowdsourcing models is data sparsity. For workers who provide 

only a few labels, it is hard to derive a good estimate of their confusion matrices. This is 

exacerbated when the label distribution is imbalanced, e.g., most words are not part of a 

named entity, concentrating the counts in a few confusion matrix entries. Solutions for this 

problem include hierarchical models of ‘worker communities’ (Venanzi et al., 2014) or 

correlations between confusion matrix entries (Nguyen et al., 2016). Although effective, 

these methods are also quite computationally expensive. For our models, to keep parameter 

estimation efficient, we use a simpler solution of ‘collapsing’ the confusion matrix into a 

‘confusion vector’. For worker j, instead of having the n × n matrix C(j), we use the n × 1 

vector C′(j) where  is the probability of worker j labeling a word with true class k 
correctly. We also smooth the estimate of C′ with prior counts as in (Liu and Wang, 2012; 

Kim and Ghahramani, 2012).

Learning—We use the Expectation Maximization (EM) algorithm (Dempster et al., 1977) 

to learn the parameters (τ, Ω, C′), given the observations (all the words V and all the worker 

labels L).

In the E-step, given the current estimates of the parameters, we take a forward and a 

backward pass in the HMM to infer the hidden states, i.e. to calculate p(hi|V, L) and p(hi, 
hi+1|V, L) for all appropriate i. Let α(hi) = p(hi, v1:i, l1:i) where v1:i are the words from 

position 1 to i and l1:i are the crowd labels for these words from all workers. Similarly, let 

β(hi) = p(vi+1:n, li+1:n|hi). We have the recursions:

(4)

(5)

These are the standard α and β recursions for HMMs augmented with the crowd model: the 

product  over the workers j who have provided labels for word i (or i + 1). The posteriors 

can then be easily evaluated: p(hi|V, L) ∝ α(hi)β(hi) and p(hi, hi+1|V, L) ∝ α(hi)p(hi+1|

hi)p(vi+1|hi+1)β(hi+1)

In the standard M-step, the parameters are estimated using maximum likelihood. However, 

we found a Variational Bayesian (VB) update procedure for the HMM parameters similar to 

(Johnson, 2007; Beal, 2003) provides some improvement and stability. We first define the 

Dirichlet priors over the transition and emission parameters:

(6)
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(7)

With these priors, the variational M-step updates the parameters as follows2:

(8)

(9)

where Ψ is the Digamma function, n is the number of states and m is the number of 

observations. E denotes the expected counts, calculated from the posteriors inferred in the E-

step. Eh′|h is the expected number of times the HMM transitioned from state h to state h′, 

where the expectation is with respect to the posterior distribution p(hi, hi+1|V, L) that we 

infer in the E step:

(10)

Similarly, Eh is the expected number of times the HMM is at state h: Eh = Σip(hi = h|V, L) 

and Ev|h is the expected number of times the HMM emits the observation v from the state 

.

For the crowd parameters C′(j), we use the (smoothed) maximum likelihood estimate:

(11)

where ac is the smoothing parameter and  is the expected number of times that worker j 

correctly labeled a word of true class k as k while  is the expected total number of words 

belonging to class k worker j has labeled. Again, the expectation in E is taken under the 

posterior distributions that we infer in the E step.

2See Beal (2003) for the derivation and Johnson (2007) for further discussion for the Variational Bayesian approach.
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3.2 Long Short Term Memory with Crowds

For Task 2, we extend the LSTM architecture (Hochreiter and Schmidhuber, 1997) for NER 

(Lample et al., 2016) to account for noisy crowdsourced labels (this can be easily adapted to 

other sequence labeling tasks). In this model, the sentence input is first fed into an LSTM 

block (which includes character- and word-level bi-directional LSTM units). The LSTM 

block’s output then becomes input to a (fully connected) hidden layer, which produces a 

vector of tags scores for each word. This tag score vector is the word-level prediction, 

representing the likelihood of the word being from each tag. All the tags scores are then fed 

into a ‘CRF layer’ that ‘connects’ the word-level predictions in the sentence and produces 

the final output: the most likely sequence of tags.

