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Abstract

Longitudinal data on natural populations have been analyzed using multi-stage models in which 

survival depends on reproductive stage, and individuals change stages according to a Markov 

chain. These models are special cases of stage-structured population models. We show that stage-

structured models generate dynamic heterogeneity: life history differences produced by stochastic 

stratum dynamics. We characterize dynamic heterogeneity in a range of species across taxa by 

properties of the Markov chain: the entropy, which describes the extent of heterogeneity, and the 

subdominant eigenvalue, which describes the persistence of reproductive success during the life of 

an individual. Trajectories of reproductive stage determine survivorship, and we analyze the 

variance in lifespan within and between trajectories of reproductive stage. We show how stage-

structured models can be used to predict realized distributions of lifetime reproductive success. 

Dynamic heterogeneity contrasts with fixed heterogeneity: unobserved differences that generate 

variation between life histories. We show by example that observed distributions of lifetime 

reproductive success are often consistent with the claim that little or no fixed heterogeneity 

influences this trait. We propose that dynamic heterogeneity provides a “neutral” model for 

assessing the possible role of unobserved “quality” differences between individuals. We discuss 

fitness for dynamic life histories, and the implications of dynamic heterogeneity for the evolution 

of life histories and senescence.

Keywords

life history; survival-reproduction tradeoff; dynamic heterogeneity; frailty; fixed heterogeneity; 
senescence; entropy; capture-mark-recapture; multi-stage model; reproductive strata

Introduction

In recent decades, longitudinal capture-mark-recapture (CMR) data on individuals have 

become available for many natural populations (Sandercock 2006), along with statistical 

tools for their analysis (Lebreton et al. 1992). Individual-based CMR analyses have yielded 

descriptions of average patterns and variation among individuals in the timing, level, and 

distribution of reproduction and mortality (Loison et al. 1999, Cam et al. 2002, Moyes et al. 

2006). These analyses were stimulated by and have raised important questions about the 
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evolutionary forces (such as trade-offs or constraints) that shape life histories (Viallefont et 

al. 1995, Ricklefs & Cadena 2007), and about the meaning and significance of phenotypic 

variation within populations (McGraw & Caswell 1996, Link et al. 2002, Pelletier et al. 

2007).

Many CMR studies are based on multi-stage models, in which individuals are tracked by 

their reproductive stage (e.g., immature, mature non-breeder, mature breeder) and by, say, 

age (or time) (Nichols & Kendall 1995). In multi-stage models, survival depends on 

reproductive stage and possibly age, and individuals progress through reproductive and 

mortality states according to a stochastic process, typically a Markov chain. These multi-

stage models can generate what we call dynamic heterogeneity, which we define as life 

history differences among individuals that are generated by the stochastic process that 

describes changes in stage. We distinguish between dynamic heterogeneity and fixed 
heterogeneity, which is defined as differences between individuals that are fixed at birth.

In longitudinal studies, fixed heterogeneity is usually assumed to be due to variation in 

individual latent traits that affect survival, fertility or transition rates between stages. The 

extent of unobserved fixed heterogeneity is estimated using random-effects models, an 

approach stimulated in part by Vaupel & Yashin’s (1985) discussion of frailty, whereas stage 

transitions are directly observed. As in Vaupel & Yashin, the latent traits that generate fixed 

heterogeneity are often assumed to be individual characteristics such as genotype or 

maternal environment that are measurable in principle but have not been observed. In 

contrast, the stage transitions that lead to dynamic heterogeneity are observed, although any 

particular model for them must be estimated. Although multi-stage models have now been 

estimated for many natural populations (Appendix Table), the dynamics of stage transitions 

and the ecological and evolutionary implications of dynamic heterogeneity have been little 

explored.

It is (or should be) well known that CMR models are particular cases of stage-structured 

population models (Nichols et al. 1992, Fujiwara & Caswell 2002). Stages can be defined 

not just in terms of reproductive success but also in terms of other traits such as 

developmental stage, size or weight. Dynamic heterogeneity arises when stage transitions 

are probabilistic, and different individuals may follow different sequences of stages as they 

age. Many examples of such heterogeneity are provided by plants (Horvitz & Tuljapurkar 

2008). Thus our approach, although focused on species that have been studied using CMR 

methods, applies more broadly to many stage-structured populations.

Here we synthesize analyses of stage-structured models in order to describe life histories as 

dynamic processes, obtaining new insights and predictions about the evolution of life 

histories and the maintenance of phenotypic variation. In these models, some life history 

parameters may also depend explicitly on age. After defining multi-stage models, we show 

that dynamic heterogeneity can be characterized by two properties of the estimated multi-

stage Markov chain: the entropy, which describes the extent and pattern of heterogeneity, 

and the subdominant eigenvalue, which describes the correlation of reproductive stages 

during the life of an individual. We compare dynamic heterogeneity across a number of 

species (Appendix Table). We then show how trajectories of reproductive stage (i.e., age-
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specific sequences of reproductive outcomes) map into survivorship curves, and analyze the 

variance in lifespan within and between trajectories of reproductive stage. Next, we assess 

whether realized distributions of lifetime reproductive success can be generated solely by 

dynamical heterogeneity or whether the realized distributions appear to be influenced by 

fixed heterogeneity We then discuss patterns of senescence predicted by multi-stage models. 

Using these results, we propose that dynamic heterogeneity provides a “neutral” model for 

assessing the possible role of unobserved “quality” differences between individuals. Then 

we describe the theoretical relationship between dynamic heterogeneity and fitness, 

generalize the Lotka equation to describe trajectories of reproduction, and review the 

connection between multi-stage CMR models and the stage-structured models widely used 

to study plants and some animals (e.g., as in Tuljapurkar and Horvitz 2006). Finally, we 

discuss the implications of dynamic heterogeneity for the evolution of life histories and 

senescence, and point to necessary extensions of multi-stage CMR models.

Throughout this paper we use the term stage to mean a categorical classification of 

individuals. In much of our discussion, stage is the same as reproductive stratum, i.e., a 

category defined by maturity and reproductive success. But the features of stage-structured 

models that we discuss are more general, and apply to situations in which individuals are 

classified not just by levels of reproduction but also by size, physiological condition, or other 

traits.

Multi-stage CMR models

Data and Illustrative Examples

Multi-stratum CMR data consist of records of the detection/nondetection of individuals and 

of their status with respect to some measurable trait (e.g., whether they are immature or 

breeding and if reproduction occurs, how many offspring an individual produces). These 

records are usually based on annual observations during or after the reproductive season. In 

most cases individuals are marked at birth, but in some cases we only know ages relative to 

the first marking event. Measures of reproductive success vary with the species. For birds, 

they include the number of eggs laid, number of hatchlings, number of fledglings, and the 

number of recruits (e.g., Cam & Monnat 2000, McCleery et al. 2002). For many mammals, 

they include whether a offspring is produced, and whether the offspring dies early or late in 

the breeding year or survives to the following year (e.g., Tavecchia et al. 2005, Moyes et al. 

