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Abstract Polypeptides can fold into tertiary structures while
they are synthesized by the ribosome. In addition to the amino
acid sequence, protein folding is determined by several factors
within the cell. Among others, the folding pathway of a na-
scent polypeptide can be affected by transient interactions
with other proteins, ligands, or the ribosome, as well as by
the translocation through membrane pores. Particularly, the
translation machinery and the population of tRNA under dif-
ferent physiological or adaptive responses can dramatically
affect protein folding. This review summarizes the scientific
evidence describing the role of translation kinetics and tRNA
populations on protein folding and addresses current efforts to
better understand tRNA biology. It is organized into three
main parts, which are focused on: (i) protein folding in the
cellular context; (ii) tRNA biology and the complexity of the
tRNA population; and (iii) available methods and technical
challenges in the characterization of tRNA pools. In this

manner, this work illustrates the ways by which functional
properties of proteins may be modulated by cellular tRNA
populations.
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Introduction

The research on native and denatured states of proteins has
almost a century of history. It seems interesting to begin this
review by quoting Hsien Wu’s work on protein denaturation
(Wu 1931; Edsall 1995), just prior to the fundamental com-
munication of Mirsky and Pauling (1936). Wu defined dena-
turation as Ba change in the natural protein molecule whereby
it becomes insoluble in solvents in which it was previously
soluble.^ Later, when the structure of proteins was yet un-
known, he noted: Bwhatever may be the constitution of the
protein molecule, its configuration (today we would say con-
formation) is not completely defined by its structural formula
even if this be known.^ And Wu concluded: BEvidence is
adduced in support of the hypothesis that the molecule of
natural, soluble protein is not a flexible open chain of poly-
peptide but has a compact structure. The force of attraction
between the polar groups in a single molecule of proteins
holds them together in an orderly way, just as the force of
attraction between different molecules holds many molecules
together in a crystal. In denaturation or coagulation the com-
pact and orderly structure is disorganized.^ The way was
open.

For a long time, protein folding was mainly studied in vitro.
Anfinsen (1973) showed that several in vitro denatured
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proteins refold spontaneously from their random disordered
state into a well-defined unique structure, recovering their
original biological activity. From this denatured state, succes-
sive conformational changes culminate when the protein
reaches a thermodynamically stable conformation—its native
state. Their experimental results have led to the paradigm that
the amino acid sequence of a protein contains all the informa-
tion needed to acquire its tridimensional structure.

What is the path traveled by a denatured polypeptide to get
to the final conformation? The number of all possible confor-
mations of a polypeptide chain is too large, incompatible with
cellular protein synthesis times, in which protein sequences
fold into unique native states in seconds. The Levinthal para-
dox illustrated that there is no time to randomly search among
all conformational possibilities for an unfolded polypeptide
(Levinthal 1968). Levinthal proposed that proteins fold
through some directed processes of an unknown nature.

BFolding funnel^ models illustrate that the lowest energy
structure generally corresponds to the native structure of the
protein (Wolynes et al. 1995; Karplus 1997) (Fig. 1). The
model of protein folding as a funnel-shaped energy landscape
has simplified the problem of protein folding and allowed the
development of algorithms for protein structure prediction
(Wolynes et al. 1995). One of the most basic models used to
understand protein folding is the hydrophobic–hydrophilic
(HP) residue model, which accounts for hydrophobicity as
the major driving force leading to compact, desolvated struc-
tures, also allowing local secondary structure formation
(Gruebele et al. 2016). Recent reviews have updated knowl-
edge and advances regarding folding energy landscape, kinet-
ics, and thermodynamics, through theory, models, and exper-
imental approaches (Gruebele et al. 2016).

Interestingly, although conditions for protein folding
in vitro and in vivo are extremely different (temperature,

concentration, pH, purity), the folding energy landscape has
been extended to understand both in vitro and in vivo protein
folding, in the crowded cellular environment (Hartl and
Hayer-Hartl 2009; Hartl et al. 2011). In this model, proteins
trapped in a misfolded state (Fig. 1) could overcome this state
and evolve to the native state by interacting with the cellular
chaperone systems (see below). Moreover, de novo protein
folding can be more efficient than in vitro refolding, which
means that many proteins fold productively in the cell but can
aggregate under in vitro refolding conditions (Evans et al.
2008). In this paper, we focus on protein folding within the
cell, with emphasis on the contribution of the translation ma-
chinery and the population of tRNA to this process.

Ribosomal protein synthesis and co-translational
folding in a cellular context

The maturation of newly synthesized polypeptides into cor-
rectly processed, translocated, and natively folded proteins is
intimately linked to protein synthesis (Gloge et al. 2014).
During biosynthesis on the ribosome, elongating nascent poly-
peptides begin to fold following the so-called co-translational
folding. Post-translational folding also occurs in vivo, for ex-
ample in proteins that adopt a stable conformation inside the
cavity of hsp60 chaperone (see below), or a combination of
both co- and post-translational folding, as it occurs in the fold-
ing of multidomain proteins in Escherichia coli (Ciryam et al.
2013). Moreover, co-translationally, proteins can be covalently
modified, assembled into complex structures, translocated to
different compartments, aggregated, ubiquitinated, and de-
graded (Turner and Varshavsky 2000; Comyn et al. 2014).

A range of biochemical and biophysical strategies evidence
the folding of nascent polypeptides still bound to ribosomes.
Among the earlier strategies, it is worth mentioning the detec-
tion of rhodanese enzymatic activity in polypeptides bound to
bacterial ribosomes in a transcription/translation cell-free
E. coli system (Kudlicki et al. 1995). In addition, in the same
expression system, the use of antibodies (anti-coumarin)
allowed the study of amino terminal nascent peptides labeled
with coumarin, from three different proteins (Tsalkova et al.
1998). Furthermore, in semipermeabilized cells, it was shown
using limited proteolysis, that CFTR (cystic fibrosis transmem-
brane conductance regulator) folds mostly co-translationally,
domain by domain (Kleizen et al. 2005). Recently, the use of
FRET (fluorescence resonance energy transfer) opened the
way to study structural transitions of ribosome-bound folding
intermediates, generated through in vitro translation of truncat-
ed RNA transcripts (Kim et al. 2015). Finally, co-translational
protein folding has been studied by NMR spectroscopy pro-
viding atomic-resolution information on ribosome-nascent
chain complexes isolated from E. coli (Cassaignau et al. 2016).