We introduce a crowd representation in which a worker vector represents the noise 

associated with her labels. In other words, the parameters in the original architecture learns 

the correct sequence labeling model while the crowd vectors add noise to its predictions to 

‘explain’ the lower quality of the labels. We assume a perfect worker has a zero vector as her 

representation while an unreliable worker is represented by a large magnitude vector. At test 

time, we ignore the crowd component and make predictions by feeding the unlabeled 

sentence into the original LSTM architecture. At train time, an example consists of the 

labeled sentence and the ID of the worker who provided the labels. Worker IDs are mapped 

to vector representations and incorporated into the LSTM architecture.

We propose two strategies for incorporating the crowd vector into the LSTM: (1) adding the 

crowd vector to the tags scores and (2) concatenating the crowd vector to the output of the 

LSTM block.

LSTM-Crowd—The first strategy is illustrated in Figure 2. We set the dimension of the 

crowd vectors to be equal to the number of tags and the addition is element-wise. In this 

strategy, the crowd vectors have a nice interpretation: the tag-conditional noise for the 

worker. This is useful for worker evaluation and intelligent task routing (i.e. assigning the 

right work to the right worker).

LSTM-Crowd-cat—The second strategy is illustrated in Figure 3. We set the crowd vectors 

to be additional inputs for the Hidden Layer (along with the LSTM block output). In this 

way, we are free to set the dimension of the crowd vectors and we have a more flexible 

model of worker noise. This comes with a cost of reduced interpretability and additional 

parameters in the hidden layer.

For both strategies, the crowd vectors are randomly initialized and learned in the same 

LSTM architecture using Back Propagation (Rumelhart et al., 1985) and Stochastic Gradient 

Descent (SGD) (Bottou, 2010).

4 Evaluation Setup

4.1 Datasets & Tuning

NER—We use the English portion of the CoNLL-2003 dataset (Tjong Kim Sang and De 

Meulder, 2003), which includes over 21,000 annotated sentences from 1,393 news articles 
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split into 3 sets: train, validation and test. We also use crowd labels collected by Rodrigues et 

al. (2014) for 400 articles in the train set3. For Task 1 (aggregating crowd labels), to avoid 

overfitting, we split these 400 articles into 50% validation and 50% test4. For Task 2 

(predicting sequences on unannotated text), we follow Rodrigues et al. (2014) in using the 

CoNLL validation and test sets.

Biomedical IE—We use 5,000 medical paper abstracts describing randomized control 

trials (RCTs) involving people. Each abstract is annotated by roughly 5 Amazon Mechanical 

Turk workers. Annotators were asked to mark all text spans in a given abstract which 

identify the population enrolled in the clinical trial. The annotations are therefore binary: 

inside or outside a span. In addition to annotations collected from laypeople via Mechanical 

Turk, we also use gold annotations by medical students for a small set of 200 abstracts, 

which we split into 50% validation and 50% test. For Task 1, we run methods being 

compared on all 5,000 abstracts, but we evaluate them only using the validation/test set. For 

Task 2, the validation and test sets are held out. Table 1 presents key statistics of datasets 

used.

Tuning—In all experiments, validation set results are used to tune the models hyper-

parameters. For HMM-Crowd, we have a smoothing parameter and two Dirichlet priors. For 

our two LSTMs, we have a L2 regularization parameter. For LSTM-Crowd-cat, we also have 

the crowd vector dimension. For each hyper-parameter, we consider a few (less then 5) 

different parameter settings for light tuning. We report results achieved on the test set.

4.2 Baselines

Task 1—For aggregating crowd labels, we consider the following baselines:

• Majority Voting (MV) at the token level. Rodrigues et al. (2014) show that this 

generally performs better than MV at the entity level.

• Dawid and Skene (1979) weighted voting at the token level. We tested both a 

popular public implementation5 of Dawid-Skene and our own and found that 

ours performed better (likely due to smoothing), so we report it.

• MACE (Hovy et al., 2013), using the authors’ public implementation6.

• Dawid-Skene then HMM. We propose a simple heuristic to aggregate sequential 

crowd labels: (1) use Dawid and Skene (1979) to induce consensus labels from 

individual crowd labels; (2) train a HMM using the input text and consensus 

labels; and then (3) use the trained HMM to predict and output labels for the 

input text. We also tried using a CRF or LSTM as the sequence labeler but found 

the HMM performed best. This is not surprising: CRFs and LSTM are good at 

predicting unseen sequences, whereas the predictions here are on the seen 

training sequences.