2006).

The multi-stage models we focus on sort living individuals into stages based on measures of 

annual reproductive success. Here we use the following generic model defined with respect 

to reproductive stages: immatures are stage 1, mature individuals who attempt to breed 

occupy stages of increasing reproductive success labeled as 2, 3, to K − 1, and there is a 

single mature but non-breeding stage K. The amount of reproduction (number of immatures 

produced) by an individual of age a in stage i is Fi(a). An individual of age a in stage i in the 

current year has a probability Pi(a) of surviving to the following year, and a probability Ri(a) 

of being observed (recaptured) in the current year. There is a probability ψij that an 

individual in reproductive stage i this year and who survives will be in reproductive stage j in 

the following year and this probability is the i, j element of a matrix Ψ. We use the CMR 
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convention that transitions run from i to j, which differs from the convention in population 

projection matrices. This framework is based upon Nichols et al. (1992) and Nichols & 

Kendall (1995) and can be extended, e.g., if the survival or transition probabilities depend on 

the number of years spent in each reproductive stage (Hestbeck et al. 2002, Brownie et al. 

1993), or if the parameters depend on other measured covariates. There may be cases in 

which the survival rate is a function not just of the current stage but also of the destination 

stage (Brownie et al. 1993). We exclude such possibilities for the present but return to them 

in the last section. Our discussion of dynamic heterogeneity extends to these more general 

models.

We use two illustrative examples throughout. The first is based upon data from the 

population of the Mute Swan, Cygnus olor, at Abbotsbury, U.K. (for details see e.g., 

McCleery et al. 2002, Charmantier et al. 2006) that we have analyzed using a multi-stage 

CMR model (Orzack et al. 2008a, submitted). In our model, in each year every female was 

categorized as being in one of 5 reproductive stages: immature (stage 1), having a “low” 

clutch size of 1–4 (stage 2), having a “medium” clutch size of 5–6 (stage 3), having a “high” 

clutch size of 7–12 (stage 4), or being non-reproductive in that year after having reproduced 

at least once previously (stage 5). Table 1 shows the estimated transition matrix Ψ; full 

details of this model are available on request. The swans exhibit a positive relationship 

between annual survival and annual reproduction, so that Pi and Fi increase with stage i for 

all breeding stages 2–4. Such a positive relationship, observed in several species (e.g., Cam 

et al. 2002), conflicts with the common assumption that there is a negative trade-off between 

reproduction and survival, and is often interpreted as a correlation driven by differences in 

fixed traits that determine individual “quality” (van Noordwijk and de Jong 1986). The data 

and our CMR model exclude pre-breeding mortality, and all breeders are assumed to be 

detected. Our second example is theoretical, and is defined by the transition matrix,

(1)

Immatures (stage 1) can stay in that stage or transition to reproductive stage 2 or 3, while 

mature individuals move between reproductive stages 2 and 3. Stage-specific survival rates 

are P1, P2, P3, and fertilities are F2, F3. We simulate reproductive trajectories generated by 

Markov chains such as (1) using standard methods (Ripley 1987).

Many Real-world Examples

Multi-state CMR methods have been used to describe life histories in many natural 

populations. We found 41 published studies involving 36 species: 10 mammal, 20 bird, 4 

amphibian/reptilian, 1 insect, and 1 plant (see Appendix). Most studies differentiate between 

pre-breeding immature individuals, non-breeding adult individuals and one or multiple 

stages of breeding outcomes. Our focus in these real-world examples is on estimates of 

transition rates Ψ and age-specific survival rates Pi. To simplify comparisons, we do not 

consider here other parameters that may have been studied in particular cases, such as the 
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effects of particular years, physiological condition, or weather. Not all of the studies report 

all parameter estimates; some studies only describe part of the life cycle for reasons of data 

limitation, or focus on only one life stage in the original publication. We use 22 studies, 

most of which have a detailed resolution of reproductive strata and include immatures (see 

Appendix).

Dynamic Heterogeneity in Reproduction

What and How Much

The Abbotsbury swan data illustrate what we mean by dynamic heterogeneity in 

reproductive success. The three trajectories in Fig. 1a indicate observed clutch size by age 

for 3 females, with stars marking the age when a female was last seen (ignore for the 

moment the lines past the starred ages). These females produced very different clutches at 

the same ages and have different amounts of cumulative reproduction; the full data set 

reveals large differences among females in any given year. Reflecting this variability, the 

estimated matrix Ψ (Table 1) has nonzero probabilities of transition between all 

reproductive stages. For each female in Fig. 1a, starting at the last observed (starred) age, we 

used Ψ to simulate a sequence of stages (lines labeled ω1,ω2,ω3 in Fig 1a) out to age 30 

years. Each simulated sequence ω is a possible trajectory of reproductive stages and 

cumulative reproduction (CR) varies between trajectories (Fig. 1b). Since annual survival 

rate depends on reproductive stage in that year, every trajectory ω has a distinct associated 

survivorship that applies to any bird following that trajectory (Fig. 1c). Thus dynamic 

heterogeneity in reproduction drives heterogeneity in both components of fitness. We next 

explore and quantify variation in the sequencing of reproductive stages, without considering 

mortality, and then examine the resulting variation in fitness. Although the stochastic 

transitions described by the matrix Ψ do not consider mortality, they are a generating 

process for the life history. As we show below, the trajectories defined by this process can 

then be used to study the mean and variance of age at death, lifetime reproduction, fitness, 

and so on.

How much dynamic heterogeneity is implied by a matrix Ψ ? Consider the set of matrices 

shown in Table 2. With matrix Ψ1, immatures transition to stage 2, then stage 3, then 

alternate between these on the reproductive trajectory ω in Table 2. With Ψ2, immatures 

transition to stage 2 or to stage 3 and stay, ending up on trajectory ω1 or ω2 in the table. In 

contrast, Ψ3 generates trajectories after maturity along which individuals repeatedly change 

stage; three possible trajectories are shown in the table. Clearly Ψ3 generates the highest 

diversity of reproductive trajectories.

Over T years with K stages there are KT possible trajectories; from these trajectories the 

matrix Ψ generates the actual trajectories relevant to a particular life history (by assigning 

probability weights to the different trajectories). We define the amount of dynamic 
heterogeneity for a transition matrix Ψ as its entropy H, which is the rate at which the 

diversity of trajectories increases with their length (Shannon 1948, Pielou 1977).