Fig. 1 Free energy landscape for protein folding. The diagram illustrates
how proteins fold into their native structures traveling through different
pathways and by minimizing free energy, from a denatured state until
reaching the native structure, or remaining in a metastable misfolded form
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In prokaryotes, the nascent chain synthesis occurs at a rate
of 10–20 amino acids per second. It emerges in a vectorial
manner from the ribosomal exit tunnel and enters the crowded
cellular environment where total protein concentrations can
exceed 300 mg/mL (Gershenson and Gierasch 2011). To en-
sure efficient folding, different classes ofmolecular chaperones
and proteins mediating processing and translocation interact
with the nascent polypeptide. An integrated network of chap-
erones and degradation machineries are required to maintain
protein homeostasis (Balchin et al. 2016). Several evolutionary
conserved families of molecular chaperones guide proteins
along productive folding pathways, avoiding and sometimes
reversing misfolding and aggregation. The major chaperone
families (Hsp40, Hsp60, Hsp70, Hsp90, Hsp100, and the small
Hsp) prevent misfolding in the cytosol by binding to hydro-
phobic motives and by promoting productive folding (Balchin
et al. 2016). In addition, the enzymes prolyl isomerase and
protein disulfide-isomerase accelerate slow steps in protein
folding and can be relevant in vivo (Balchin et al. 2016).

During translation, the ribosome acts as a platform for the
binding of different factors that interact with the nascent chain
(Nyathi and Pool 2015). Those factors that participate in pep-
tide folding, processing, and subcellular targeting include,
among others, the chaperones Trigger factor, Hsp70, and
NAC (nascent-polypeptide associated complex), and the en-
zyme MetAP that removes the initial methionine of some
proteins or enzymes involved in further modifications as N-
myristoyl or N-acetyl transferases. In E. coli, SecA is an es-
sential component of the Sec machinery, which participates in
transporting proteins across the cytoplasmic membrane. SecA
binds both ribosomes and nascent polypeptides that are Sec
substrates (Huber et al. 2016). In eukaryotes, secretory pro-
teins posses a hydrophobic signal sequence that is recognized
co-translationally by SRP (signal recognition particle), a ribo-
nucleoprotein composed of six proteins and RNA. SRP bound
to the ribosome at the exit site binds the emerging signal
sequence and then targets the complex (ribosome-nascent
chain-SRP) to the endoplasmic reticulum membrane via the
interaction with an SRP receptor (Nyathi and Pool 2015).

Diverse stress conditions promote protein misfolding.
Misfolded proteins expose hydrophobic motives and can be
directed towards the refolding and degradation machineries or
nucleate as intermolecular aggregations. Protein aggregates
can be cytotoxic and are frequently associated with degenera-
tive diseases (Lim and Yue 2015). Aggregation however, also
sequesters potentially toxic protein species and, therefore, pro-
vides protective functions (Ungelenk et al. 2016). Particularly,
sHsps promote sequestration of misfolded proteins for storage
in native-like conformation (Ungelenk et al. 2016).

Besides chaperones systems, the ribosomal surface itself
influences protein folding through transient electrostatic inter-
actions with the emerging nascent chain (Cabrita et al. 2016).
Furthermore, ribosomes from prokaryotes, eukaryotes, and

mitochondria also assist protein folding (PFAR, protein fold-
ing activity of ribosomes) in vitro and in vivo. This activity of
ribosomes has been mapped to the domain V of the longer
rRNA in the large subunit of the ribosome. PFAR is inhibited
by 6-aminophenanthridine (6AP) and guanabenz (GA), the
first two identified drugs that specifically inhibit the folding
activity of the ribosomes without affecting protein translation.
Interestingly, 6AP and GA inhibit prion propagation in yeast
(Voisset et al. 2011, 2017; Blondel et al. 2016).

Translation kinetics

Early investigations on translation showed that the kinetics of
this process is not uniform. During the synthesis of colicins in
E. coli, the presence of discrete bands in denaturant electropho-
resis gels showed a variable rate of translation (Varenne et al.
1982). The authors proposed that such variations could result
from secondary structures of mRNA, but in the case of the
studied colicins, they showed that it was related to differences
in tRNA availability (Varenne et al. 1984). Furthermore,
Varenne et al. (1984) proposed that, for a given codon, the
stochastic search of the cognate ternary complex (aminoacyl-
tRNA-EF-Tu-GTP) is the rate-limiting step in the elongation
cycle, whereas the transpeptidation and translocation steps are
much faster.

The sequencing of the first structural genes revealed that,
for a given amino acid, different codons were used with dis-
similar frequency (Fiers et al. 1976). Genes coding for ribo-
somal proteins (and other abundant proteins) use almost ex-
clusively a reduced number of codons, whereas genes coding
for less abundant proteins employ a broader ensemble of co-
dons. Similarly, at the same time, Pedersen (1984) observed
differences in the translation rate during the biosynthesis of six
proteins encoded by different codon usage; that is, mRNAs
contained different proportions of abundant/rare codons.

These observations led to the postulation made almost
30 years ago, which claims that the rates at which regions of
polypeptides are translated affect protein folding, and that
gene sequences have evolved to temporally separate the syn-
thesis of defined domains of proteins (Purvis et al. 1987). In
recent years, this subject has gained great attention from the
scientific community; however, a deep understanding of the
role of the translation kinetics on protein folding remains un-
clear (Kirchner et al. 2017) (Fig. 2).

