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Abstract Aquaporins (AQPs) can be revisited from a distinct
and complementary perspective: the outcome from analyzing
them from both plant and animal studies. (1) The approach in
the study. Diversity found in both kingdoms contrasts with the
limited number of crystal structures determined within each
group. While the structure of almost half of mammal AQPs
was resolved, only a few were resolved in plants. Strikingly,
the animal structures resolved are mainly derived from the
AQP2-lineage, due to their important roles in water homeo-
stasis regulation in humans. The difference could be attributed
to the approach: relevance in animal research is emphasized
on pathology and in consequence drug screening that can lead
to potential inhibitors, enhancers and/or regulators. By con-
trast, studies on plants have been mainly focused on the phys-
iological role that AQPs play in growth, development and
stress tolerance. (2) The transport capacity. Besides the
well-described AQPs with high water transport capacity, large
amount of evidence confirms that certain plant AQPs can
carry a large list of small solutes. So far, animal AQP list is

more restricted. In both kingdoms, there is a great amount of
evidence on gas transport, although there is still an unsolved
controversy around gas translocation as well as the role of the
central pore of the tetramer. (3)More roles than expected. We
found it remarkable that the view of AQPs as specific channels
has evolved first toward simple transporters to molecules that
can experience conformational changes triggered by biochem-
ical and/or mechanical signals, turning them also into signal-
ing components and/or behave as osmosensor molecules.
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Introduction

The discovery of aquaporins (AQPs) significantly changed
the study of water, small solutes and gas transport in living
organisms and broadened a newly unexplored field of scien-
tific research. Extensive information is now available covering
and integrating approaches such as phylogeny, structure and
physiology, in particular transport studies or regulatory mech-
anisms to understand how the presence of these proteins
makes a difference in cell physiology and how this can be
extended to tissue/organ/individual levels. Here, we review
knowledge on AQPs, conserved transport proteins that belong
to the MIP superfamily of transmembrane proteins. Our per-
spective includes comparing information mainly on plants and
animals and discussing current hypotheses and controversy on
the role and function of AQPs. This revision is complemented
with data from microorganisms and insects.

The first section is dedicated to the evolutive relationship
between plant and animal AQPs. The number of identified
members in each kingdom is discussed, and contrasted with
the number of crystal structures determined. The second
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section is dedicated to the function and the relationship with
physiology and pathology. Here, a difference is remarked on
concerning the focus on research approaches in plants and
animals. The third section is dedicated to comparing the trans-
port capacities of plant and animal AQPs in terms of perme-
ating molecules. The most outstanding difference is found
here. While plant AQPs can transport a broad variety of sol-
utes including non-metals and metals (urea, NH3, boron,
silice, arsenite, etc.), animal counterparts are more restricted,
prevailing a limited list of small no charge solutes. Special
attention is placed on the current discussion about the trans-
port of gases and the role of the central pore of the tetramer.
The fourth section reviews the regulatory mechanisms of
AQPs. Although similarities exist on gating mechanisms and
gas transport, some differences on trafficking can be observed.
This section is divided into gating and trafficking events. The
fifth section revisits the discussion on AQPs as osmosensors
within the context of recent evidence. Conformational chang-
es have been observed in AQPs gated by biochemical and
mechanical signals, supporting the osmosensor hypothesis.
Finally, the study of AQPs is discussed in perspective.

Does the number of AQPs count?

It is usually said that the diversity of aquaporins in plants is
higher than in animals. This statement is supported on the fact
that there are only 13 types of AQPs in mammals (Verkman
et al. 2014) while in specific plant species, such as
Arabidopsis thaliana, Populus trichocarpa, Glycine max or
Gossypium hirsutum, there are 35, 55, 66 or 71 members,
respectively (Johanson et al. 2001; Quigley et al. 2001;
Gupta and Sankararamakrishnan 2009; Park et al. 2010;
Maurel et al. 2015).

Diversity and evolution of plant and animal AQPs has been
widely revisited (Abascal et al. 2014; Maurel et al. 2015; Finn
and Cerdà 2015; Pérez Di Giorgio et al. 2014; Von Bülow and
Beitz 2015; Song et al. 2014). Therefore, we highlight here
some recent findings on this subject that are relevant to discuss
our knowledge on the number of AQPs. This information is
contrasted with the number of resolved crystal structures.

Classification of AQPs in higher plants describes seven
subfamilies: the plasma membrane intrinsic proteins (PIPs),
the tonoplast intrinsic proteins (TIPs), the nodulin 26-like in-
trinsic proteins (NIPs), the small basic intrinsic proteins
(SIPs), the uncategorized (X) intrinsic proteins (XIPs) that
are absent in some higher plant species, the hybrid intrinsic
proteins (HIPs), and GlpF-like intrinsic proteins (GIPs)
(Maurel et al. 2015). On the other hand, just four subfamilies
are identified in animals: water-specific channels (AQP0, 1, 2,
4, 5, 6), aquaglyceroporins (AQP3, 7, 9, 10), water and am-
monium aquaporins (AQP8), and unorthodox aquaporins
(AQP11, 12) (Finn et al. 2014).

Besides separate classifications, plant and animal aquapo-
rins are highly conserved and share common ancestors.

Phylogenetic analysis indicates that classical water chan-
nels or AQPs and glycerol transporters or aquaglyceroporins
(GLPs) split from a common node of ancient membrane inte-
gral proteins (MIPs) (Abascal et al. 2014). Then, four ances-
tral subfamilies gave origin to the PIP-AQP1-like, TIP-AQP8-
like, NIP-AQP3-like and SIP-AQP11-like branches, which
supports the vertical transfer hypothesis (Soto et al. 2012;
Pérez Di Giorgio et al. 2014). On the other hand, recent evi-
dence suggests that horizontal gene transfer and genome fu-
sion events would have given origin to other subfamilies. For
example, NIP genes from plants would have originated from
the nitrite-oxidizing class (AqpN) of Bacteria, before the evo-
lution of Eukaryota (Finn and Cerdà 2015). Although there is
no solid evidence to support the horizontal gene transfer hy-
pothesis in general (Pérez Di Giorgio et al. 2014), the high
diversity found in plant NIPs is thought to be associated with
tandem duplication events as well as to the degree of polyploi-
dy found in angiosperms (Finn and Cerdà 2015). The high
genetic diversity found in plants also shows examples of loss
events, such as GIPs in Dicotyledonae and XIPs in
Monocotyledonae (Danielson and Johanson 2008; Finn and
Cerdà 2015), a feature atributed to functional redundancy
(Maurel et al. 2015). On the other hand, other events produced
increments in the number of AQPs. For example, current PIPs
are subdivided into PIP1 and PIP2 subfamilies, and current
TIPs have five subfamilies in higher plants (Maurel et al.
2015), evidencing that PIPs have greater functional con-
straints than TIPs (Pérez Di Giorgio et al. 2014).