To understand entropy, consider Ψ in equation (1), where an individual in stage 2 stays in 

stage 2 with probability ψ22 or moves to stage 3 with probability ψ23. If we observe the 
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transitions made by many individuals in stage 2, the diversity of their choices is described by 

an entropy H(2) = −[ψ22 logψ22 + ψ23 logψ23]. If a stage 2 individual always moves to 

stage 3 (as in example Ψ1, Table 2), or always remains in stage 2 (as in example Ψ2), 

entropy H(2) = 0. But if a stage 2 individual can stay in stage 2 or move to stage 3, H(2) > 0. 

As the probability of moving becomes more even between destination stages, H(2) increases 

and has a maximum value of log 2 when ψ22 = ψ23 = 1/2. A similar entropy measure H(3) 

describes transitions out of stage 3. The dynamic heterogeneity H of matrix (1) is an average 

(see Table 4) of H(2) and H(3) weighted by the stationary proportions π2, π3 of these stages 

along trajectories. Hence H is an average measure of “randomness” in stage transitions. The 

precise mathematical proof that H measures randomness is the celebrated Shannon-

McMillan theorem (e.g., see Khinchin 1957).

Examples 1, 2, 3 in Table 2 have entropies H1 = H2 = 0 and H3 = 0.682. When H = 0 there is 

just one reproductive trajectory (example 1, Table 2) or a small fixed number of trajectories 

(example 2, Table 2). At the other extreme, if an individual has an equal probability of 

moving to any of the K stages, H has its maximum possible value Hmax = log K. We remove 

any effect of the number of stages by using the ratio H/(log K) which we call the scaled 

entropy. This ratio positions the life history on a scale of dynamic heterogeneity from 0 to 1.

For the swan example, the estimate of the scaled entropy is 0.85 = (entropy/maximum 

entropy) = 1.18/log(4) for the four mature stages (Table 2); as might be expected for most 

real-world systems, the entropy is not at the limits of complete determinism or complete 

randomness. If the transient immature stage is included, the scaled entropy is lowered to 

0.73, because the number of stages is increased but the entropy itself is not altered. The high 

entropy reflects both variability in reproductive stage along any single reproductive 

trajectory and between reproductive trajectories.

Does Reproductive Success Persist?

Do individuals tend to be persistently successful or unsuccessful? Do “fixed” quality 

differences influence the variability in reproduction over time? One way to quantify 

persistence is to measure the correlation between a individual’s reproductive stage at age a1 

and its reproductive stage at a later age a1 + t. For the Markov transition matrix, the 

correlation between its current reproductive stage and its stage t years later can be computed 

exactly in terms of the eigenvalues and eigenvectors of the transition probability matrix. The 

magnitude of this correlation falls off as

where λ1 is the leading subdominant eigenvalue of the matrix. The quantity τ is a 

characteristic time. For ages separated by τ years, the correlation between reproductive 

stages is e−1 ≈ 0.37, and for ages separated by an interval 2τ years the correlation is e−2 ≈ 
0.14. So the value of an individual’s current reproductive stage as a predictor of its future 

reproductive stage declines as we look further into the future, and τ is a time scale that 

measures the persistence of reproductive success or failure. The ratio of τ to the length of the 

breeding span (defined as the average time between first breeding and last detection or 
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death) is a relative measure of persistence. If immature stages are transient, we use the 

subdominant eigenvalue of that part of Ψ that includes only mature stages.

In example (1), τ = 1/log(|ψ22 + ψ33 − 1|) (Table 4). This expression is intuitively sensible: 

as ψii increases, so does an individual’s tendency to stay in stage i, and so does the influence 

of current stage on the future. For swans the subdominant eigenvalue over the mature stages 

is 0.468, the characteristic time τ = −(1/log 0.468) = 1.32 years. Thus, we can expect a 

female that lays a large clutch this year to continue laying large clutches only for the next 2–

3 years; subsequent clutch sizes may well be small. This shows that reproductive success is 

only weakly persistent along a female’s life.

Another descriptor of persistence is the average length of time  spent in stage i by an 

individual who has just reached that stage. For equation (1), , a value that 

increases with ψii. In contrast to these t̄i, the characteristic time τ captures transitions back 

and forth between stages. The value of t̄i for our generic model is the mean time spent as an 

immature individual (conditional on survival) and can often be usefully compared with an 

empirical estimate. For the swans, t̄i in the five stages are 2.41, 1.27, 1.79, 1.81, and 2.58 

years, respectively. To determine the time spent as an immature we add 2 years to , 

because all females spend their first two years as immatures (this interval is not reflected in 

matrix Ψ); the resulting estimate of 4.41 years for the average time spent as an immature is 

close to the empirical estimate of 4.32 years. For other stages, the estimates show some 

persistence, but all t̄i, i > 1 are small relative to the expected lifetime for swans of 8.7 years. 

Thus females usually make multiple transitions between stages throughout their breeding 

lives. Expected lifetime here and below reflects both variation in stage and the effect of stage 

on survival; in a later section we describe how expected lifetime is computed.

Of course these estimates of persistence times and residence times are conditional on 

survival, and mortality would simply reduce them. So the key biological question of whether 

success persists can be answered using τ. We return to the effect of mortality in the final 

section.

Entropy versus Persistence

By definition, the correlation time τ increases with the probabilities ψii that individuals stay 

in the same reproductive stage i. However, there is no necessary association between entropy 

and persistence: in equation (1), entropy is low when persistence is low (i.e., when ψ11 and 

ψ22 are both small) but entropy is also low when persistence is high (i.e., when ψ11 and ψ22 

are both large). Thus we can have low entropy (low diversity of reproductive trajectories) 

associated with high correlation (individuals are likely to remain in reproductive stages). 

This combination matches a common view of life histories in which one or a few fixed 

reproductive trajectories exist in any given species. This limit contrasts with more dynamical 

life histories, which may, for example, have low entropy along with low correlation, such 

that individuals are likely to change reproductive stages frequently. The latter is an 

unconventional picture of reproductive strategies, but is common in our sample of species. In 

life histories with many stages, the only sure way of characterizing entropy and correlation 

is to compute these metrics. Although an examination of the transition rates, say of the 
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probability of staying in a stage versus leaving it, is qualitatively useful, the properties of a 

dynamic life history depend on all the transition rates.