Although tRNA abundance has been proposed as a major
determinant in translation kinetics, in fact, it has not been
determined precisely in most organisms (see below). On the
other hand, thermodynamic parameters of anticodon–codon
recognition, which depend on the specific codon, the wobble,
and the presence of modified bases in the anticodon loop are
also relevant factors in the local translation rate (Novoa and
Ribas de Pouplana 2012; Endres et al. 2015).
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Based on the observation of a positive correlation between
codon usage and tRNA content in E. coli and the yeast
Saccharomyces cerevisiae (Ikemura 1985), tRNA abundance
was either estimated according to the gene copy number or to
the frequency of codon usage in highly expressed proteins.
Hence, frequent codons, associated with abundant decoding
tRNA, were called Brapid^ codons, in reference to the local
speed of translation, even though the translation speed was not
experimentally determined. Furthermore, it has been de-
scribed that the usage of frequent codons ensures translation
accuracy by reducing frameshifts and errors in the incorpora-
tion of amino acids. On the other hand, less frequently used
codons are called Brare^ or Bslow^ codons.

tRNAs, codon usage, and protein folding

As mentioned before, a good correlation between tRNA abun-
dance and codon usage was described in prokaryotes, and their
effects on protein folding have been demonstrated by different
approaches (Fig. 2). Indeed, rare codons (read by non-
abundant isoacceptor tRNA) are preferentially located in par-
ticular regions: encoding the N-terminal end or unstructured
regions of proteins, encoding beta-sheets, turns or links

between secondary structured regions, links between consecu-
tive domains, or signal peptides of secreted proteins (Thanaraj
and Argos 1996; Zalucki et al. 2011; Hess et al. 2015). To gain
insight into the role of rare codons located in specific locations,
relevant works are summarized below. (i) During the expres-
sion in E. coli of EgFABP, a small fatty acid binding protein
from E. granulosus, rare codons encoding a turn between two
alpha helices were substituted by frequent ones. The expres-
sion of one frequent synonymous variant showed reduced sol-
ubility and triggered the activity of a heat shock promoter
driving the expression of a reporter gene, indicating the pres-
ence of unfolded or misfolded proteins (Cortazzo et al. 2002).
Therefore, in this case, the use of frequent codons, instead of
being an advantage, led to protein misfolding and in vivo ag-
gregation. (ii) During the expression of recombinant proteins
in E. coli, the overproduction of less abundant tRNA or the
substitution of rare codons by frequent ones led to a significant
yield increase but with lower solubility with accumulation in
inclusion bodies (Rosano and Ceccarelli 2009). (iii) More re-
cently, the presence of rare codons encoding links between
domains allowed a significant increase of the solubility of the
epoxide hydrolases expressed in E. coli (Hess et al. 2015). (iv)
In a very elegant way, Zhang et al. (2009) mapped the folding
status of translation intermediates and explored whether the

Fig. 2 Schematic representation of translation kinetics effects on co-
translational folding of proteins. Two conditions are illustrated,
representing ribosomes reading the same codon: (I) ribosomes proceed
at high speed in the presence of a relative abundance of the corresponding
cognate aminoacylated tRNA (aa-tRNA); (II) ribosomes are slowed
down or stalled when the cognate aa-tRNA is scarce. Different
conformations of the polypeptide emerging from the translating
ribosome are produced. Aminoacylated tRNAs are represented by

different colors in their 3′ end. Red and green populations of aa-tRNAs
are the cognate partners of the red and green codons, respectively.
Modified bases are indicated with blue dots. Note that a small fraction
of non-aminoacylated tRNA is also included. The figure schematizes
different mechanisms involved in protein folding and homeostasis. PPI:
peptidyl-prolyl isomerase; PDI: protein disulfide-isomerase; ER:
endoplasmic reticulum; UPR: unfolded protein response
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local discontinuous translation at certain regions in the mRNA
sequence was needed to efficiently coordinate the rate of elon-
gation of the peptide chain and its co-translational folding.
Focusing on the translation of the multidomain Suf1 in
E. coli and based on codon usage frequency, the calculation
of translation kinetics allowed the identification of four slow
translating regions in Suf1 mRNA. Both the addition of low-
abundant tRNA and the substitution of rare codons by frequent
ones have shown changes in the translation kinetics, in the
proteolysis profile, and in the type of folding intermediates
(Zhang and Ignatova 2009). In sum, evidence strongly indi-
cates that the modulation of translation kinetics in prokaryotes
related to tRNA abundance and the choice of synonymous
codons affect different processes, including ribosomal traffic,
translation accuracy, and protein abundance, as well as
topogenesis, protein solubility, and folding (Aguirre et al.
2011; Fernández-Calero et al. 2016).

In eukaryotes, several studies carried out in Saccharomyces
and Neurospora have shown a relation between codon usage,
RNA structures, and protein activity. Taking a recent example
in Neurospora, a genome-wide study on codon usage showed
that non-optimal codons preferentially encode intrinsically dis-
ordered regions of proteins, whereas in structured domains,
more optimal codons were used (Zhou et al. 2015). This ob-
servation was experimentally verified by the expression of the
circadian clock gene frequency, in which the change of synon-
ymous codons affected its function in vivo (Zhou et al. 2015).

The relevance of synonymous mutations in higher eukary-
otes is mainly recognized for their association with diseases.
More than 50 diseases have been linked to silent mutations in
different proteins (Sauna and Kimchi-Sarfaty 2011). The first
identified silent mutations were shown to affect the normal
splicing pattern but, more recently, other important effects
have been described (Fåhraeus et al. 2016; Fernández-Calero
et al. 2016; Gartner et al. 2013; Sauna and Kimchi-Sarfaty
2011; Lamolle et al. 2006; Hunt et al. 2014).

It is worth mentioning the study of synonymous polymor-
phisms in the MDR1 gene, one of the major drug transporters
in humans. This gene encodes P-gp (P-glycoprotein), which
actively effluxes a wide range of compounds from cells and is
involved in multidrug-resistant cancers. The role of P-gp syn-
onymous single-nucleotide polymorphism from a common
haplotype was examined in polarized epithelial cells stably
expressing recombinant P-gp (Fung et al. 2014). The synon-
ymous variants in MDR1 did not influence mRNA expres-
sion, protein level, or translocation to the apical membrane.
However, one synonymous MDR1 single-nucleotide poly-
morphism showed a significant impact on the stability and
the overall folding of P-gp, without affecting ATPase activity.
P-gp conformational alterations have subtly changed drug ef-
flux function and the interaction with P-gp inhibitors, leading
to altered drug cellular cytotoxicity (Fung et al. 2014). The
effect of synonymous polymorphisms in MDR1 provided

evidence for the first time that silent mutations can affect
structural and functional properties of proteins in mammalian
cells and produce major impacts on pharmacology (Kimchi-
Sarfaty et al. 2007; Komar 2016; Sauna and Kimchi-Sarfaty
2011; Fung et al. 2014

Within the same research field, our work focuses on the
folding of the ERα (estrogen receptor alpha), aiming to un-
derstand how the translation machinery and the cellular con-
text of biosynthesis affect its functional properties. ERα is a
multidomain nuclear receptor that activates or represses the
transcription of specific genes. Regulation is achieved through
recruitment of the receptor to DNA response elements either
directly through interaction with DNA elements or through
protein–protein interactions with other transcriptional factors
(Paech et al. 1997; Yi et al. 2002). Upon binding to its natural
ligand estradiol, the receptor interacts with specific cofactors
for binding to DNA. This protein–DNA complex regulates the
expression of different sets of genes, depending on both the
cell and the promoter context (Mérot et al. 2004; Wijayaratne
and McDonnell 2001; McDonnell and Norris 2002).
Interestingly, the activity of ERα is regulated by SERMs (se-
lective estrogen receptor modulators), compounds whose rel-
ative agonist/antagonist effect is tissue-specific (Wijayaratne
and McDonnell 2001; McDonnell and Norris 2002) and that
are crucial for the treatment of breast cancer and osteoporosis.