In insects, recent findings indicate that the glp genes (which
encodes for aquaglyceroporins) disappeared in Holometabolus
andHemipterea (Finn et al. 2015; Van Ekert et al. 2016). In these
lineages, glycerol transporters would have evolved by duplica-
tion of the eglp genes that encodes entomoglyceroporins, which
are glycerol-transporting proteins that can also transport water,
urea, and other polyols. These glycerol transporters evolved by
mutation of the conserved His in the ar/R selectivity filter of
water-selective channels and are phylogenetically more closely
related to the classical aquaporin 4-type channels than to the
GLPs (Finn et al. 2015).

In tetrapods, the lineage of water-specific channels would
have evolved from AQP4, which appeared very early, in basal
Deuterostomia, during pre-cambric, a period with an unexpected
diversity of AQPs (Finn et al. 2014). This study also revealed
unknown subfamilies of water channels in Vertebrata: AQP14,
−15 and −16. These lineages disappeared along tetrapods evolu-
tion and are absent in current vertebrates (Finn et al. 2014). The
lineage of AQP2–5 is absent in Actinopterygian fishes, and ap-
peared later by positive selection in basal Sarcopterygii. This
lineage constitutes a genomic apomorphy and its appearance
highlights the pivotal role that AQPs played for terrestrial adap-
tation (Finn et al. 2014; Finn and Cerdà 2015).
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Altogether, these evidences indicate that evolution of plant
AQPs was less constricted than in animals, which could be
related to terrestrial forms of life.

To date, the crystal structure of AQPs from ten different sub-
families has been resolved: AQP0 (Gonen et al. 2004; Palanivelu
et al. 2006; Hite et al. 2010; Reichow et al. 2013), AQP1 (Murata
et al. 2000; Sui et al. 2001; Ren et al. 2000; de Groot et al. 2001;
Ruiz Carrillo et al. 2014), AQP2 (Frick et al. 2014), AQP4
(Hiroaki et al. 2006; Ho et al. 2009; Tani et al. 2009; Mitsuma
et al. 2010), AQP5 (Horsefield et al. 2008; Kitchen et al. 2015a),
AQPM from Methanothermobacter marburgensis (Lee et al.
2005), GlpF (Fu et al. 2000; Tajkhorshid et al. 2002), AQPZ
from Escherichia coli (Jiang et al. 2006; Savage et al. 2003),
PfAQP from Plasmodium falciparum (Newby et al. 2008),
Aqy1 from Pichia pastoris (Fischer et al. 2009; Kosinska
Eriksson et al. 2013), SoPIP2;1 from Spinacia oleracea
(Törnroth-Horsefield et al. 2006; Nyblom et al. 2009; Frick
et al. 2013), and AtTIP 2;1 from Arabidopsis thaliana (Kirscht
et al. 2016).

Although current AQPs show higher diversity in plants than
in animals, recent evidence has revealed that the latter groups
showed originally a high diversity in earlier mammals. It should
be emphasized that structural studies predominate in animals.
While the structure of almost 50% of mammal AQPs have been
resolved, the structure of only two AQPs has been resolved in
plants. Strikingly, these structures correspond to AQPs derived
from the AQP2-lineage, which play important roles in water
homeostasis regulation. This difference in the number of struc-
tural studies could be related to the different approach that drives
research on each subfamily. While relevance of research in ani-
malAQPs is put on pathology and the associated search for drugs
that can act as inhibitors and regulators (Verkman et al. 2014),
studies on plants are focused on the physiological role that AQPs
play in the whole plant (Maurel et al. 2015).

It is evident that structural studies are needed in plant
AQPs. Structural determinations already performed allowed
seeing the same AQP in different conformations (for example
SoPIP2;1), evidencing the possibility of a gating mechanism.
Furthermore, the structural resolution of the pore supported
the needed information to perform molecular dynamics simu-
lations. These in silico experiments confirmed the single file
hypothesis and, at the same time predict the invertion of the
water molecule when translocating through the channel (de
Groot and Grubmüller 2001).

Thus, these approaches will also lead to valuable informa-
tion on, for example, structural clues about the function of
other AQPs as metalloporins.

Physiology versus pathology

Almost at the same time as the discovery of the first aquaporin
in animal cells (Preston et al. 1992), there was evidence of a

protein highly expressed in seeds structurally related to the
bacterial glycerol facilitator GlpF (Johnson et al. 1989,
1990). A few years later, the activity of the first tonoplast
water channel was described (Maurel et al. 1993).

Since water movements occur through biological mem-
branes by simple diffusion, the discovery of water channels
offered a novel pathway, which increases the membrane water
permeability from 10 to 100 times more than in their absence.
But the real impact of AQPs was their regulatory capacity at
different levels, which is more restricted for the lipid bilayer
(Calamita 2005). Therefore, the main approach in plants was
to study the water transport capacity of tissues/organs where
AQPs are highly expressed, focusing on the relationship be-
tween the function of water channels and a specific physio-
logical process. Some of these processes, such as seed germi-
nation, water transport in roots and leaves, stomatal closure
and other processes associated with circadian rhythms and
stress conditions, are summarized in this section.

In animals, the most studied AQPs are the 13 members
identified in mammals, which have tissue- and organ-
specific expression (for a recent review, see Day et al. 2014).
Although their role in physiological processes has been wide-
ly studied, the approach was generally driven by interest on
human diseases, with a substantial number of articles using
aquaporin-KO transgenic mice and analyzing the possible
function due to the lack of a particular water channel. Since
detailed reviews on mammal AQPs exist (Noda et al. 2010;
Rutkovskiy et al. 2013; Sasaki et al. 2014; Ribatti et al. 2014;
Nagaraju et al. 2016), we briefly summarize here the
pathology-associated role of water-specific channels and
aquaglyceroporins in organs such as heart, brain, liver, kidney,
skin and eye.

The physiological focus in plants

Seed germination requires a rapid water uptake to the imbibi-
tion of tissues. Water entry is also required for the develop-
ment of the embryo. Experiments with pea showed that water
channels may participate in the first water-uptake events
(Veselova et al. 2003), whereas AQPs in Arabidopsis thaliana
or Vicia faba would contribute to growth of the embryo
(Vander Willigen et al. 2006; Novikova et al. 2014).