Entropy and Persistence Across Species

The Swan example is not exceptional in terms of its entropy. Estimates of scaled entropy 

ranged from 0.55 and 0.95 for the 21 studies shown in Figure 2a, indicating that individuals 

of most species frequently switch reproductive stages throughout their lives. The species 

with the lowest entropy is the Pied Flycatcher; individuals of this species fail to recruit 

offspring in most years (average residence time in the failed state is 4.35 years) and if they 

are successful in one year they almost always fail in the following year. We also found a low 

entropy for Right Whales, who have long birth intervals (5.2 years) and therefore spend 

many years without a calf; when individuals calve they return to a stage without a calf in the 

following year. In both cases there are relatively few trajectories that individuals can follow.

To describe the temporal correlation between reproductive stage we computed the 

characteristic time τ as discussed above and report the correlation exp(−2/τ) between current 

reproduction and reproduction 2 years later. Most species show very low autocorrelation in 

their reproductive success over time (see Fig. 2b). For the swans τ = 1.32 years and the 2-

year correlation is 0.23; all but one species have 2-year correlations much less than < 0.12. 

Only the English Great Tit population has a much higher correlation of 0.42. Females of this 

species frequently lay medium sized clutches and rarely switch to lower or high clutch sizes, 

but if they manage to lay a large clutch they are then likely to lay another large clutch the 

next year. Comparison with the Great Tit population in the Netherlands is difficult for 

reasons that we discuss in the next section.

The diversity of trajectories, expressed by the entropy, is not correlated with the serial 

autocorrelation of reproductive stages between years, as can be seen from Fig. 2c. Thus 

these two metrics likely describe distinct features of the biology of individual life histories. 

Even the two species with low entropy (Flycatchers and Whales) have low serial 

autocorrelation despite the long times they remain in one state on average (for Flycatchers, 

4.3 years in the failed breeding state, for Whales, 5.2 years without a calf).

We conclude that neither entropy or the autocorrelation of reproductive stage changes 

between species in any systematic way. In our sample, long-lived species do not show 

fundamentally different transition dynamics in reproduction compared to short-lived species, 

and mean lifespan does not affect either entropy or correlation. We note that in most CMR 

studies on open populations the event of death is confounded with permanent emigration.

Fitness Components

Our dynamical approach allows us to examine variance in fitness components in terms of 

variation among trajectories of reproductive stage. This variation is generated by differences 

in the realized trajectories that individuals follow through stages and is not due to any 

differences between individuals in their transition probabilities or stage-specific survival or 

reproduction. Recall Figs 1b and 1c, which show accumulated reproduction and survivorship 

for the three trajectories of reproductive stages for Mute Swans shown in Fig 1a. Clearly, 

Tuljapurkar et al. Page 8

Ecol Lett. Author manuscript; available in PMC 2017 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



heterogeneity over time in individual reproductive success generates variance between 

individuals in the fitness components of reproduction and survival.

Mortality, Survivorship and Cumulative Reproduction

Every individual follows a reproductive trajectory ω that determines survivorship la(ω) to 

age a. To describe average survival or reproduction over a large cohort of individuals, we 

must average over trajectories. The probability ν(ω) of observing a trajectory ω can be 

written down using the transition matrix and the fact that, in our examples, all individuals 

are born into stage 1. The population average survivorship is

(2)

Fig 3a shows the substantial variation in survivorship around the population mean for the 

Mute Swans. The corresponding variation in cumulative reproduction along trajectories is 

shown in Fig 3b; this cumulative reproduction is conditional on survival but, of course, 

lifetime reproductive success includes the effect of survival as discussed further below.

To quantify dynamic heterogeneity of mortality we consider the distribution of the 

individual age of death T. For a reproductive trajectory ω = (i1,i2,i3,…), the probability of 

dying at age a is

(3)

the average age at death is

(4)

and the variance in age at death along this trajectory is, say, σ2 (T | ω). Averaging over 

trajectories yields a population average age at death T̅, which is the expected lifetime of an 

individual, and a variance in age at death σ2 (T). Without dynamic heterogeneity, every 

individual would follow one reproductive sequence so the population and the trajectory 

means and variances would be equal. But with dynamic heterogeneity there is variance 

within trajectories as well as variance between trajectories, so that

(5)
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Variance in age at death between trajectories is caused by differences in sequences of 

reproductive stages, whereas the variance within a trajectory reflects the stage-specific 

association between mortality and reproduction as an individual ages. For the Swans we 

estimate an expected age at death at the population level T̅ of 8.7 years, but expected age at 

death varies between trajectories from a low of 4 years to a high of 18 years. The variance in 

age at death between trajectories is 5.1, much lower than the variance of 16.7 in age at death 

within trajectories.

Variance in Lifetime Reproductive Success

Along a stage trajectory ω = (i1,i2,i3,…) an individual who dies at age T has Lifetime 

Reproductive Success (LRS)

This LRS varies among individuals because of differences in both age at death and in the 

reproductive trajectories that were followed until death. Recall Fig 1a, which showed three 

reproductive trajectories for the Swans. Along each of these trajectories, the LRS varies 

because individuals may die at different ages, as shown by the red, blue and black 

distributions in Fig 4a. If we simulate a large number of trajectories we obtain a population 

level distribution and also the frequency distribution of LRS across all possible trajectories, 

which is the grey histogram in Fig 4a. For the Swans, the average expected LRS is 24.1 

eggs; the minimum and maximum are 2.6 and 101.2 respectively, showing that there is large 

variance between trajectories. Considering all trajectories for the Swans, the variance of 

LRS between trajectories is 150.25 and the variance within trajectories is 336.1.

Within-trajectory variance of LRS is larger than between-trajectory variance for most of the 

species we analyzed (Fig 4b). The variance within trajectories is shaped by the stage-specific 

relationship between mortality and reproduction, and the variance between trajectories 

reflects the diversity of reproductive sequences that are followed over time. In short-lived 

species such as the Pied Flycatcher and the Great Tits, individuals may only be successful at 

recruiting offspring once or twice in their lives, so we might expect the variance within 

(short) trajectories to be smaller than the variance between them. The Pied Flycatcher and 

the Netherlands Great Tits exhibit this pattern, but for the English Great Tits within-

trajectory variance is much larger than between-trajectory variance and both variances are 

large. There are at least two possible reasons for the difference. The data concern number of 

recruits for the Netherlands Great Tits but only clutch sizes for the English Great Tits; the 

correlation between numbers of recruits in successive years may differ from that between 

clutch sizes. In addition, there may be differences in ecological conditions between the two 

populations.

Distribution of Lifetime Reproductive Success

We can predict a population distribution of LRS, or predict the cumulative reproduction for 

an observed sample by sampling among trajectories according to an appropriate 
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observational design. To compare observations and simulations of LRS, we need to correct 

for the possibility that resighting probabilities are < 1 and for the influence of right 

censoring (some individuals are still alive when data collection stops).