Initially, we studied the ERα synthetized in two eukaryotic
derived in vitro translation systems: rabbit reticulocytes and
wheat germ extracts. By limited proteolysis, we showed that
the ERα adopts different soluble conformations in those cel-
lular extracts, and exhibits different affinity for estradiol
(Horjales et al. 2007). The results revealed that certain com-
ponents of the cellular extracts affected differentially the trans-
lation of the mRNA, leading to different conformations and
ligand affinity of the receptor.

Afterwards, we studied the expression of ERα variants in
HepG2 and HeLa transfected cells. ER-Ala87 is a synony-
mous polymorphism, poorly characterized, present in 5–
10% of the population, depending on ethnic groups. In
transfected HepG2 and HeLa cells, our results showed a sig-
nificant alteration of the functionality of ERAla87, mainly in
transactivation activity and subcellular localization, depend-
ing on the cell type (Fernández-Calero et al. 2014). We pro-
posed that a conformational variant might be originated upon
translation of ERAla87, as a consequence of a modification of
the translational kinetics, probably due to differences in the
availability of tRNA species that recognize either the GCG or
the GCC codons (Fernández-Calero et al. 2016).

In a more global way, whether codon usage fine tunes
mRNA translation in mammals is still an open and controver-
sial matter, being the subject of important efforts nowadays. In
order to understand whether synonymous variants can be re-
lated to translation kinetics and protein folding, and, in turn, be
associated with diseases, global genomic and transcriptomic
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approaches are being performed. However, contradictory re-
sults are reported. For instance, the tRNA pool in mammals
appears to be equally efficient at translating any transcriptome,
regardless of cell type or condition (Rudolph et al. 2016).
While some works have suggested that preferentially used co-
dons are not translated faster than unpreferred ones or that rare
codons do not correlate with ribosome pausing (Qian et al.
2012; Guo et al. 2010; Pop et al. 2014), other reports have
suggested that differences in tRNA population are associated
with diverse effects on translation (Lampson et al. 2013;
Goodarzi et al. 2016). This is the case of a mutation of a
tissue-specific tRNA expressed in the mouse nervous system,
which led to ribosome stalling and that was implicated as the
cause of neurodegeneration (Ishimura et al. 2014). Another
example is related to the activity of CFTR (cystic fibrosis
transmembrane conductance regulator). Global analyses of
tRNA concentration were integrated with studies on CFTR
conformation (by thermal stability and proteolytic susceptibil-
ity) and protein activity (Kirchner et al. 2017). In this way, it
was shown that a single synonymous CFTR variant modified
the normal local speed of mRNA translation, in a tissue-
specific tRNA-dependent manner, and altered both the confor-
mational dynamics and the functionality of CFTR (Kirchner
et al. 2017). The increase of the cellular tRNAThr(CGU) con-
centration rescued both the expression and single-channel con-
duction defects of T2562G-CFTR (Kirchner et al. 2017).
Therefore, this work showed a direct link between the abun-
dance of a specific tRNA and the functionality of CFTR.

Taken together, the above examples illustrate how, during
the synthesis of proteins in the crowded cellular context, the
population of tRNA might modulate the translation kinetics
and the folding of proteins. In the next section, we focus on
tRNA biology, the possible variations, and the dynamics of
the tRNA population as adaptive responses to pathophysio-
logical changes.

tRNA biology

As already mentioned, the journey of a translating ribosome is
strongly associated with the available tRNA population, prop-
erly aminoacylated. This raises several questions regarding
quantitative and qualitative characterization of the tRNA pop-
ulation and it requires accurate methodologies for determining
the precise state of the population—structural, functional, and
location—of each of its components.

The state of the tRNA population in the cell

Beyond the progressive elucidation of the mechanisms that
regulate protein biosynthesis, the translation machinery as a
whole was assumed as constitutive or, at least, as highly

constitutive. This was particularly the case of the ribosome
structure and tRNA population. However, evidence has pro-
gressively accumulated showing a broad variation of the com-
position of the ribosomes (Sauert et al. 2015; Guimaraes and
Zavolan 2016; Sloan et al. 2016) and of the tRNA populations
in response to environmental signals, during differentiation
and diseases.

Early reports on specialized cells, with an extremely biased
protein expression profile, revealed high frequencies in the use
of selected codons and high concentrations of the specific cor-
responding decoder tRNA. This was the case for isoacceptor
tRNA-Ala and tRNA-Ser species present in the posterior gland
of the silkworm Bombyx mori and the aminoacyl-tRNA pop-
ulation of human reticulocytes (Garel et al. 1976; Sprague et al.
1977; Hentzen et al. 1981; Hatfield et al. 1982). Other obser-
vations, using cell-free protein synthesis systems, stressed that
the rate of translation of a given mRNA was optimal in the
presence of tRNA from the homologous tissue (Le Meur
et al. 1976; Sharma and Beezley 1976). It is worth mentioning
early works emphasizing the biological importance of post-
transcriptional modifications of tRNA (Björk and Neidhardt
1975; Ny and Björk 1977; Labuda et al. 1982; Vacher et al.
1984; Meier et al. 1985; Grosjean et al. 1995).