In roots, aquaporin expression was investigated in different
species, such as Arabidopsis, maize, rice and barley, showing
specific patterns for different isoforms (Javot et al. 2003;
Gattolin et al. 2009; Hachez et al. 2006; Sakurai et al. 2008;
Knipfer and Fricke 2011). The contribution of AQPs to water
transport in roots was studied using mercury chloride as in-
hibitor. These results showed that hydraulic conductivity (Lpr)
can be reduced by up to 47% and 64% in Populus and
Arabidopsis, respectively (Wan and Zwiazek 1999; Sutka
et al. 2011).
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Concerning leaves, AQPs were detected in guard cells of
many species, such as Helianthus annuus (Sarda et al. 1997),
Vicia faba (Sun et al. 2001), Nicotiana glauca (Smart et al.
2001), Picea abies (Oliviusson et al. 2001), Arabidopsis
thaliana (Leonhardt et al. 2004; Prasch et al. 2015),
Spinacia oleracea (Fraysse et al. 2005) and Zea mays
(Heinen et al. 2014). AQPs were also detected in other tissues
in the elongating zone of leaves, in the vascular bundles and in
the mesophyll (Besse et al. 2011; Hachez et al. 2008; Prado
et al. 2013).

Functional studies involved AQPs in leaf hydraulics
(Postaire et al. 2010; Prado et al. 2013). Recently, it was re-
ported that AtPIP2;1 participates in stomatal closure (Grondin
et al. 2015). The authors of this work proposed a model where
the ABA-triggered phosphorylation of PIP2;1 at Ser-121 in-
creases the water permeability of the guard cells inducing
stomatal closure (Grondin et al. 2015; Maurel et al. 2016).

Contributions have also been made to show how water
channels might participate in the shoot–root relationship. It
has been reported that transpiratory demand can regulate both
the expression of root AQPs and the root hydraulic conduc-
tivity (Laur and Hacke 2013; Vandeleur et al. 2014).

In addition, the role of AQPs on plant physiology was
studied in association with circadian rhythms. For instance,
the regulation of Lpr oscillations that occur during the day
was studied in some plant species (Lopez et al. 2003;
Vandeleur et al. 2009). In Mimosa pudica, an increased ex-
pression of a γ-TIP was correlated with pulvinar movements
(Fleurat-Lessard et al. 1997), and in motor cells from
Samanea saman, the expression pattern of the gene that cod-
ifies for SsAQP2 showed the same diurnal rhythm as pulvinar
movements (Moshelion et al. 2002).

Other physiological processes that implicate water and sol-
ute movements, and where AQPs play a relevant role includes
color development in some flowers (Negishi et al. 2012), nu-
trient soil absorption (Ma et al. 2006; Takano et al. 2006),
rhizobium–legume symbiosis (Rivers et al. 1997; Hwang
et al. 2010) and mycorrizhae (Ruiz-Lozano et al. 2009;
Barzana et al. 2014).

Besides analyzing plant growth and development, the con-
tribution of water channels under stress conditions has also
been extensively investigated. As an example, in trees species
it has been demostrated that in winter or under drought, air
bubbles may form within the vascular system (embolism) and
some reports suggest that AQPs can contribute to embolism
refilling in trees (Sakr et al. 2003; Secchi and Zwieniecki
2010). For a recent review on plant AQPs and stress, see
Sade and Moshelion (2017).

The pathological focus in animals

Asmost mammal water channels, AQP1 is expressed in many
organs. For example, AQP1 was found in kidney (Nielsen

et al. 1993; Ishibashi et al. 1994), skin (Sougrat et al. 2002),
liver (Marinelli and LaRusso 1997), pancreas (Hurley et al.
2001), brain (Shields et al. 2007; Arcienega et al. 2010), heart
(Butler et al. 2006), and vascular endothelial cells, where it is
the most expressed AQP (Verkman 2002).

High expression of AQP1 was early reported in tu-
mor of microvessels (Endo et al. 1999). Following stud-
ies showed that deletion of AQP1 reduces the growth
and vascularity of implanted tumors (Saadoun et al.
2005), and that water channels expressed in tumor cells
improve their capacity to extravasate across blood ves-
sels and to invade locally neighbor tissues (Hu and
Verkman 2006). Over the years, other AQPs have been
reported to be involved in many types of cancer, with
implications in tumor edema formation and angiogene-
sis. Since information about the pivotal role that AQPs
play in cancer is very extensive, we do not dedicate
more than this brief mention to this subject as the topic
has been previously reviewed in detail (Verkman et al.
2008; Verkman 2011; Ribatti et al. 2014; Nagaraju et al.
2016).

Water transport and AQPs function has been extensively
studied in kidney where several water channels are expressed
(AQP1, AQP2, AQP3 and AQP4). Most water reabsorption
occurs in the proximal tubule through AQP1, whereas AQP2
is key in the fine regulation of water permeability in the apical
membrane of principal cells of the collecting duct (Fushimi
et al. 1993). Regulation of AQP2 expression in the apical
membrane is mediated by the arginine vasopressin hormone,
through its receptor located in the basolateral membrane
(Marples et al. 1995; Yui et al. 2012). AQP3 and AQP4,
which are constitutively expressed in the basolateral
membrane of principal cells, facilitate the outflow of water
to the blood. The regulation mechanism of AQP2 is one of
the best known. For a detailed description, see Noda et al.
(2010) and Sasaki et al. (2014).

While AQP1 knock-out mice showed defective fluid ab-
sorption (Schnermann et al. 1998), AQP2 mutations in
humans cause nephrogenic diabetes insipidus (Deen et al.
1994), which results in urinary hypo-osmolality. Moreover, a
polycystic kidney phenotype is observed in AQP11-deficient
mice (Morishita et al. 2005).

In the brain, AQP4 is highly expressed in the plasma mem-
brane of astrocytes, which are the most abundant glial cells
(He and Sun 2007). In astrocytes, AQP4 is involved in the
water exchange mechanism of the blood–brain barrier, and its
absence produces decreased water uptake in mice brain (Haj-
Yasein et al. 2011).

An interesting pathology concerns the role of AQP4 is
neuromyelitis optica. As recently reviewed, this autoimmune
disease is characterized by specific recognition of AQP4 by an
autoantibody with preferential affinity for the M1 isoform
(Pittock and Lucchinetti 2016).
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The role of both AQP1 and AQP4 is now been studied in
edema developmental events in brain and heart. AQP4 is a
bidirectional water channel that facilitates both the water ac-
cumulation in brains that suffer cytotoxic edema (as ischemic
stroke and bacterial meningitis) (Manley et al. 2000;
Papadopoulos and Verkman 2005,) and the clearance of ex-
cess brain water in vasogenic edema (as obstructive hydro-
cephalus) (Bloch et al. 2006).

AQP1, -4, and -6 seem to play distinct roles in myocardial
infarction (MI) in mouse hearts. While the time-dependent
pattern of the observed up-regulated expression of AQP4 in
MI coincides with that of myocardial edema (ME) and cardiac
dysfunction, the expression of AQP1 and AQP6 persistently
increases (Zhang et al. 2013).