To correct for less-than-perfect resighting probabilities for different strata (as estimated from 

the data using CMR methods) at each time step in a simulation we make a binary choice 

between resighting and no sighting, and in the latter case set reproduction for that period to 0 

in the trajectory ω (for the Swans, resighting probabilities of breeding stages were assumed 

to be 1).

To correct for the influence of right censoring, we record the observed distribution of ages of 

last observation d in the actual sample and then generate the distribution of LRS for a 

synthetic population of the same size as the actual sample, e.g., the 510 Swans in the 

Abbotsbury sample. For each individual in the observed sample with its age of last 

observation d, select one of the possible trajectories ω (sampling with replacement) using as 

probability weights the survivorship at age d. Record the cumulative reproduction on the 

chosen trajectory ω up to age d, and continue until each individual has been assigned an 

LRS.

In order to assess the influence of stochastic sampling variability on the expected LRS 

distribution generated by dynamical heterogeneity, we generate 50 synthetic cohorts using 

this algorithm and calculate the average LRS distribution (the standard errors generated in 

this way are shown in Figure 5). This distribution for the Swans is shown in Figure 5; a 

Kolmogorov-Smirnov test indicates that cumulative distribution functions of the observed 

and predicted distributions are not significantly different from one another at the 0.05 level 

(Orzack et al. 2008a, submitted). We have found similar results for a number of other 

species (Orzack et al. 2008b, submitted).

Old-age Mortality and Plateaus

There has been substantial recent interest in late-age "plateaus" of mortality rates in various 

species (Carey and Tuljapurkar 2003). In typical examples, a cohort’s mortality rate 

increases at young ages but the rate of increase eventually decreases to zero. One well-

known hypothesis explaining such plateaus is that they result from intracohort selection 

operating on fixed frailty differences (Vaupel & Yashin 1985). However, even when there are 

no frailty differences a mortality plateau can arise when stage-specific survival is 

independent of age (Horvitz & Tuljapurkar 2008). To understand why, suppose we follow 

individuals in a large cohort starting at birth. As the cohort ages, the distribution of survivors 

over stages becomes nearly stable at older ages and the cohort’s average mortality becomes 

constant. In other words, a mortality plateau emerges so that population average survivorship 

eventually decreases at a constant rate

(6)
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At the mortality plateau a cohort has constant average survival rate P*. This plateau is 

generated by reproductive trajectories that are both probable (i.e., have a high ν(ω)) and 

have relatively high survivorship (i.e., have a high la(a)). These need not be the trajectories 

that yield the highest survivorship. For example, in our equation (1) the highest possible 

survivorship occurs on a trajectory ω = (1, 3, 3,…, 3,…) but this ω has a low probability 

unless the entropy H is very small.

Such plateaus generated by dynamic heterogeneity are very different from plateaus 

generated by fixed heterogeneity. Consider a population with no dynamic heterogeneity in 

which newborns are either frail or robust, and that frail individuals have a mature survival 

rate P2 whereas robust individuals have mature survival rate P3 > P2. As a cohort of such 

individuals ages, the population average survival rate will converge to a plateau at the value 

P3. In contrast, in our model (1), there is no fixed frailty and dynamic heterogeneity 

produces a plateau in survival rates at a value P* which depends on P2,P3,ψ22, and ψ33. For 

example, suppose that P2 ≫ P3 and ψ23 ≪ 1,ψ22 ≪ 1, and that every individual first reaches 

maturity in stage 2. Every cohort will start out in low mortality stage 2 but in later years a 

large fraction of cohort survivors will be in high mortality stage 3. Thus the average late-life 

mortality will be dominated by the high mortality in stage 3. Under such conditions, 

dynamic heterogeneity can generate a late-age plateau at which mortality is higher than 

during most of life, as is the case for medflies and possibly for humans (Carey and 

Tuljapurkar 2003).

As a practical matter, a mortality plateau, however generated, is relevant only if a 

meaningful fraction of individuals reach the age at which the plateau appears. Mortality 

plateaus in medflies have been detected only through observation of very large cohorts. 

When mortality rates for all individuals increase steadily with age for all stages (or latent 

traits), neither fixed nor dynamic heterogeneity will generate a mortality plateau.

Dynamic Heterogeneity as a Neutral Model

Dynamical heterogeneity can provide a "neutral" standard by which one can assess whether 

the observed distribution of fitness components, such as the LRS or average annual 

reproduction, are influenced by certain kinds of fixed heterogeneity. In particular, a lack of 

fit between an observed distribution of, say, the LRS and a distribution generated solely by 

dynamic heterogeneity suggests that the observed distribution is influenced by fixed 

differences among individuals.

For example, an unobserved trait may cause some individuals to have lower expected 

survival in all strata as compared to other individuals who have a different value of the trait. 

Intra-population selection will benefit the latter individuals and likely increase the variance 

of the distribution of LRS as compared to the variance generated only by dynamic 

heterogeneity (since more individuals will likely have relatively low or high LRS). A similar 

argument applies if individuals differ in a latent factor that influences the probabilities to 

enter or leave stages with high breeding success. As shown in Fig. 5 and discussed above, 

we find a reasonable fit between simulations and data for Mute Swans, a result which 
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suggests that fixed heterogeneity in survival or reproduction has little effect on the variation 

in LRS between females.

Multi-stage models can also be used as neutral models for fitness components other than the 

LRS, such as age at death, reproductive span, or average annual reproductive output. 

Suppose we find an association between the length of an individual’s breeding span and 

average annual reproduction during that span. One possible explanation is that fixed 

“quality” differences between individuals affect fitness components; a random-effects model 

fitted to the data would provide an estimate of these differences. But such variation is not the 

only possible cause for the observed association. Fig. 6 shows the distribution for Mute 

Swans of average annual clutch size versus reproductive span from simulations generated 

purely by dynamic heterogeneity based on our estimated models. There is considerable 

variance at each reproductive span and across spans. The average relationship, indicated by 

the solid line, yields a positive correlation between average annual clutch size and 

reproductive span. A statistical model for a sample of these individuals would yield an 

estimate of “quality” differences in average annual clutch size and reproductive span. But 

the variation in Fig 6 is entirely due to dynamic heterogeneity and does not provide evidence 

of fixed quality differences between individuals.

Life Histories as Dynamic Processes

The concept of dynamic heterogeneity leads to new insights into life history evolution. The 

traditional focus on life history evolution concerns the age-pattern of reproduction and 

survival and how natural selection determines the levels of these traits and their age-pattern. 

But as shown in the examples discussed here, the same individual can have very different 

reproductive success at different ages. For such life histories, the traits of interest are the 

transition probabilities between stages and the dependence of mortality on stage. These, 

rather than the age-pattern and levels of vital rates, are the targets of natural selection and the 

phenotypes whose evolution we must understand. To do so requires theory and data analytic 

tools that we discuss in this closing section.