In recent years, together with the description of new func-
tions for tRNA molecules and the development of new ana-
lytical technologies, several questions have emerged. Are
tRNA genes differentially expressed in different cell states?
Do the modified base patterns change depending on the cell
state or fate? Is the cellular tRNA pool homogeneous or is it
heterogeneously distributed in different cell compartments?
Clearly, the answers to these questions are crucial to determine
their role in relation to translational kinetics and protein
folding.

tRNA functions: expanding the concept of an
adaptor molecule

tRNA are a major component of the protein synthesis machin-
ery, ensuring the fidelity of codon recognition in the decoding
site of ribosomes and presenting the cognate amino acid in the
peptidyl-transferase center. tRNA also play other roles and
participate in: regulatory mechanisms during protein synthe-
sis; regulation of gene expression; non-ribosomal peptide
bond formation; post-translational protein modification; phos-
pholipid modifications in cell membranes; targeting protein
degradation; quality control surveillance pathways; stress re-
sponse; regulation of metabolic processes; secondary metab-
olism (Huang and Hopper 2016); priming reverse transcrip-
tion; inhibition of apoptosis via complexation with cyto-
chrome C; antimicrobial and protein folding (for reviews,
see Giegé 2008; Kirchner and Ignatova 2015; Duechler et al.
2016). Recently, the production of fragments of some

578 Biophys Rev (2017) 9:573–588



particular tRNA species (3′ or 5′ halves, and 3′ or 5′ quarters of
a tRNA molecule, for instance) was associated with different
cell conditions (responses to different stress conditions, hor-
monal effectors, or cancer processes) and could play regula-
tory functions (Keam and Hutvagner 2015). Interestingly,
tRNA fragments appeared as secreted to the extracellular me-
dium in microvesicles; thus, a possible role in cellular com-
munication has been proposed (Garcia-Silva et al. 2010; Tosar
et al. 2015). This variety of functions suggests a complex
management of the cellular tRNA population and the exis-
tence of fine regulatory mechanisms involving a multiplicity
of specific interactions with a great diversity of molecules.

tRNA genes are differentially expressed in different
cell states

Over the last few years, investigations based on holistic ap-
proaches have progressively converged to shed more light on
the biological roles of tRNA. The characterization of the
tRNA population by deep sequencing (Pang et al. 2014), mi-
croarrays (Dittmar et al. 2006; Gingold et al. 2014), and chro-
matin analysis at tRNA loci (Pang et al. 2014) indicate that
tRNA genes are actually differentially regulated. For instance,
in S. cerevisiae, specific changes in the tRNA copy number
were associated with stress responses (Pang et al. 2014).
Moreover, after a semi-quantification of tRNA in human cells,
the existence of two distinct translation programs during pro-
liferation and differentiation was proposed (Gingold et al.
2014). Furthermore, it was shown that differences in the
tRNA repertoire of proliferating and differentiated cells corre-
spond to codon usage preferences of proliferation- or
differentiation-regulated genes (Gingold et al. 2014). This in-
dicates that tRNA levels are concerted with changes in the
transcriptome, in order to optimize codon usage of expressed
genes. Among other works supporting this view, it is worth
mentioning that breast cancer cells show differences in tRNA
population compared to normal tissue, suggesting a fine
tuning of tRNA pools to translate mRNAs involved in tumor
progression (Pavon-Eternod et al. 2009). The changes in
tRNA population strongly suggest a precise coordination be-
tween transcription and translation involving regulatory mech-
anisms to ensure the adaptation of the translation machinery to
different cell states (Topisirovic and Sonenberg 2014).

How is the differential expression of tRNA genes
achieved? In eukaryotes, RNA polymerase III transcribes
tRNA genes, and this activity is regulated by different signal-
ing pathways in response to growth factors, nutrient levels,
mitogens, or stress (Dang 2012; Grewal 2015; Khanna et al.
2015). Through protein kinase mTORC1, Maf 1 is a major
repressor (Kantidakis et al. 2010; Grewal 2015). mTORC1
integrates mitogenic signals with the nutritional status of the
cell, contributing to maintaining the metabolic balance and

cellular homeostasis (reviewed in Saxton and Sabatini
2017). However, it remains unclear how the differential ex-
pression of tRNA genes is regulated in different cell types and
states.

Epigenetics also contributes to the differential expression
of tRNA genes. As shown by ChIP-seq experiments, the ex-
pression of tRNA genes by RNA polymerase III depends on
the cell type (including cancer and stem cells) (Bhargava
2013; Park et al. 2017) and on the chromatin status. DNA
CpGmethylation, histone modification, as well as the opening
of heterochromatin are associated with the activation or re-
pression of the RNA polymerase III. Beyond the relevant
studies on the epigenetic regulation of tRNA genes, questions
related to the differential states of chromatin remain open.

tRNA base modifications: expanding the complexity
of the tRNA population

There are roughly a hundred different post-transcriptional
modifications described for tRNA (reviewed in: Grosjean
et al. 2010; El Yacoubi et al. 2012; Machnicka et al. 2014),
presenting each individual tRNA an average of ten modified
bases. Many of them are conserved in all the kingdoms, while
some are unique to each branch of life (Fig. 3).

Since the discovery of pseudouridine in bulk yeast tRNA and
for a long time, RNA modified bases were considered a rare
exception to the canonical world of nucleic acids, but, nowa-
days, such modifications have gained a great relevance
(Grosjean 2015). The processes of modification–demodification
are becoming associated with a number of human pathologies,
thus fostering therapeutic research with emphasis on cancer and
degenerative diseases (Sarin and Leidel 2014; Torres et al.
2014).

Themodified bases play important roles in the structure and
function of all RNA molecules. In regard to tRNA modifica-
tions, their functions include: stability and flexibility of the
tRNA structure (Motorin and Helm 2010), translational fidel-
ity via codon–anticodon interaction (Saint-Léger and Ribas de
Pouplana 2015), reading framemaintenance (Waas et al. 2007;
Delaunay et al. 2016; Klassen et al. 2016a), tRNA discrimina-
tion (Pang et al. 2014), nonsense suppression (Benko et al.
2000), tRNA stability (Alexandrov et al. 2006; Kotelawala
et al. 2008; Dewe et al. 2012), proteome integrity
(Nedialkova and Leidel 2015), sensitivity to aminoglycoside
antibiotics acting at the decoding site of ribosomes (Kalhor
and Clarke 2003), response to stress (Kamenski et al. 2007;
Chan et al. 2012; Gu et al. 2014), and recognition of tRNA as
either self or nonself by TLR7 receptor (Kaiser et al. 2014;
Rimbach et al. 2015). For general reviews, see Motorin and
Helm (2011), Hopper (2013) and Phizicky and Hopper (2015).