Analysis of evidence from rat (Page et al. 1998), mice
(Montiel et al. 2014) and goats (Ding et al. 2013; Yan et al.
2013) suggests that AQP1, which colocalizes with Caveolin-
1, would play a key role on the regulation of Connexin 43
during ME. On the other hand, a study with AQP1 knock-out
mice reported microcardia (decreased myocyte dimensions)
and low blood pressure (Montiel et al. 2014). The abnormal-
ities caused by AQP4 knock-out on calcium-modulating pro-
teins is associated with exacerbation of risk for cardiac ar-
rhythmias and failure in mice heart (Cheng et al. 2012). A
recent review on myocardial AQPs suggests that AQP4 is
involved in calcium handling and may constitute an
osmosensory apparatus in heart muscle (Rutkovskiy et al.
2013).

AQP0 show particular features within the water-
transporting channels. In the eye, lens fiber cells are special-
ized to form a tightly transparent layer that minimizes the
amount of incident light to support the function of the eye.
Expression of AQP0 was reported in these cells (Kumari et al.
2011), where they assemble into large arrays forming func-
tional microdomains that dynamically associate and dissociate
(Scheuring et al. 2007). Mutations of AQP0 cause congenital
cataracts in humans and mice by a mechanism that would
involve loss of the cell packing required to minimize light
scattering (Berry et al. 2000; Chepelinsky 2009).

Aquaglyceroporins have been well studied in adipo-
cytes, skin and liver. In adipocytes. AQP7 modulates the
glycerol membrane permeability and controls the fat cell
size mediated by triglyceride accumulation (Hara-Chikuma
et al. 2005; Duncan et al. 2007). AQP9 has been proposed
as an important pivot for hepatic glycerol uptake (Carbrey
et al. 2003). From analyses of this evidence arose the sug-
gestion that both the fat-specific AQP7 and the liver-
specific AQP9 act as key coordinated regulators in diabe-
tes and obesity (Maeda et al. 2009). Interestingly, AQP7-
null mice show lower levels of glycerol and ATP in heart,
and accelerated hypertrophy following aortic constriction
(Hibuse et al. 2009), indicating that AQP7 could play a key
role in metabolism in heart (Gladka et al. 2009).

In skin, AQP3 mediates the glycerol transport determining
the hydration status of the epidermis and the stratum corneum
(Ma et al. 2002).

Besides studies in plants and animals that have been sepa-
rately presented, there are features that can be compared, such
as those described in the reproductive systems. In plants, spe-
cific pollen AQPs have been reported, such as TIP1;3, TIP5;1,
NIP4;1 and NIP4;2 (Soto et al. 2008; Pérez Di Giorgio et al.
2016a, 2016b). These reproduction-associated AQPs showed
low water permeability but the capacity to transport glycerol
and urea, and have been suggested to be involved in the ni-
trogen metabolic pathway during pollen tube growth (Soto
et al. 2008, 2010; Pérez Di Giorgio et al. 2016a, b).

In the human reproductive system, AQP3 and AQP7 have
been identified in sperm (Chen and Duan 2011; Ishibashi et al.
1997) and AQP9 in epididymis (Tsukaguchi et al. 1998). Like
in plants, transepithelial solute fluxes have been described. In
particular, glycerol, urea, mannitol and sorbitol are mediated
by these aquaglyceroporins (Pastor-Soler et al. 2002). Even, a
recent report highlights the importance of AQP7 to protect
mouse oocytes from hyperosmotic stress during cryopreserva-
tion by vitrification (Tan et al. 2015). This evidence confirms
that AQPs as solute transporters play important physiological
roles associated with the transport of glycerol, urea and other
small solutes in the reproductive systems of both plants and
animals.

Water, solute and now… gases

The diversity of AQPs shows that the classification is not
simple. Moreover, experimental evidence has been adding
increasing amounts of information indicating that AQPs are
not only water channels. Now, it is known that AQPs can
transport water, small solutes and also gases. There are recent
and detailed reviews on this issue (Bienert et al. 2008;
Verkman 2011; Rambow et al. 2014; Verdoucq et al. 2014;
Kitchen et al. 2015b; Maurel et al. 2015). Therefore, we will
focus on some features that open the discussion about the
physiological role of AQPs.

In previous years, intense controversy was maintained
concerning the possibility of ions translocation through ani-
mal AQPs. Contradictory evidence led to the publication of
brief letters written by referent researchers in the same number
of science magazine (Agre et al. 1997). Evidence on this sub-
ject, as well as the mechanism of proton exclusion, can be
found in many reviews (Ozu et al. 2013; Kreida and
Törnroth-Horsefield 2015). While animal AQPs do not trans-
port ions, an increase amount of evidence shows that plant
counterparts can also transport metals. In particular, NIPs me-
diate the transport of boron, silicon and selenium that are
beneficial for plant growth, or arsenic and antimony that are
toxic metalloids (Bienert et al. 2008; Zhao et al. 2010). The
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role of AtNIP1;1 in the sensitivity of Arabidopsis to arsenite
was tested by expressing mutants in Xenopus oocytes
(Kamiya et al. 2009). Other works have shown that arsenite
and silicon translocate through the same pathway in
OsNIP2;1, which was associated with the high capacity of rice
to accumulate arsenite (Ma et al. 2008). In addition,OsNIP2;1
mediates selenium uptake in rice (Zhao et al. 2010), and XIPs
are also permeable to metalloids (Bienert et al. 2011). This
evidence not only indicates that NIPs would be involved in
plant health and food quality (Maurel et al. 2015) but also
highlights the great differences between plant and animal
AQPs in their transport capacities.

The fact that animal AQP1 is expressed in tissues involved
in gas but not water exchange, like the pulmonary capillaries,
epithelium, vascular smooth muscle, and red blood cells
(Effros et al. 1997; Preston and Agre 1991; Shanahan et al.
1999; Verkman 2006), supported the hypothesis that AQP1
could function as a gas channel. The first experimental evi-
dence indicating that AQP1 could act as a gas channel was
obtained studying the CO2 transport in Xenopus oocytes ex-
pressing AQP1 (Nakhoul et al. 1998). Later works indicated
that AQP1 could also increase the NO influx across cell mem-
branes (Herrera et al. 2006), and that the relaxation of endo-
thelial smooth muscle required AQP1-dependent transport of
NO across cell membranes (Herrera and Garvin 2007). In
addition, molecular dynamic simulations suggested that
aquaporin-4 can also transport NO (Wang et al. 2007).
However, the possibility that gases could cross membranes
through AQPs was questioned by theoretical analysis
(Missner and Pohl 2009). According to the authors, the exper-
imental methods used to study CO2, O2 or NH3 transport
through AQPs are not always reliable. This analysis was in
line with results from molecular dynamic simulations which
concluded that CO2 permeation through AQP1 can be expect-
ed only in membranes with low intrinsic CO2 permeability,
because the energetic barrier through the water channel can be
higher than through the membrane, depending on the bilayer
composition (Hub and de Groot 2006). Almost simultaneous-
ly, other molecular dynamic simulations showed that the free
energy barrier for CO2 and O2 permeation through the central
hydrophobic pore of the AQP1 is considerably smaller than
the permeation barrier through the water pore of the monomer
(Wang et al. 2007). The same group reported later that the
central pore of the AQP4 tetramer can transport CO2 and
NO, which provides an energetically more favorable pathway
than in AQP1 (Wang and Tajkhorshid 2010). Previous exper-
imental results indicated that the pathway through the central
pore of the tetramer could be regulated by interactions of
cytoplasmic loops with cGMP (Yu et al. 2006). Other mam-
malian AQPs that could transport CO2 would be AQP0, 5, 6
and 9 (Geyer et al. 2013).