Studying Fitness and Selection

How do we define fitness for the dynamic life histories we have discussed? We can write a 

generalized version of Lotka’s equation for multi-stage models in the form,

(7)

Here r is the rate of increase, the average E is over the distribution ν(ω) of reproductive 

trajectories, and T is age at death. When all individuals follow the same trajectory, equation 

(7) reduces to Lotka’s equation for the population. If we leave out the exponential factor in 

(7), then for each ω and T, the sum on the right of (7) is lifetime reproductive success (LRS). 

If we leave out the expectation in (7), the resulting solution r is an “individual” fitness for a 

given ω and T (Caswell 2001, Link et al. 2002).
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When there is no explicit age-dependence in transition rates and in mortality and fertility 

rates, the multi-stage models here reduce to stage-structured models of the kind that has 

been widely used to study plants, invertebrates and some vertebrates (Lefkovitch 1965). 

Standard results for the latter models (Caswell 2001) show that the dynamics of a population 

of individuals governed by a multi-stage model without explicit age-dependence are given 

by a matrix recursion equation involving a population projection matrix. The fitness r in 

equation (7) is precisely equal to the logarithm of the dominant eigenvalue of this projection 

matrix. For the transition matrix in our example (1) this projection matrix is

(8)

Caswell (2001) also shows how to compute the expected lifetime T̅ and the total variance in 

age at death using a related matrix analysis.

The elements of the matrix (8) show that dynamic heterogeneity is a determinant of 

evolutionary success. It is not just demographic noise. If the transition matrix (1) changes, so 

does the population projection matrix (8), and hence so must the rate of increase. Sensitivity 

analysis of r with respect to changes in the transition probabilities and other vital rates 

(Caswell 2001) can be used to explore the relationship between fitness and dynamic 

heterogeneity, and to generate or test hypotheses about the evolution of dynamic life 

histories. In small populations, demographic stochasticity adds to the variability generated 

by dynamic heterogeneity, and this additional variation can be analyzed using multi-type 

branching processes (Caswell 2001). Generalizations of equation (7) and (8) to include age-

specific variation in addition to stage-specific variation can be based on multi-stage 

demography (Houllier & Lebreton 1986; Lebreton 1996, 2005).

The correspondence between multi-stage CMR models and stage-structured models reveals 

a clear parallel between the life histories of animals and plants. Both kinds of organisms can 

display stochastic dynamic heterogeneity, even though some of the biological processes 

driving stochastic transitions in these two classes of life history are different.

A traditional theoretical approach treats life histories in terms of “decisions” about energy 

allocation and behavior, subject to constraints, with optimal decisions leading to optimal life 

histories. In the presence of dynamic heterogeneity, such “decisions” are sequential 

stochastic choices and an optimal life history is a stochastic process. Optimization in life-

history models incorporating dynamic heterogeneity can be analyzed using methods 

developed to study behavioral optimization (McNamara & Houston 1996). In dynamic life 

history models, we may also need to consider the effects of environmental variability and 

physiology as drivers of stage transitions. These may act sequentially, e.g., the environment 

in one year may affect energy expenditures, inputs, and storage, and thus constrain energy 

allocations in the following year. Dynamic energy budget methods (Kooijmans 2000) will be 

a suitable framework for studying such matters.
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Extending Multi-Stage Models

Several potentially important influences on a species’ demography are not captured by the 

simple multi-stage models we describe here. One is duration dependence, e.g., survival rate 

and possibly fertility of a life history stage may depend on the amount of time an individual 

spends in that stage. Finite durations are easily accommodated by expanding the definition 

of stages to include both stage and time-in-stage (Hestbeck et al. 2002, Brownie et al. 1993). 

Such models will typically have a higher dimensionality than the models discussed here, but 

will have similar features. Models for duration-dependence fit more naturally into a semi-

Markov framework (Huzurbazar 2004); the relevant theory especially for mortality plateaus 

and growth rates needs to be developed. Another direction is to expand the definition of 

stages by moving from discrete stages to continuous stages, say for size or mass; integral 

population models (IPMs) (Ellner & Rees 2006) provide a natural extension of our discrete 

stage models. Other needed developments include the incorporation of variable 

environments, and further analysis of age-and-stage dependent models.

Dynamic and Fixed Heterogeneity

The biological implications of dynamic heterogeneity differ from those of fixed 

heterogeneity. Perhaps most real populations are influenced by both kinds of heterogeneity. 

It will be worth exploring the evolution of fixed observable (or even latent) traits that 

influence the transition probabilities Ψ, survival, and fertility. We can examine the effects of 

such fixed traits on fitness using sensitivity analysis of the matrix in equation (8); the 

dynamics of a distribution of fixed heterogeneity can be followed using a mixture of these 

matrices. A useful further step would be to develop a quantitative genetic theory of life 

history evolution that develops for stage-structured populations an extension of existing 

theory for age-structure (Lande 1982, Charlesworth 1993).

Further progress in the analysis of CMR data is also needed so as to allow us to jointly 

analyze the contributions of fixed heterogeneity (via individual random effects), dynamic 

heterogeneity (via models of stage transitions), age-specific effects on life history 

components, and the effects of temporal variability (as opposed to secular trends) (compare 

with Gimenez et al. 2007). A joint model would allow us to test whether there are individual 

random effects in transitions, survival, or reproduction, and would also quantify the relative 

significance of fixed and dynamic heterogeneity. A related issue is the difficulty of 

discriminating between and testing complex models, often when relatively limited data are 

available. It should be helpful to develop tools that supplement the standard methods 

(Lebreton et al. 1992) with methods based on randomization and simulation that are 

effective on small samples.

A final point concerns alternative ways to characterize dynamic heterogeneity. We focus on 

the underlying Markov process because it is the generating process from which we can 

deduce and analyze the distribution of individual fitness components. But it would be useful 

to also characterize the distribution of survival-weighted trajectories. One approach would 

be to compute the entropy of the stage distribution of a cohort as a function of age. As the 

cohort ages, this stage distribution will converge to a quasi-stationary distribution and so the 

entropy of that distribution will also converge. Another option would be to do the kind of 
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analysis that we have done with Ψ, but instead to work with probabilities of stage transitions 

conditional on non-absorption. The latter can be approximately described by a transformed 

version of a submatrix of the projection matrix (8), as discussed by Matthews (1970). We 

will explore these possibilities in future work.

Conclusions

We find that CMR studies naturally motivate a dynamic picture of life histories, in which 

individuals change their reproductive strata and mortality many times during their lives. 