Modification of tRNA bases involves a large set of en-
zymes exhibiting high specificity for the target tRNA, for
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the base or nucleoside, and for its location in the tRNA
structure. They include: methyl-transferases, adenosine-de-
aminases, pseudouridine synthetases, thiouridylases, and
transglycosylases, among others (for a complete list of en-
zymes, see http://modomics.genesilico.pl; Machnicka et al.
2013). Most of the modifications take place directly on the
nucleosides included in the tRNA (Helm and Alfonzo
2014). Some specific modifications are introduced by
transglycosylation, replacing a base of the target tRNA by
a modified base, which, in turn, could be further modified
in situ once incorporated into the tRNA. Notably, this is the
case of the nucleoside queuosine (Q, Fig. 3) present in all
kingdoms, whose corresponding base (queuine) is exclu-
sively synthesized in prokaryotes. In eukaryotes, except
for yeast, after cellular uptake of the precursor (queuine)
and the synthesis of QMP, a tRNA–guanine transferase
exchanges specifically a G in first position of the anticodon
by Q, into tRNA charging Asn, His, Asp, and Tyr. In the
latter two, an additional in situ glycosylation takes place
(addition of mannose or galactose, respectively) (Fergus
et al. 2015).

Here, we describe with more detail three complex modifi-
cations, located in the anticodon loop (Fig. 3). The first two
are widely present in prokaryotes, archaea, and eukaryotes:

(a) Modifications of U (usually at position 34) in the first
position of UNN anticodons, decoding NNA codons;

(b) The N6-threonyl-carbamoyladenosine (t6A) and its deriv-
atives in position 37, adjacent to anticodons decoding al-
most all ANN codons, including the initiator tRNA-Met;

(c) Wybutosine (yW) and its derivatives, a heavily modified
guanine in position 37, present in eukaryotic and archaeal
tRNA-Phe.

These modifications—as any modification in the anticodon
loop—play key roles in codon–anticodon recognition in the
decoding site of the ribosome (Demeshkina et al. 2010). Their
alterations result in severe consequences during translation,
such as misreading, frame shifts, translation shifted to another
distant site, as well as diverse pleiotropic cellular effects, in-
cluding pathological states (Wei and Tomizawa 2011;
Delaunay et al. 2016).

Fig. 3 Modified nucleosides in the tRNA anticodon loop of eukaryotes.
Sites of modified nucleosides in tRNAs and a selection of modified bases
present in the anticodon are indicated. Filled black circles positions that
can carry base modification; light gray circles: anticodon positions
(usually bases 34–36); dark gray circles: base immediately 3′ of the
anticodon (usually 37). Modifications of the first base of the anticodon
(wobble position) and position 37 that play a critical role in reading frame
maintenance and fidelity are shown. Derivatives of adenosine: ms2t6A (2-
methylthio-N6-threonylcarbamoyladenosine), ms2i6A (2-methylthio-N6-
isopentenyladenosine), I (inosine), m1I (1-methylinsoine). Derivatives of

cytidine: Cm (2′-O-methylcytidine), m5C (5-methylcytidine), m3C (3-
methylcytidine). Derivatives of guanosine: Gm (2′-O-methylguanosine),
m1G (1-methylguanosine), Q (queuosine), yW (wybutosine). Derivatives
of ur id ine : cm5U (5-carboxymethylur id ine) , ncm5U (5-
carbamoylmethyluridine), mcm5U (5-methoxycarbonylmethyluridine),
mcm5s2U (5-methoxycarbonylmethyl-2-thiouridine), mcm5Um (5-
methoxycarbonylmethyluridine), Y (pseudouridine). Data and chemical
structures of modified nucleosides from: Machnicka et al. (2013); El
Yacoubi et al. (2012); Tuorto and Lyko (2016)
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The three cases are clear examples of the links between
tRNA modification and the cellular metabolic state. Indeed,
most of the modifications require ubiquitous metabolites and
co-enzymes for the transfer of methyl groups, acetyl groups,
amino acids, isoprenoids, sugars, etc., that are crucial at the
crossroads of basic metabolic pathways: S-adenosyl methio-
nine (a major methyl donor), thiamine pyrophosphate, ribofla-
vin, pyridoxal phosphate, biotin, folic acid, cyanocobalamin,
among others (Helm and Alfonzo 2014). The cellular concen-
tration of some of these compounds varies by several folds,
depending on the metabolic state and the cellular fate
(Fernández-Arroyo et al. 2015).

For instance, in yeast, the modifications of U34 (Fig. 3)
require 15 proteins for methylation and 11 proteins for the
supplementary thiolations. BElongator^, a multimeric protein
complex with methyl-transferase activity, participates in the
first steps. BElongator^ is also related to other cellular process-
es, such as elongation by RNA polymerase II, histone acety-
lation, telomeric gene silencing, and DNA repair (Chen et al.
2011; Karlsborn et al. 2014). Noteworthy in yeast, the pheno-
type produced by a defective U34 modification (morphologi-
cal and growth alterations) was reverted by the overexpression
of the involved tRNA (Klassen et al. 2016b). These observa-
tions strongly suggest that the defective U34 modification
affected the thermodynamics of the interactions at the
ribosome.

The t6A modification requires several enzymatic steps
(Perrochia et al. 2013; Thiaville et al. 2014). In Archaea and
Eukarya, this process involves a universal protein (Sua5) and
the complex KEOPS/EKC (Srinivasan et al. 2011). KEOPS/
EKC was early associated with different cellular processes:
transcription regulation, telomere homeostasis, genome insta-
bility, chromosome segregation, and metabolic regulation
(Srinivasan et al. 2011). The t6A modification has been asso-
ciated with cell growth regulation (Rojas-Benitez et al. 2015)
and the levels of t6A-modified tRNA strongly influence
TORC1 activity (Rojas-Benitez et al. 2015).

Concerning the yW base and its derivatives, it is interesting
to note its complex biosynthesis in which up to six molecules
of S-adenosyl-methionine are involved in successive methyl-
ations catalyzed by different enzymes (Young and Bandarian
2013). Taken together, these observations suggest a strong
link between the modification of tRNA and the cellular met-
abolic state.

tRNA population: diversity and adaptation

The variations in tRNA gene expression and the diversity of
post-transcriptional modifications described above lead us to
consider that each particular cellular state has a characteristic
tRNA population.