3http://www.fprodrigues.com/software/crf-ma-sequence-labeling-with-multiple-annotators/
4Rodrigues et al. (2014)’s results on the ‘training set’ are not directly comparable to ours since they do not partition the crowd labels 
into validation and test sets.
5https://github.com/ipeirotis/Get-Another-Label
6http://www.isi.edu/publications/licensed-sw/mace/

Nguyen et al. Page 8

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2017 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.fprodrigues.com/software/crf-ma-sequence-labeling-with-multiple-annotators/
https://github.com/ipeirotis/Get-Another-Label
http://www.isi.edu/publications/licensed-sw/mace/


• Rodrigues et al. (2014)’s CRF with Multiple Annotators (CRF-MA). We use the 

source code provided by the authors.

• Huang et al. (2015)’s Interval-dependent (ID) HMM using the authors’ source 

code7. Since they assume binary labels, we can only apply this to the biomedical 

IE task.

For non-sequential aggregation baselines, we evaluate majority voting (MV) and Dawid and 

Skene (1979) as perhaps the most widely known and used in practice. A recent benchmark 

evaluation of aggregation methods for (non-sequential) crowd labels found that classic 

Dawid-Skene was the most consistently strong performing method among those considered, 

despite its age, while majority voting was often outperformed by other methods (Sheshadri 

and Lease, 2013).

Dawid and Skene (1979) models a confusion matrix for each annotator, using EM estimation 

of these matrices as parameters and the true token labels as hidden variables. This is roughly 

equivalent to our proposed HMM-Crowd model (Section 3), but without the HMM 

component.

Task 2—To predict sequences on unannotated text when trained on crowd labels, we 

consider two broad approaches: (1) directly train the model on all individual crowd 

annotations; and (2) induce consensus labels via Task 1 and train on them.

For approach (1), we report as baselines:

• Rodrigues et al. (2014)’s CRF-MA

• Lample et al. (2016)’s LSTM trained on all crowd labels (ignoring worker IDs)

For approach (2), we report as baselines:

• Majority Voting (MV) then Conditional Random Field (CRF). We train the CRF 

using the CRF Suite package (Okazaki, 2007) with the same features as in 

Rodrigues et al. (2014), who also report this baseline.

• Lample et al. (2016)’s LSTM trained on Dawid-Skene (DS) consensus labels.

4.3 Metrics

NER—We use the CoNLL 2003 metrics of entity-level precision, recall and F1. The 

predicted entity must match the gold entity exactly (i.e. no partial credit is given for partial 

matches).

Biomedical IE—The above metrics are overly strict for the biomedical IR task, in which 

annotated sequences are typically far longer than named-entities. We therefore ‘relax’ the 

metric to credit partial matches as follows. For each predicted positive contiguous text span, 

we calculate:

7https://academiccommons.columbia.edu/catalog/ac:199939
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For example, for a predicted span of 10 words, if 6 words are truly positive, the Precision is 

60%. We evaluate this ‘local’ precision for each predicted span and then take the average as 

the ‘global’ precision. Similarly, for each gold span, we calculate:

The recall scores for all the gold spans are again averaged to get a global recall score.

For the biomedical IE task, because we have gold labels for only a small set of 200 abstracts, 

we create 100 bootstrap re-samples of the (predicted and gold) spans and perform the 

evaluation for each re-sample. We then report the mean and standard deviation over these 

100 re-samples.

5 Evaluation Results

5.1 Named-Entity Recognition (NER)

Table 2 presents Task 1 results for aggregating crowd labels. For the non-sequential 

aggregation baselines, we see that Dawid and Skene (1979) outperforms both majority 

voting and MACE (Hovy et al., 2013). For sequential methods, our heuristic ‘Dawid-Skene 

then HMM’ method performs surprisingly well, nearly as well as HMM-Crowd. However, 

we will see that this heuristic does not work as well for biomedical IR.

Rodrigues et al. (2014)’s CRF-MA achieves the highest Precision of all methods, but 

surprisingly the lowest F1. We use their public implementation but observe different results 

from what they report (we observed similar results when using all the crowd data without 

validation/test split as they do). We suspect their released source code may be optimized for 

Task 2, though we could not reach the authors to verify this.