In the last years, increasing evidences for the putative role
of AQPs as gas channels have been accumulating in all

kingdoms. The transport of CO2 through AQPs has also been
reported in microorganisms (Nehls and Dietz 2014). TcAQP1
from Terfezia claveryi facilitates water and CO2 diffusion
(Navarro-Ródenas et al. 2011).

In plants, members of the PIP1 and PIP2 subfamilies show
different CO2 transport capacity. The CO2 transport properties
of PIP2 fromHordeum vulgare L., tested in Xenopus oocytes,
show that HvPIP2;1, HvPIP2;2, HvPIP2;3 and HvPIP2;5 fa-
cilitated CO2 transport butHvPIP2;4 did not. This latter mem-
ber of the PIP2 subfamily in barley has a methionine in posi-
tion 254 instead of the conserved isoleucine present in the
other members. This conserved isoleucine is fundamental for
CO2 selectivity (Mori et al. 2014). Interestingly, the CO2

transport capacity of monomeric and tetrameric arrangements
has also been investigated in plants. Experiments performed in
yeast expressing PIP1 from Nicotiana tabacum (NtAQP1)
showed that tetramers exhibit higher CO2 transport rates than
monomers, supporting the hypothesis that CO2 permeates
through the central pore of the tetramer (Otto et al. 2010).
CO2 permeation was also demonstrated with AtPIP1;2, but
not with AtPIP2;3 (Heckwolf et al. 2011).

As well as CO2, both in animals and plants, AQPs can trans-
port reactive oxygen species, which make them important
players in redox signaling and detoxification. Specific aquaporin
isoforms facilitate the passive diffusion of hydrogen peroxide
(H2O2) across biological membranes and control H2O2 signaling
in living organisms (Bienert and Chaumont 2014).

Molecular dynamic simulations show that both mammali-
an and plant aquaporin models may transport not only H2O2

but also highly reactive hydroxyl radicals (HO) and the pro-
tonated form of superoxide radicals (HO2) that can reach the
pore interior and oxidize amino acids responsible for channel
selectivity (Cordeiro 2015).

In teleost fishes, AQP8b, an orthologue of human aquapo-
rin-8, is phosphorylated and inserted into the inner mitochon-
drial membrane of activated spermatozoa. AQP8b facilitates
H2O2 efflux from the mithocondria, in an important detoxifi-
cation mechanism for the maintenance of flagellar motility
(Chauvigné et al. 2015).

H2O2 translocation through AQPs is an important signal
for the onset of immunological responses in animals and
plants. In mammals, the transport of H2O2 through AQP3
contributes to the intracellular signaling in response to epider-
mal growth factor (Miller et al. 2010), and mediates the signal
transduction that triggers the inflammatory response against
the intestinal pathogen Citrobacter rodentium in the colonic
epithelium (Thiagarajah et al. 2017).

In Arabidopsis thaliana, evidence supports that H2O2

transport through AtPIP1;4 is necessary for the cytosolic im-
port of apoplastic H2O2 induced by bacterial pathogens, indi-
cating that the function of AtPIP1;4 as a H2O2 channel is
involved in the apo-cytosolic signal transduction in immunity
pathways (Tian et al. 2016).
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Other studies in plants highlight the key role that AQPs
play for tolerance under stress conditions. Transgenic tobacco
overexpressing a wheat PIP2 homolog (TaAQP7) showed en-
hanced tolerance to drought stress by reducing ROS accumu-
lation (Zhou et al. 2012). Other recent works show that tran-
script levels of specific PIPs increase under stress by hypoxia
(NtPIP1;3) (Zwiazek et al. 2017) or boron (OsPIP1;3 and
OsPIP2;6) (Mosa et al. 2016). Other PIPs, NIPs, and also
TIPs have been previously involved in boron uptake or toler-
ance in Arabidopsis, barley, rice, and maize (Takano et al.
2006; Tanaka et al. 2008; Schnurbusch et al. 2010; Bogacki
et al. 2013; Pang et al. 2010; Dordas and Brown 2001;
Fitzpatrick and Reid 2009; Kumar et al. 2014).

By means of quantitative phenotypic assay, H2O2 perme-
ability of both the human aquaammoniaporin AQP8 and the
prototypical orthodoxwater channel AQP1 from rat have been
confirmed. Correlation of H2O2 permeability with water per-
meability and with pore diameter (rAQP1, hAQP8 and
PfAQP from malaria parasite Plasmodium falciparum) sug-
gests that all water-permeable AQPs are H2O2 channels, and
that H2O2 permeability varies with the isoform (Almasalmeh
et al. 2014).

As revealed by the great amount of evidence on gas trans-
port through AQPs, research on this subject is comparable in
both plants and animals. In plants, relevance is related to the
role of CO2 associated with gas exchange and signal transduc-
tion. In animals, relevance is related to the physiological pro-
cesses of gas exchange in lungs and detoxification
mechanisms.

Conserved versus particular/specific regulatory
mechanisms

Many regulatory mechanisms are known in AQPs. Since re-
cent detailed reviews have been dedicated to them (Törnroth-
Horsefield et al. 2010; Verdoucq et al. 2014; Kreida and
Törnroth-Horsefield 2015; Chevalier and Chaumont 2015),
we mention here the most relevant features for comparison
between plants and animals.

Gating

It has been reported that aquaporin activities can be regulated
by phosphorylation, pH and calcium. In plants, a gatingmech-
anism induced by acidic pH was observed in PIPs (Tournaire-
Roux et al. 2003; Alleva et al. 2006; Bellati et al. 2010). It was
described that protonation of a highly-conserved residue of
loop D (His197) was responsible of gating in SoPIP2;1. A
molecular mechanism was proposed based on high-
resolution structures of the water channel in open and close
states (Törnroth-Horsefield et al. 2006). At low pH,

protonation of His193 from loop D produces a conformational
change of this intracellular loop, which in consequence caps
the channel from the cytosol and occludes the pore. His193
interacts with Asp28, Glu31 and Ser115 from loop B, to sta-
bilize loop D in a closed pore conformation (Törnroth-
Horsefield et al. 2006; Frick et al. 2013).