Cellular tRNA populations could then be described in the
following manner: tRNA isoacceptors, recognized by an
aminoacyl-tRNA synthetase and charged with specific amino
acid; isodecoders, those isoacceptor tRNAs that recognize a
given codon. In many cases, particularly in higher eukaryotes,
the high number of tRNA genes lead to different species of
isodecoders. Finally, an isoacceptor–isodecoder species may,
in turn, exhibit diverse states of modification. Therefore, a
particular tRNA species could be partitioned in a number of
variants or subspecies (Hopper 2013).

Then, considering the links between the state of tRNA
modifications with metabolism and cell fate described above,
and the complexity of the tRNA population, it should be con-
ceived that particular cell states have a defined distribution of
tRNAvariants, adapted to the ongoing cellular program and to
the metabolic conditions. Finally, it is worth mentioning that
Ribas de Pouplana and colleagues recently proposed that
translation upgrades, such as codon usage adaptations or mod-
ulation of the tRNA pool or changes in tRNA modifications,
may lead to the synthesis of novel protein structures and func-
tions and, in this way, drive speciation (Ribas de Pouplana
et al. 2017).

The study of the cellular tRNA population: scope
of current methodologies and present challenges

How can we determine the tRNA population involved in
translation in a particular cell context? If we do not properly
discriminate between tRNA subspecies, how do we know
which tRNA are really available for translation? tRNA quan-
tification presents both biological and technical challenges.
First, the diversity of tRNA subspecies within a cell needs to
be identified and quantified simultaneously, although not all
of them are necessarily involved in translation. Secondly,
some characteristics of tRNAs, such as similar sequence
length and homology, the very stable secondary structures,
and frequent base modifications, hamper the development of
techniques able to precisely characterize tRNA populations
(Ferro and Ignatova 2015).

Attempts to quantify tRNA have been made in a variety of
species. The first purification and sequencing of a tRNA by
Holley and co-workers (Holley 1963; Holley et al. 1965;
Apgar et al. 1962) opened the way for the development of a
large number of methods for specific tRNA purification, gen-
erally based on chromatography (Dirheimer and Ebel 1967;
Nishimura et al. 1987) or electrophoresis procedures (Martin
et al. 1977; Ikemura 1989) and which allowed the quantifica-
tion of isoacceptors (Bagshaw et al. 1970; White and Tener
1973; Kanduc 1997).

At present, a wide palette of techniques based on RNA
hybridization is available. Most of them rely on the design
of specific probes, which recognize individually each tRNA
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sequence. Probe designing is quite challenging because of their
small size and the high tRNA sequence homology. Moreover,
direct hybridization of DNA probes to modified bases can be
tricky, considering that one of the main functions of some
modifications (such as m1A, m22G, and m2G) is precisely to
prevent Watson–Crick base pairing and participate in the
tRNA loops maintenance. Northern blotting was employed
for the identification of tRNA (Alwine et al. 1977) and the
relative quantification of tRNA (Fu et al. 2009). This method
involves a size separation of RNAs by denaturant gel electro-
phoresis, followed by its transfer to a membrane and a poste-
rior hybridization with labeled probes. This is a laborious tech-
nique since each northern blot allows the detection of only one
tRNA. Nevertheless, RNA hybridization approaches allowed
great progress in the knowledge of tRNA biology and the
characterization of tRNA populations. For instance, Ishimura
and colleagues employed northern blotting to identify and
quantify a specific tRNA isoacceptor specifically expressed
in the central nervous system (Ishimura et al. 2014).
Variations of northern blotting-based techniques have been de-
veloped to answer specific questions. The PHA6 northern blot
assay is based on a DNA probe complementary to the antico-
don loopwhich hybridizes better in the absence of i6A37 and a
probe complementary to a different region of the same tRNA
as a quantitative internal control. The procedure can be used to
calibrate and measure differences in i6A37 modification
(Lamichhane et al. 2011, 2013a, b, 2016; Yarham et al. 2014).

Immuno-northern blotting combines northern blotting with
a subsequent immunoblotting using antibodies against modi-
fied nucleosides, thus detecting specific modifications
(Mishima et al. 2015). Differences in electrophoretic patterns
allows to distinguish aminoacylated from non-aminoacylated
tRNA, due to their different mobility.

Microarray technology, frequently used for tRNA quantifi-
cation, is also based on probe design and RNA hybridization.
Pan and co-workers were the first to apply this technology for
tRNA quantification. They designed microarray chips to
quantify tRNA from different species, such as B. subtilis,
E. coli, and H. sapiens (Dittmar et al. 2004, 2005, 2006). In
this technique, tRNA are labeled taking advantage of their
common 3′ feature. Fluorescent hairpin oligonucleotides with
their 3′ end complementary to the 3′-CCA tRNA end are
linked to tRNA, and then hybridized to a platform which
contains all the designed probes. These probes are distributed
along the platform in such a way that several tRNA can be
simultaneously quantitated. Even though tRNA microarrays
allow the quantification of a high number of isodecoders, only
tRNA that differ on at least eight nucleotides are distin-
guished. More recently, an improved method also developed
by Pan and co-workers allowed the detection of tRNA
isoacceptors with a single nucleotide resolution (Pavon-
Eternod et al. 2009). This methodology, however, only detects
differences of one nucleotide in the anticodon loop, while it

does not allow the discrimination of isodecoders that differ by
one nucleotide elsewhere on the tRNA.

Another set of methods developed for tRNA identifica-
tion and quantification employ reverse transcription (RT).
Synthesis of DNA from an RNA template including modi-
fied nucleotides has its drawbacks where nucleotide
misincorporation or interruptions in cDNA synthesis are
frequent. Even in the absence of modifications, the highly
stable secondary structure can make synthesis stop. RT-
based techniques for the identification of modified residues
were considerably improved by employing chemical re-
agents that specifically react with a given modified base
(reviewed in Motorin et al. 2007), thus allowing their iden-
tification and localization in the RNA sequence. Despite
these advances, it is not yet possible to simultaneously de-
tect different modifications in tRNA.