Table 3 reports NER results for Task 2: predicting sequences on unannotated text when 

trained on crowd labels. Results for Rodrigues et al. (2014)’s CRF-MA are reproduced using 

their public implementation and match their reported results. While CRF-MA outperforms 

‘Majority Vote then CRF’ as the authors reported, and achieves the highest Recall of all 

methods, its F1 results are generally not competitive with other methods.

Methods based on Lample et al. (2016)’s LSTM generally outperform the CRF methods. 

Adding a crowd component to the LSTM yields marked improvement of 2.5–3 points F1 vs. 

the LSTM trained on individual crowd annotations or consensus MV annotations. LSTM-

Crowd (trained on individual labels) and ‘HMM-Crowd then LSTM’ (LSTM trained on 

HMM consensus labels) offer different paths to achieving comparable, best results.
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5.2 Biomedical Information Extraction (IE)

Tables 4 and 5 present Biomedical IE results for Tasks 1 and 2, respectively. We were unable 

to run Rodrigues et al. (2014)’s CRF-MA public implementation on the Biomedical IE 

dataset (due to an ‘Out of Memory Error’ with 8gb max heapsize).

For Task 1, Majority Vote achieves nearly 92% Precision but suffers from very low Recall. 

As with NER, HMM-Crowd achieves the highest Recall and F1, showing 2 points F1 

improvement here over non-sequential Dawid and Skene (1979). In contrast with the NER 

results, our heuristic ‘Dawid-Skene then HMM’ performs much worse for Biomedical IE. In 

general, we expect heuristics to be less robust than principled methods.

For Task 2, as with NER, we again see that LSTM-Crowd (trained on individual labels) and 

‘HMM-Crowd then LSTM’ (LSTM trained on HMM consensus labels) offer different paths 

to achieving fairly comparable results. While LSTM-Crowd-cat again achieves slightly 

lower F1, simply training Lample et al. (2016)’s LSTM directly on all crowd labels performs 

much better than seen earlier with NER, likely due to the relatively larger size of this dataset 

(see Table 1). To further investigate, we study the performances of these LSTM models as a 

function of training data available. In Figure 4, we see that as the amount of training data 

decreases, our crowd-augmented LSTM models produce greater relative improvement 

compared to the original LSTM architecture.

Table 6 presents an example from Task 1 of a sentence with its gold span, annotations and 

the outputs from Dawid-Skene and HMM-Crowd. Dawid-Skene aggregates labels based 

only on the crowd labels while our HMM-Crowd combines that with a sequence model. 

HMM-Crowd is able to return the longer part of the correct span.

6 Conclusions and Future Work

Given a dataset of crowdsourced sequence labels, we presented novel methods to: (1) 

aggregate sequential crowd labels to infer a best single set of consensus annotations; and (2) 

use crowd annotations as training data for a model that can predict sequences in unannotated 

text. We evaluated our approaches on two datasets representing different domains and tasks: 

general NER and biomedical IE. Results showed that our methods show improvement over 

strong baselines.

We expect our methods to be applicable to and similarly benefit other sequence labeling 

tasks, such as POS tagging and chunking (Hovy et al., 2014). Our methods also provide an 

estimate of each worker’s label quality, which can be transfered between tasks and is useful 

for error analysis and intelligent task routing (Bragg et al., 2014). We also plan to investigate 

extension of the crowd component in our HMM method with hierarchical models, as well as 

a fully-Bayesian approach.
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Figure 1. 
The factor graph for our HMM-Crowd model. Dotted rectangles are gates, where the value 

of hi is used to select the parameters for the Multinomial governing the Discrete distribution.
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Figure 2. 
The LSTM-Crowd model. The Crowd Vector is added (element-wise) to the Tags Scores.
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Figure 3. 
The LSTM-Crowd-cat model. The crowd vectors provide additional input for the Hidden 

Layer (they are effectively concatenated to the output of the LSTM block).
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Figure 4. 
F1 scores in Task 2 for biomedical IE with varying percentages of training data.
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Table 1

Datasets used for each application. We list the total number of articles/abstracts and the number which have 

Gold/Crowd labels.

Dataset Application Size Gold Crowd

CoNLL’03 NER 1393 All 400

Medical IE 5000 200 All
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Table 2

NER results for Task 1 (crowd label aggregation). Rows 1–3 show non-sequential methods while Rows 4–6 

show sequential methods.