I n Fraga r i a anana s s a , FaP IP2 ; 1 -FaP IP1 ; 1
heterotetramers modify both the water permeability and the
pH sensitivity by combining subunits with different transport
properties. While FaPIP2;1 homotetramers reach the plasma
membrane and are inhibited at low pH, FaPIP1;1
homotetramers do not reach the plasma membrane (Yaneff
et al. 2014, 2016). Interestingly, heterotetramers promote a
change in sensing cytosolic by shifting the EC50 value
(Yaneff et al. 2014).

There have also been reports of inhibition by acidic pH in
TIPs (Soto et al. 2010; Leitaõ et al. 2012). Although a His
residue localized in the intravacuolar loop C was demonstrat-
ed to be involved, the mechanism in TIPs is unknown.

While the known mechanism of pH regulation seems to be
highly conserved among plant PIPs (Tournaire-Roux et al.
2003; Alleva et al. 2006; Frick et al. 2013), the scenario seems
to be more variable in animal water channels, where pH reg-
ulatory effects have been observed but in contrasting ways.
While water and glycerol permeability in oocytes expressing
AQP3 was inhibited at acidic pH (Zeuthen and Klaerke 1999),
low pH increased the water permeability of AQP6 (Yasui et al.
1999) and AQP0 (Németh-Cahalan and Hall 2000). Németh-
Cahalan showed that mutations on His40 from loop A pro-
duces loss of pH sensitivity in AQP0, suggesting a key role of
this amino acid in facilitating the regulation of water perme-
ability. A later study comparing pH effects on water perme-
ability of different AQPs (bAQP0, MIPfun, hAQP1 and
rAQP4) indicated that the position of external histidines from
loops A and C can modify the pH dependence (Németh-
Cahalan et al. 2004), for example, alkaline pH increases the
rAQP4 water permeability.

The electron diffraction structure of AQP0 has been report-
ed with different resolutions (Harries et al. 2004; Gonen et al.
2004, 2005) and the comparison showed different conforma-
tions of the extracellular loop A, with small movements of
some residues that make the water pore narrower near the ar/
R constriction site.

Thus, the mechanism proposed for aquaporin gating by pH
in animals depends on slight movements of some residues that
reduce the pore size restricting the passage of water. This is
quite different from what it is proposed in plant PIPs.

Water transport through plasma membrane can also be reg-
ulated by divalent cations (Gerbeau et al. 2002; Alleva et al.
2006). Besides calcium, evidence for direct gating of PIPs by
cadmium and manganese has been reported (Verdoucq et al.
2008). Identified residues located at the N-terminal (Glu31
and Asp28) are involved in both divalent cation- and H+-
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mediated gating. The mechanism of gating by cations would
be the same as that proposed for pH, where loop D rearrange-
ment, together with a few residues located at the N-terminal,
occludes the pore (Törnroth-Horsefield et al. 2006, 2010). A
second site between loop D and the C-terminal has been de-
scribed in SoPIP2;1, reflecting a stabilizing role of the C-
terminal in the folding of loop D (Frick et al. 2013).

In animal AQPs, a decrease of calcium concentration in-
creased AQP0 water permeability, and a residue located in
loop A (His40) is required for sensitivity to cations (Németh-
Cahalan and Hall 2000). These authors suggested that calcium
acts through calmodulin on an internal site of the aquaporin.
Co-expression of AQP0 with a mutant of calmodulin showed
that sensitivity to calcium was lost but sensitivity to pH was
maintained, demonstrating that both modulations are separat-
ed and occur at opposite sides of the membrane (Németh-
Cahalan et al. 2004). In contrast to plants, the sites for Ca2+

and pH inhibition are differentiated in animals. Moreover,
both regulation mechanisms seem to be completely separate.

Structure-function studies performed with members of
some groups of plant AQPs (TIPs, PIPs, y NIPs)
showed that some residues exposed to cytosol can be
phosphorylated and modulate water transport (Maurel
et al. 1995; Johansson et al. 1998, Guenther et al.
2003). Structural models based on purified crystals of
AQPs showed that phosphorylation of different serine
residues modifies the channel width and closes the pore
together with modifications of the C-terminal end of the
protein (Törnroth-Horsefield et al. 2006).

Other studies using mass spectrometry allowed identifying
multiple sites of phosphorylation in plasma membrane AQPs,
some of which could be linked to the aquaporin function
in vivo (Prak et al. 2008). In the same way, several works have
identified phosphorylation sites in plant AQPs through mass
spectrometry and amino acid sequencing (See Santoni 2017).

Among animal AQPs, phosphorylation of AQP1 (Han and
Patil 2000), AQP2 (Deen et al. 1994), AQP5 (Yang et al.
2003) and AQP8 (Garcia et al. 2001) has been reported. In
all these AQPs, phosphorylation is involved in protein traf-
ficking (Conner et al. 2010; Noda and Sasaki 2005; Kosugi-
Tanaka et al. 2006, Garcia et al. 2001). On the other hand, the
activation of a protein kinase C significantly decreased the
membrane permeability of kidney cells that express AQP4.
But in this case, experiments whit GFP-AQP4 revealed that
phosphorylation of Ser180 is involved in gating but not in
trafficking (Zelenina et al. 2002).

In plants, other co- and post-translational modifications,
such as methylation, deamidation, NH2-terminal acetylation,
ubiquitination and N-glycosylation, has been described
(Casado-Vela et al. 2010; Kim et al. 2013; Santoni et al.
2006; Lee et al. 2009; Vera-Estrella et al. 2004). In animals,
deamination in AQP0 and ubiquitination in AQP2 have been
described (Wenke et al. 2015).

The effect of membrane-tension changes had been hypoth-
esized as a possible regulatory mechanism for some AQPs
from Saccharomyces cerevisiae, Zea mayz, Chara corallina,
human and Vitis vinifera (Soveral et al. 2008; Wan et al. 2004;
Ye et al. 2004; Ozu et al. 2011; Leitão et al. 2014). These and
other experimental evidence (Niemietz and Tyerman 1997)
suggested that cell volume or pressure could be directly in-
volved in the regulation of AQPs under hyper- and hypo-
osmotic conditions. Recently, mechanical gating has been
probed as a possible mechanism in hAQP1 (Ozu et al. 2013)
and VvTIP2;1 (Leitão et al. 2014), and experimentally probed
for BvTIP2;1 (Goldman et al. 2017). This gating mechanism
would be cooperative, maybe involving the four monomers of
the tetramer (Ozu et al. 2013). In addition, sensitivity differ-
ences could exist between PIPs and TIPs (Goldman et al.
2017). Taken together, this evidence suggests that this mech-
anism would have existed before divergence of PIP-AQP1-
like and TIP-AQP8-like AQPs. Additional emerging ques-
tions are whether this mechanism was present in ancestral
AQPs and if this could have been an early sense, allowing
the first cells to face osmotic changes of environmental medi-
um (already proposed for mechanosensitive ion channels;
Booth and Blount 2012).