Among RT strategies, four-leaf clover quantitative RT-
PCR (FL-PCR) was designed to specifically quantify indi-
vidual mature tRNA (Honda et al. 2015). In FL-PCR, T4
RNA ligase ligates a stem-loop adapter to mature tRNA.
Subsequent TaqMan qRT-PCR amplifies only unmodified
regions of the tRNA-adapter ligation products. This proce-
dure, by avoiding the retrotranscription of the anticodon,
limits the identification of different isodecoders. Also, by
RFLP (restriction fragment length polymorphism) studies,
different post-transcriptional modifications at specific sites
of different tRNA types have been detected, taking advan-
tage of the fact that base changes on reverse transcription
PCR amplicons generated as a consequence of post-
transcriptional modifications might create or abolish endo-
nuclease restriction sites (Wulff et al. 2017).

High-throughput RNA sequencing opened new possibili-
ties for tRNA quantification. The general small RNA sequenc-
ing procedure usually applied for tRNA sequencing consists
of: (i) ligation of 3′ and 5′ adaptors to RNAmolecules, (ii) RT-
PCR, (iii) amplification of cDNA, (iv) size selection, (v) se-
quencing by synthesis. This method presents several biases:
ligation of adaptors is not equally efficient on all molecules,
modifications cannot be detected, the fact of being a method
based on RT-PCRmeans that just a fewmolecules can be fully
sequenced. Nevertheless, several groups have used RNA se-
quencing datasets to detect modified tRNA residues,
exploiting the fact that not all sequencing errors are technical
artifacts, but, conversely, they often conceal biological marks
of post-transcriptional RNAmodifications sites (Ebhardt et al.
2009; Iida et al. 2009; Findeiss et al. 2011; Ryvkin et al. 2013;
Torres et al. 2015). By analyzing mismatches between se-
quencing reads and the genomic region where those reads
mapped, as well as by analyzing special read patterns, they
have been able to distinguish known and potentially novel
post-transcriptional base modifications on tRNAs and, in
some cases, also allowing a Brelative^ quantification of
tRNA species (Torres et al. 2015).
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Variations of this technique overcome some of these biases.
In 2009, a direct RNA sequencing method was developed
(Ozsolak et al. 2009), where poly(A)(+) tails are added to
RNA and hybridized to a surface coated with poly(dT) oligo-
nucleotides before sequencing-by-synthesis. Still, the authors
report a 4% error rate. This fact limits its use, considering the
high tRNA sequence homology. Lowe and co-workers devel-
oped the AlkB-facilitated RNA methylation sequencing
(ARM-seq), which demethylates m1A, m3C, and m1G, com-
monly found in tRNA (Cozen et al. 2015). Besides, compar-
ative methylation analysis using ARM-seq provides a
transcriptome-scale map of these modifications.

Pan and co-workers also developed the DM-tRNA-seq
method (Zheng et al. 2015). They used AlkB to remove
m1A, m3C, and m1G methylations, and a thermostable group
II intron reverse transcriptase (TGIRT) to synthesis cDNA
from highly structured tRNA. The TGIRT reaction does not
require adapter ligation and produces longer and full-length
cDNAs. Another variation called tRNA-seq (Pang et al. 2014)
proposes a first step ligation to a linker to the 3′ end of purified
tRNA, followed by cDNA synthesis. cDNAs are then subject-
ed to another round of linker ligation at the new 3′ end, follow-
ed by PCR amplification and standard next-generation se-
quencing. The authors argue that the first ∼30 nt starting from
the 3′ tRNA end provide unique identification of all tRNA and
contain the fewest modified bases alongmost tRNA. Thus, the
use of tRNA-seqminimizes modification-induced polymerase
fall-off during reverse transcription, and captures truncated
fragments when reverse transcription terminates at modified
ribonucleosides. Even though several procedure variations
have been designed for tRNA sequencing, none can actually
identify and quantify all tRNA subspecies.

Methods based on mass spectrometry (MS) are also
employed to identify and quantify tRNA subspecies. Among
them, matrix-assisted laser desorption/ionization mass spec-
trometry (MALDI-MS) (Hossain and Limbach 2007, 2009),
liquid chromatography-mass spectrometry (LC-MS)
(Castleberry and Limbach 2010; Wetzel and Limbach 2012),
and liquid chromatography tandem MS (LC-MS/MS)
(Wetzel and Limbach 2012) have been developed. These
methods consist of: (i) enzymatic digestion of tRNA by ribo-
nucleases (e.g., RNase T1), which generates unique or
Bsignature^ digestion products; (ii) detection by MS or by a
combination of chromatography and MS. These methods al-
low the identification and quantification of small tRNA pools
like those from E. coli or M. capricolum. One of the main
drawbacks of MS-based methods is that the identification of
tRNA requires the prior knowledge of all tRNA sequences
and modifications present in the sample.

At the moment, there are no methods allowing the precise
quantification of tRNA isodecoders and subspecies in a high-
throughput fashion. Nevertheless, the approximations devel-
oped so far have al lowed great progress on the

characterization of tRNA populations. Yet, there is more to
come. Advances on MS-based methods seem encouraging.
In addition, expected results from tRNA sequencing look
promising through the Oxford Nanopore third-generation se-
quencing technology. This sequencing by degradation con-
sists of nanoscale holes through which a RNA molecule can
pass, nucleotide by nucleotide. An ionic current through the
nanopores allows the identification of successive nucleotides.
Recently, this technology employed for the identification of
modified RNA bases has successfully detected m7G on 16S
rRNA (Smith et al. 2017).

Conclusions and perspectives

At present, important efforts are being focused on the eluci-
dation of the mechanisms related to in vivo protein folding,
fostered by the increasing number of pathologies associated
with protein misfolding. Although it has come a long way,
some complex questions still remain open. Our review focuses
on the contribution of translation kinetics on protein folding
and describes recent evidence regarding the role of the trans-
lational machinery and the dynamics of the tRNA population
in this process.

Although several molecular mechanisms have been eluci-
dated, the mechanisms by which codon usage and tRNA
availability affect translation kinetics and protein folding re-
main unclear. A major difficulty has been the precise determi-
nation of tRNA population and its variation in response to
cellular states. Central options defining states and cellular
fates involve homeostatic mechanisms to reach new equilibria
and include metabolic changes associated with anaplerosis–
cataplerosis and energy production. Beyond transcription reg-
ulation, these changes involve an adaptation of the translation
machinery at the post-transcriptional level.

The development of more accurate methods for the charac-
terization of tRNA population are expected, as they will cer-
tainly contribute to the elucidation of the questions regarding
the role of tRNA and the translation machinery on the folding
of proteins.
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