Dynamic heterogeneity is observable and easily characterized, has a direct effect on 

individual fitness components (age at death, Lifetime Reproductive Success), and is a 

determinant of overall fitness. We have shown that residence in reproductive strata is 

ephemeral in a variety of species, that there is substantial diversity in reproductive 

trajectories in many species, and that senescent mortality is an average over distinct stages in 

a life history. Using the methods we have presented, CMR studies can play an important role 

in investigations of the character of trade-offs between survival and reproduction and the 

extent and kind of senescence of natural populations. Vindenes et al. (2008) have recently 

discussed some effects of demographic heterogeneity that complement our discussion here. 

The further study of dynamic heterogeneity should lead to unprecedented advances in our 

view of the structure and evolution of life histories.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the US National Institute on Aging and National Science Foundation for support. We thank Tim Coulson, 
Jean-Michel Gaillard, Carol Horvitz, Dan Nussey, Jim Nichols and an anonymous referee for valuable comments

We are especially grateful to Res Altwegg, Gwénaël Beauplet, Emmanuelle Cam, Dee Carey, Jean Clobert, Walter 
Koenig, Ben Sheldon, Giacomo Tavecchia, Paul Thompson, Marcel Visser, Henri Weimerskirch, Glen Woolfenden, 
for sharing data and answering questions about their publications.

References

Brownie C, Hines JE, Nichols JD, Pollock KH, Hestbeck JB. Capture-Recapture Studies For Multiple 
Strata Including Non-Markovian Transitions. Biometrics. 1993; 49:1173–1187.

Cam E, Link WA, Cooch EG, Monnat JY, Danchin E. Individual covariation in life-history traits: 
Seeing the trees despite the forest. Am. Nat. 2002; 159:96–105. [PubMed: 18707403] 

Cam E, Monnat JY. Stratification based on reproductive state reveals contrasting patterns of age-
related variation in demographic parameters in the kittiwake. Oikos. 2000; 90:560–574.

Carey JR, Tuljapurkar S. Life Span: Evolutionary, Ecological, and Demographic Perspectives. 
Population Council. Pop. Dev. Rev. 2003; 29(suppl)

Caswell, H. Matrix population models. Second. Sinauer Associates; Sunderland, MA: 2001. 

Charlesworth B. Natural Selection on Multivariate Traits in Age-Structured Populations. Proceedings: 
Biological Sciences. 1993; 251:47–52. [PubMed: 8094565] 

Charmantier A, Perrins C, McCleery RH, Sheldon BC. Age-dependent genetic variance in a life-
history trait in the Mute swan. Proc. Roy. Soc. B. 2006; 273:225–232.

Dunnet GM. Population Studies of the Fulmar on Eynhallow, Orkney-Islands. Ibis. 1991; 133:24–27.

Tuljapurkar et al. Page 16

Ecol Lett. Author manuscript; available in PMC 2017 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ellner SP, Rees M. Integral projection models for species with complex demography. Am. Nat. 2006; 
167:410–428. [PubMed: 16673349] 

Fujiwara M, Caswell H. Estimating population projection matrices from multi-stage mark-recapture 
data. Ecology. 2002; 83:3257–3265.

Gimenez O, Rossi V, Choquet R, Dehais C, Doris B, Varella H, Vila JP, Pradel R. State-space 
modelling of data on marked individuals. Ecol. Model. 2007; 206:431–438.

Hadley GL, Rotella JJ, Garrott RA, Nichols JD. Variation in probability of first reproduction of 
Weddell seals. J. Anim. Ecol. 2006; 75:1058–1070. [PubMed: 16922841] 

Hestbeck JB, Nichols JD, Malecki RA. Estimates of movement and site fidelity using mark-resight 
data of wintering Canada geese. Ecology. 72:523–533.

Horvitz CC, Tuljapurkar S. Stage dynamics, period survival and mortality plateaus. American 
Naturalist. 2008; 162:489–502.

Houllier F, Lebreton JD. A Renewal-Equation Approach to the Dynamics of Stage-Grouped 
Populations. Math. Biosci. 1986; 79:185–197.

Huzurbazar AV. Multistate models, flowgraph models, and semi-Markov processes. Comm. Stat.-
Theory and Methods. 2004; 33:457–474.

Khinchin, AI. Mathematical Foundations of Information Theory. Dover Publications; New York: 1957. 

Kooijmans, SALM. Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University 
Press; Cambridge: 2000. 

Lande R. A Quantitative Genetic Theory of Life History Evolution. Ecology. 1982; 63:607–615.

Lebreton JD. Demographic models for subdivided populations: The renewal equation approach. Theor. 
Pop. Bio. 1996; 49:291–313. [PubMed: 8813026] 

Lebreton JD. Age, stages, and the role of generation time in matrix models. Ecol. Model. 2005; 
188:22–29.

Lebreton JD, Burnham KP, Clobert J, Anderson DR. Modeling Survival and Testing Biological 
Hypotheses Using Marked Animals - a Unified Approach with Case-Studies. Ecol. Mono. 1992; 
62:67–118.

Lefkovitch LP. The study of population growth in organisms grouped by stages. Biometrics. 1965; 
21:1–18.

Link WA, Cooch EG, Cam E. Model-based estimation of individual fitness. J. Appl. Stat. 2002; 
29:207–224.

Loison A, Festa-Bianchet M, Gaillard JM, Jorgenson JT, Jullien JM. Age-specific survival in five 
populations of ungulates: Evidence of senescence. Ecology. 1999; 80:2539–2554.

Matthews J. A central limit theorem for absorbing Markov chains. Biometrika. 1970; 57:129–139.

McCleery RH, Perrins C, Wheeler D, Groves S. Population structure, survival rates and productivity of 
mute swans breeding in a colony at Abbotsbury, Dorset, England. Waterbirds. 2002; 25:192–201.

McGraw JB, Caswell H. Estimation of individual fitness from life-history data. American Naturalist. 
1996; 147:47–64.

McNamara JM, Houston AI. State-dependent life histories. Nature. 1996; 380:215–221. [PubMed: 
8637568] 

Moyes K, Coulson T, Morgan BJT, Donald A, Morris SJ, Clutton-Brock TH. Cumulative reproduction 
and survival costs in female red deer. Oikos. 2006; 115:241–252.

Nichols JD, Sauer JR, Pollock KH, Hestbeck JB. Estimating transition probabilities for stage-based 
population projection matrices using capture-recapture data. Ecology. 1992; 73:306–312.

Nichols JD, Kendall WL. The use of multi-state capture-recapture models to address questions in 
evolutionary ecology. J. Appl. Stat. 1995; 22:835–846.