Method Precision Recall F1

Majority Vote 78.35 56.57 65.71

MACE 65.10 69.81 67.37

Dawid-Skene (DS) 78.05 65.78 71.39

CRF-MA 80.29 51.20 62.53

DS then HMM 76.81 71.41 74.01

HMM-Crowd 77.40 72.29 74.76
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Table 3

NER results on Task 2: predicting sequences on unannotated text when trained on crowd labels. Rows 1–4 

train the predictive model using individual crowd labels, while Rows 5–8 first aggregate crowd labels then 

train the model on the induced consensus labels. The last row indicates an upper-bound from training on gold 

labels. LSTM-Crowd and LSTM-Crowd-cat are described in Section 3.

Method Precision Recall F1

CRF-MA (Rodrigues et al., 2014) 49.40 85.60 62.60

LSTM (Lample et al., 2016) 83.19 57.12 67.73

LSTM-Crowd 82.38 62.10 70.82

LSTM-Crowd-cat 79.61 62.87 70.26

Majority Vote then CRF 45.50 80.90 58.20

Dawid-Skene then LSTM 72.30 61.17 66.27

HMM-Crowd then CRF 77.40 61.40 68.50

HMM-Crowd then LSTM 76.19 66.24 70.87

LSTM on Gold Labels (upper-bound) 85.27 83.19 84.22
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Table 4

Biomedical IE results for Task 1: aggregating sequential crowd labels to induce consensus labels. Rows 1–3 

indicate non-sequential baselines. Results are averaged over 100 bootstrap re-samples. We report the standard 

deviation of F1, std, due to this dataset having fewer gold labels for evaluation.

Method Precision Recall F1 std

Majority Vote 91.89 48.03 63.03 2.6

MACE 45.01 88.49 59.63 1.7

Dawid-Skene 77.85 66.77 71.84 1.7

Dawid-Skene then HMM 72.49 58.77 64.86 2.0

ID HMM (Huang et al., 2015) 78.99 68.10 73.11 1.9

HMM-Crowd 72.81 75.14 73.93 1.8
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Table 5
Biomedical IE

results for Task 2. Rows 1–3 correspond to training on all labels, while Rows 4–7 first aggregate crowd labels 

then train the sequence labeling model on consensus annotations.

Method Precision Recall F1 std

LSTM (Lample et al., 2016) 77.43 61.13 68.27 1.9

LSTM-Crowd 73.83 63.93 68.47 1.6

LSTM-Crowd-cat 68.08 68.41 68.20 1.8

Majority Vote then CRF 93.71 33.16 48.92 2.8

Dawid-Skene then LSTM 70.21 65.26 67.59 1.7

HMM-Crowd then CRF 79.54 54.76 64.81 2.0

HMM-Crowd then LSTM 73.65 64.64 68.81 1.9
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Table 6

An example from the medical abstract dataset for task 1: inferring true labels. Out of 5 annotations, only 2 

have identified a positive span (the other 3 are empty). Dawid-Skene is able to assign higher weights to the 

minority of 2 annotations to return a part of the correct span. HMM-Crowd returns a longer part of the span, 

which we believe is due to useful signal from its sequence model.

Gold … was as safe and effective as … for the empiric treatment of acute invasive diarrhea in ambulatory pediatric patients 
requiring an emergency room visit

Annotations (2 
out of 5) … was as safe and effective as … for the empiric treatment of acute invasive diarrhea in 

Dawid-Skene … was as safe and effective as … for the empiric treatment of acute invasive diarrhea in ambulatory pediatric patients 
requiring an emergency room visit

HMM-Crowd … was as safe and effective as … for the empiric treatment of acute invasive diarrhea in ambulatory pediatric patients 
requiring an emergency room visit

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2017 October 30.


	Abstract
	1 Introduction
	Contributions

	2 Related Work
	Sequence labeling
	Crowdsourcing

	3 Methods
	3.1 HMMs with Crowd Workers
	Model
	Learning

	3.2 Long Short Term Memory with Crowds
	LSTM-Crowd
	LSTM-Crowd-cat


	4 Evaluation Setup
	4.1 Datasets & Tuning
	NER
	Biomedical IE
	Tuning

	4.2 Baselines
	Task 1
	Task 2

	4.3 Metrics
	NER
	Biomedical IE


	5 Evaluation Results
	5.1 Named-Entity Recognition (NER)
	5.2 Biomedical Information Extraction (IE)

	6 Conclusions and Future Work
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