AQP dynamics: Trafficking and localization

Several recent works on plant and animal AQPs have focused
on trafficking mechanisms, which have been reviewed in de-
tail (Luu andMaurel 2013; Verdoucq et al. 2014; Conner et al.
2013; Chevalier and Chaumont 2015; Hachez et al. 2013;
Kitchen et al. 2015b; Noda et al. 2010).

In plants, the most studied group is that of PIPs, in which
trafficking is closely associated with heterotetramerization.
Increasing amounts of evidence demonstrate that different
types of PIPs form heterotetramers in the membrane and that
the interaction between monomers of different types modifies
the final destination of one of them, as well as the permeability
properties of the other. Examples of this have been described
in Zea mays, Fragaria ananassa and Beta vulgaris (Bienert
et al. 2012; Yaneff et al. 2014; Jozefkowicz et al. 2016). In
these cases, homotetrameres of the PIP1 isoform do not reach
the plasma membrane while homotetramers of the PIP2 iso-
form can. Interestingly, coinjection of both subtype isoforms
produces heterotetramers with different stoichiometry in the
membrane (Zelazny et al. 2007; Bienert et al. 2012; Yaneff
et al. 2014, 2016; Jozefkowicz et al. 2016).

The study of structural features indicates that loop Awould
not be involved in interactions between PIP1 and PIP2 mono-
mers (Bienert et al. 2012; Jozefkowicz et al. 2013). On the
contray, point mutations on the ZmPIP1;2 and ZmPIP2;5
maize isoforms demonstrated that the single P220A mutation
in the transmembrane domain 5 activates the water channel
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activity of ZmPIP1;2 at the same time that it inactivates
ZmPIP2;5 within a heterotetramer (Berny et al. 2016). On
the other hand, a diacidic motif (DXE) found at the N-
terminus of some maize and Arabidopsis PIP2s (Zelazny
et al. 2009) was shown to act as an endoplasmic reticulum
(ER) export signal. By keeping the diacidic property in the
sequence of AtPIP2;1, it was shown that a strict DXE motif
instead of a generic diacidic motif is required for proper traf-
ficking (Sorieul et al. 2011). This suggests that oligomeriza-
tion likely happens at the ERmembrane during PIP biogenesis
and that ER-sorting would act as a regulatory checkpoint after
homotetramer or heterotetramer formation (Verdoucq et al.
2014). Furthermore, two SNARE proteins of Arabidopsis,
AtSYP61 and AtSYP121, were recently shown to form a com-
plex that modulates the AtPIP2;7 post-Golgi trafficking
(Hachez et al. 2014). In maize, the homolog ZmSYP121 was
shown to physically interact with ZmPIP2;5, favoring its
targeting to the plasma membrane (Besserer et al. 2012).

Trafficking studies in animal AQPs have a little different
focus. Most of the AQPs studied in this subject belong to the
water transport subgroup: AQP1, AQP2, AQP4, and AQP5.
And their trafficking mechanisms show common features
(Noda et al. 2010; Sasaki et al. 2014; Kitchen et al. 2015b).
Phosphorylation events of certain serines are induced by osmo-
lality changes and mediate the trafficking of these AQPs to the
plasma membrane. In astrocytes and AQP4-transfected
HEK293 cells, phosphorylation of S276, via PKA, is associat-
ed with calcium influx and calmodulin activation (Kitchen et al.
2015a). In AQP5-transfected HEK293 cells, phosphorylations
of S156 and PKA are involved, but a conformational change of
the C-terminal end was discarded (Kitchen et al. 2015c). In
astrocytes and AQP1-transfected HEK293 cells, the hypotonic
stimulus produces increments of the intracellular calcium con-
centration, calmodulin activation and phosphorylation of
AQP1 by PKC (but not PKA) at T157 and T239 simultaneous-
ly (Conner et al. 2012).Moreover, this type of traffickingmech-
anism seems to be mediated by microtubules but not the actin
network, as was previously reported for AQP1-transfected
HEK293 cells (Conner et al. 2010) and AQP5 MDCK cells
(Karabasil et al. 2009). Another recent work shows that activa-
tion of muscarinic acethylcholine receptors (mAChR) induces
the reversible translocation of AQP5 from the cytoplasm to the
nucleus and the apical and basolateral membranes of parotid
acinar cells (Cho et al. 2015).

Regarding structural features, loss of tetramerization does
not affect the single channel permeability of AQP1, AQP4 and
the aquaglyceroporin AQP3. These observations support the
hypothesis that loop D-mediated inter-monomer interactions
may control the formation of the signature quaternary struc-
ture of the family, but seems not to be necessary for trafficking
to the plasma membrane (Kitchen et al. 2016).

AQP4 exists in more than one isoform in mammals: M1-
AQP4, M23-AQP4 and Mz-AQP4. Recent evidence shows

that M1 and M23 have distinct aggregation properties that
produce differences in their cellular localization and functions
(Smith et al. 2014). While M1-homotetramers can diffuse
along the plasma membrane and incorporate to lamellipodia
regions in migrating astrocytes, M23-arrays are unable to dif-
fuse rapidly enough to enter lamellipodia, being excluded
from the leading edge of migrating astrocytes, and at the same
time stabilizing the binding to adhesion complexes in vivo.
Both the differencial diffusion capacity and function of M1
and M23 isoforms are associated with the capacity of M23 to
form orthogonal arrays (OAPs) (Jin et al. 2011), which can be
constituted by more than 100 tetramers. Like the cases of PIPs
from plants, M1 and M23 can form heterotetramers, which
exhibit a variable capacity to diffuse and bind to adhesion
complexes (Smith et al. 2014).

Trafficking research in AQPs show differences between
plants and animals. While in plants the focus has been put
on structural determinants, in animals it has been put on signal
transduction and the role of the cytoskeleton. To our knowl-
edge, studies on signal transduction-associated trafficking
constitutes an open field for both research areas. In particular,
expression of different plant PIP subgrups in the same mem-
brane justifies the study of heterotetramerization. This type of
study in animals is performedwith AQP4 isoforms. Studies on
both PIPs and AQP4 indicate that intra- and extra-cellular
loops (A and D, respectively) would not be involved in tetra-
mer stabilization and trafficking. Future works will elucidate
important details of these two different mechanisms observed
in plant PIPs and AQP4 from animals.