Orzack SH, Steiner UK, Tuljapurkar S. Statics and dynamics of reproduction and survival in the Mute 
Swan, Cygnus olor. 2008a Submitted. 

Orzack SH, Steiner UK, Tuljapurkar S, Thompson P. The evolutionary biodemography of the Northern 
Fulmar (Fulmarus glacialis). 2008b Submitted. 

Pelletier F, Clutton-Brock T, Pemberton J, Tuljapurkar S, Coulson T. The evolutionary demography of 
ecological change: Linking trait variation and population growth. Science. 2007; 315:1571–1574. 
[PubMed: 17363672] 

Tuljapurkar et al. Page 17

Ecol Lett. Author manuscript; available in PMC 2017 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pielou, EC. Mathematical Ecology. John Wiley; New York: 1977. 

Ricklefs RE, Cadena CD. Lifespan is unrelated to investment in reproduction in populations of 
mammals and birds in captivity. Ecol. Lett. 2007; 10:867–872. [PubMed: 17845285] 

Ripley, BD. Stochastic Simulation. New York: Wiley; 1987. 

Sandercock BK. Estimation of demographic parameters from live-encounter data: a summary review. 
J. Wildl. Managem. 2006; 70:1504–1520.

Shannon CE. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948; 27:379–423.

Tavecchia G, Coulson T, Morgan BJT, Pemberton JM, Pilkington JC, Gulland FMD, Clutton-Brock 
TH. Predictors of reproductive cost in female Soay sheep. J. Anim. Ecol. 2005; 74:201–213.

Tuljapurkar S, Horvitz C. From Stage To Age In Variable Environments: Life Expectancy And 
Survivorship. Ecology. 2006; 87:1497–1509. [PubMed: 16869426] 

Van Noordwijk AJ, Dejong G. Acquisition and Allocation of Resources - Their Influence on Variation 
in Life-History Tactics. Am. Nat. 1986; 128:137–142.

Vaupel JW, Yashin AI. Heterogeneity Ruses - Some Surprising Effects of Selection on Population-
Dynamics. Am. Stat. 1985; 39:176–185. [PubMed: 12267300] 

Viallefont A, Cooch EG, Cooke F. Estimation of trade-offs with capture-recapture models: A case 
study on the lesser snow goose. J. Appl. Stat. 1995; 22:847–861.

Vindenes Y, Engen S, Saether B-E. Individual Heterogeneity in Vital Parameters and Demographic 
Stochasticity. Am. Nat. 2008; 171:455–467. [PubMed: 20374136] 

Tuljapurkar et al. Page 18

Ecol Lett. Author manuscript; available in PMC 2017 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
a) Observed reproductive stage dynamics for number of eggs per clutch for three Mute 

Swans (Z46068, Z46039, Z46066) (solid lines) up to the age of their last resighting. The last 

resighting is marked by a star. Light-colored lines show a possible simulated sequence of 

reproductive stages after last sighting. The sequences ω1,ω2,ω3 are three out of a multitude 

of possible trajectories that follow transition matrix Ψ (Table 2).

b) Survivorship l(a) at age a for the three trajectories ω1,ω2,ω3, c) Cumulative reproduction 

(CR) (number of eggs laid by age a). The last resighting is marked by a star in panels b, c.
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Fig. 2. 
a) Scaled entropy (entropy/maximum entropy) versus mean age of death for 21 species, b) 

correlation between the current reproductive stage and the reproductive stage two years 

versus mean age at death, c) correlation as in (b) plotted against scaled entropy.
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Fig. 3. 
a) Survival rates for a large number of trajectories (thin grey lines) for Mute Swans. b) 

cumulative reproduction (CR) as number of eggs by age. Black thick lines show means and 

dotted lines show 95% confidence intervals based on 1000 simulated trajectories.
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Fig. 4. 
a) Distribution of Lifetime Reproductive Success (LRS) for the three trajectories ω1,ω2,ω3 

shown in Fig. 1 for Mute Swans, and for the population based on a large number of 

trajectories (in grey). The color coded numbers are the median age at death for the three 

trajectories and the population mean. They are shown above the corresponding median LRS 

for each of the trajectories and the expectation across the population.

b) Variance of expected Lifetime Reproductive Success (LRS) within trajectories versus 

variance in expected LRS between trajectories for 22 species. Note the difference in scales 

of the axes.
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Fig. 5. 
Distribution of Lifetime Reproductive Success (LRS) for female Mute Swans. The observed 

distribution is shown by grey bars and the average distribution for 50 simulated synthetic 

populations is shown by black bars (± standard error). Synthetic populations exclude any 

fixed heterogeneity.
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Fig. 6. 
Reproductive span versus average clutch size during the reproductive span for 1000 

simulated Mute Swans. Reproductive span is defined as the number of years between the 

ages of first and last reproduction. The thick black line shows the average clutch size by 

reproductive span across individuals. The size of the grey circle at a point denotes the 

number of individuals at the point.
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Table 2

Alternative Ψ matrices

Ψ1

0.5 0.5 0

0 0 1 ω = (2, 3, 2, 3, …)

0 1 0

Ψ2

0.5 0.25 0.25 ω1 = (2, 2, 2, 2, …)

0 1 0 ω2 = (3, 3, 3, 3, …)

0 0 1

Ψ3

0.5 0.5 0 ω1 = (2, 2, 3, 2, …)

0 0.6 0.4 ω2 = (2, 3, 3, 3, …)

0 0.5 0.5 ω3 = (2, 3, 2, 2, …)
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Table 3

Measuring Dynamic Heterogeneity through Ψ

Quantity Definition

Stationary distribution π = (πi),π′ = π′Ψ (prime indicates transpose)

Entropy

 (with 0 log(0) = 0)

Subdominant Eigenvalue λ1 ≠ 1, solves det(λI − Ψ) = 0

Correlation Time τ = −1/(log λ1)

Expected time to leave stage For stage i, t̄i = 1/(1 − ψii)
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Table 4

Measures for Ψ in equation (1)

Quantity Value for equation (1)

Stationary distribution π = (0, (1 − ψ22), (1 + ψ33))/(1 − λ1)

Entropy π2[ψ22 log ψ22 + (1 − ψ22)log(1 − ψ22)] + π3[ψ33 log ψ33 + (1 − ψ33)log(1 − ψ33)]

Subdominant Eigenvalue λ1 = (ψ22 + ψ33 − 1)

Autocorrelation coefficient ρ = λ1 = (ψ22 + ψ33 − 1)

Correlation Time τ = −1/[log(ψ22 + ψ33 − 1)]

Expected time to leave stages 1, 2, 3 1/(1 − ψ11), 1/(1 − ψ22), 1/(1 − ψ33)
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