What are AQPs for

Since the first water channel report (Preston et al. 1992), the
discovery of AQPs had a significant impact on the study of water
and solute transport. However, the view of AQPs as specific
water channels has been changing due to large amount of evi-
dence showing that some AQPs carry small solutes or gases, and
others are expressed in tissueswherewater flowdynamics appear
to be less relevant (Bienert et al. 2008; Kitchen et al. 2015b;
Pérez Di Giorgio et al. 2016a, 2016b).

As was reviewed by Hill et al. (2004), the first studies with
knock-out mice performed by Alan Verkman’s laboratory re-
vealed negligible effects upon AQPs deletion; for example:
AQP5 in Type-1 pneumatocytes (Ma et al. 2000), AQP1 in
the epithelium secreting bile (Mennone et al. 2002), AQP1, 3,
4 or 5 on the rates of tear fluid production (Moore et al. 2000),
AQP1 on the rates of fluid equilibration in endothelial cells
(Verkman 2002), AQP4 on the stimulated secretion of parietal
cells from gastric glands (Wang et al. 2000), and AQP1 on
water movements across the corneal epithelium (Kuang et al.
2004). This evidence suggested that AQPs could have a regu-
lating role in transepithelial water transport rather than just
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being the water pathway (Fischbarg 2010). In line with this, the
fact that transepithelial water transport can occur against the
osmotic gradient generated doubts about the role of AQPs
(Zeuthen 2010), since AQPs are just channels where water
translocation is driven by passive forces and occurs by a sto-
chastic mechanism (Zeuthen et al. 2013). Furthermore, it has
recently been demonstrated that significant water fluxes are
maintained by cotransport with sodium and glucose, through
the sodium glucose cotransporter SGLT1 of the brush border
membrane of the mouse small intestine, where orthodox AQPs
are absent but the SGLT1 is abundant (Zeuthen et al. 2016).
This recent report adds to the water-solute cotransport evidence
extensively described before (Zeuthen 2010).

The body of evidence obtained by animal physiolo-
gists led to the hypothesis that AQPs would be
osmosensors (Hill et al. 2004), acting as both sensors
and signal transducers (Hill and Shachar-Hill 2006).
According to this hypothesis, each monomer could have
two reversible states (open and closed) that can be
reached by conformational changes induced by osmotic
pressure differences. In addition, the conformational
changes in a tetramer would occur by a cooperative
mechanism involving the four monomers (Hill et al.
2004; Hill and Shachar-Hill 2015).

The role of an osmosensor was satisfactorily tested by math-
ematical modeling and simulation for isotonic fluid transport
across animal epithelia (Hill and Shachar-Hill 2006). In animal
epithelia, the AQP would function like a thermostat by sensing
the transepithelial gradient and regulating-via a cell signaling
system-the magnitude of the paracellular flow to approach an
osmotic set point (Hill and Shachar-Hill 2006). In addition, a
model combining mechanical parameters with osmotic dynam-
ics developed for growing pollen tubes suggests the existence
of a molecule acting as an osmosensor (Hill et al. 2012). The
following experimental evidence suggested that AQPs could be
an osmosensor located in the plasma membrane of growing
pollen tubes of Lilium longiflorum (Shachar-Hill et al. 2013).
In Arabidosis thaliana, the most expressed AQPs in pollen are
non-orthodox and seem not to be involved in water transport
(Pérez Di Giorgio et al. 2016a, 2016b). So far, their role is more
complex and needs to be elucidated.

As we have seen in previous sections, increasing evidence is
emerging on regulatory mechanisms in plant and animal AQPs
supporting the assumptions of the osmosensor hypothesis. For
example, interactions between monomers can modify the trans-
port properties of the tetramer (Bienert et al. 2012; Yaneff et al.
2014; Jozefkowicz et al. 2016), which opens the possibility for
cooperative interaction between subunits. Moreover, cooperative
regulation mechanisms have been both predicted for closure of
hAQP1 mediated by membrane tension increments (Ozu et al.
2013) and proposed for closure of the cytoplasmic gate of AQP0
mediated by the binding of calmodulin (CaM) to the C-terminal
domain (Reichow et al. 2013).

The case of AQP0 is interesting for several reasons. Each
monomer forms a channel with very low water permeability
(comparable to lipid bilayer) and can be gated by acidification
(Németh-Cahalan and Hall 2000). AQP0 also forms gap junc-
tions, and monomers in these arrays exhibit a closed confor-
mation that do not transport water because two tyrosines (T23
and T149) occlude the water path (Gonen et al. 2004).
Management of forces between the protein and the surround-
ing lipids could also be part of a signaling mechanism. Avery
recent work has shown that the hydrophobic mismatch be-
tween the protein and the lipid bilayer is compensated by
stretching of the annular layer of lipids around the surface of
AQP0 (Briones et al. 2017). In addition, this compensation
induces specific fluid- and gel-phase prone areas, allowing the
speculation that these areas might guide the AQP0 lipid
sorting interactions with other membrane components
(Briones et al. 2017).

Evidence from parasitic and free-living microorganisms
highlights the role of AQPs in osmoregulation (Von Bülow
and Beitz 2015). For example, the recently cloned
aquaglyceroporin SjAQP from Schistosoma japonicum plays
a fundamental role in osmoregulation, especially during cer-
cariae transformation, when this human parasite faces extreme
osmolality changes because of its living cycle stage in fresh
water (Huang et al. 2016). In other parasitic organisms, AQPs
are located in the membranes of the complex of flagelo, so it
has been proposed that they are involved in the mechanisms of
osmotaxis, as well as in osmoregulation (VonBülow and Beitz
2015).

Perspectives

The amount of accumulated information provides de-
tai led descript ions on some features of AQPs.
However, gaps still exist at the molecular level when
addressing their function in both plant and animal sub-
families. More crystallographic studies are needed for a
better understanding of plant APQs. These would pro-
vide subastantial information to comprehend distinctive
isoforms as metalloporins. In addition, structural details
are critical to test hypotheses related to conformational
changes, and only by combining this information with
experimental approaches can unsolved issues be proper-
ly unravelled. Open questions include whether AQPs are
osmosensors, molecular features of the mechanical gat-
ing, and gas transport capacity.

Finally, deeper knowledge on molecular features, in
combination with novel functional information, will pro-
vide important data to obtain more precise information
regarding their complex diversity and evolutionary
constraints.
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Summary

Since its discovery, research interest on AQPs has experienced
an exponential increase. Plant and animal AQPs are also prob-
ably the most studied channels due to their impact in terms of
economical interests: growth, development and fitness when
addressing the plant kingdom, and mainly human health and
disease in the case of animal AQPs. However, diversity and
phylogenetic approaches have broadened our perspective as a
whole. We have summarized a crosstalk of the most notable
features of plant and animal AQPs and compared the known
information provided by phylogenetic, structural and func-
tional studies. This revision reflects differences in research
approaches as well as regulatory mechanisms. Current hy-
potheses about its cellular role as possible osmosensors have
also been revisited.
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