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Abstract

Non-alcoholic fatty liver disease (NAFLD) is a common liver disease in Western populations. 

Non-alcoholic steatohepatitis (NASH) is a more debilitating form of NAFLD characterized by 

hepatocellular injury and inflammation, which significantly increase the risk of end-stage liver and 

cardiovascular diseases. Unfortunately, there are no available drug therapies for NASH. Bile acids 

are physiological detergent molecules that are synthesized from cholesterol exclusively in the 

hepatocytes. Bile acids circulate between the liver and intestine, where they are required for 

cholesterol solubilization in the bile and dietary fat emulsification in the gut. Bile acids also act as 

signaling molecules that regulate metabolic homeostasis and inflammatory processes. Many of 

these effects are mediated by the bile acid-activated nuclear receptor farnesoid X receptor (FXR) 

and the G protein-coupled receptor TGR5. Nutrient signaling regulates hepatic bile acid synthesis 

and circulating plasma bile acid concentrations, which in turn control metabolic homeostasis. The 

FXR agonist obeticholic acid has had beneficial effects on NASH in recent clinical trials. 

Preclinical studies have suggested that the TGR5 agonist and the FXR/TGR5 dual agonist are also 

potential therapies for metabolic liver diseases. Extensive studies in the past few decades have 

significantly improved our understanding of the metabolic regulatory function of bile acids, which 

has provided the molecular basis for developing promising bile acid-based therapeutic agents for 

NASH treatment.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive hepatic fat 

accumulation (steatosis) that is not caused by alcohol consumption (1,2). NAFLD is a 

common liver disease and affects ~30% of the Western population (1,2). Currently, simple 

hepatic steatosis does not require clinical treatment. However, in some patients it may 

progress to nonalcoholic steatohepatitis (NASH), which is a more debilitating form of 
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NAFLD characterized by the presence of hepatocellular injury and inflammation. Patients 

with NASH have a significantly increased risk of developing fibrosis, cirrhosis, liver cancer 

and liver failure. In addition, patients with NASH have a significantly higher risk of 

cardiovascular diseases (CVD), which are the leading cause of morbidity and mortality 

among these patients (3,4). NASH pathogenesis is incompletely understood and is 

considered a result of complex interactions between genetic and environmental factors. 

Patients with NASH are often obese and diabetic and commonly possess other features of 

metabolic syndrome, such as insulin resistance, dyslipidemia and hypertension. It is thought 

that over-nutrition and obesity cause adipocyte stress and dysfunction, leading to 

inflammatory infiltration and adipose insulin resistance. As a result, uncontrolled lipolysis 

causes increased free fatty acid release and fatty acid lipotoxicity in non-conventional fat 

storage tissues, such as the skeletal muscle, pancreas and liver (2,5). Adipose-derived fatty 

acids serve as a major source of hepatic fat in NAFLD (2,5). Increased hepatic fat 

accumulation in the presence of insulin resistance further promotes hepatic triglyceride 

overproduction, which is a key contributing factor to dyslipidemia and higher CVD risk. 

Unfortunately, there are no approved therapies for NASH. Patients who develop end-stage 

liver disease require a liver transplantation. New therapeutic interventions that treat both 

liver-related and cardiovascular-related complications in patients with NASH are still 

needed.

Bile acids are cholesterol derivatives produced only in the hepatocytes of the liver (6). 

Hepatic bile acid synthesis represents the only quantitatively significant route for cholesterol 

elimination. Bile acids are amphipathic physiological detergents that facilitate dietary 

cholesterol, lipid and fat-soluble vitamin absorption in the small intestine (6,7). Studies over 

the past couple decades have demonstrated that bile acids act as signaling molecules that 

regulate intracellular signaling pathways. Many of these pathways are critically involved in 

the regulation of lipid, glucose and energy metabolism. In addition, bile acid synthesis and 

plasma bile acid concentrations are sensitive to circadian and nutrient regulation, which 

suggests that bile acid signaling integrates nutrient sensing to the maintenance of metabolic 

homeostasis. Drugs targeting bile acid metabolism and signaling have been used clinically to 

treat patients with hypercholesterolemia and hyperglycemia (6). New therapies targeting bile 

acid signaling pathways are currently being developed to treat fatty liver diseases. In this 

review, we will summarize the current knowledge of bile acid synthesis regulation and the 

mechanisms underlying bile acid signaling regulation of metabolic homeostasis. These 

comprise the molecular basis for the development of bile acid-based therapies for fatty liver 

disease.

2. A brief introduction on bile acid metabolism

Cholesterol conversion into bile acids involves several enzymatic and non-enzymatic 

reactions (Fig. 1A). Hepatocytes are the only cell type that expresses all the required bile 

acid synthetic enzymes, which are located in different intracellular compartments, including 

the endothelium reticulum (ER), cytosol, mitochondria and peroxisomes. Cholesterol 7α-

hydroxylase (CYP7A1), which is a cytochrome P450 (CYP) enzyme residing in the ER, 

catalyzes the first and rate-limiting step in the classic bile acid synthesis pathway to convert 

cholesterol to 7α-hydroxycholesterol. 7α-hydroxycholesterol is subsequently converted to 
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two primary bile acids, chenodeoxycholic acid (CDCA) and cholic acid (CA) (Fig. 1A). CA 

synthesis involves the C-12 hydroxylation of 7α-hydroxy-4-choesten-3-one to 7α, 12α-

dihydroxy-4-cholesten-3-one, which is catalyzed by another cytochrome p450 enzyme sterol 

12α-hydroxylase (CYP8B1) that is located in the ER (Fig. 1B). As displayed in Fig 1A, 

CDCA can also be produced via the alternative bile acid biosynthesis pathway, in which 

cholesterol is first converted to 27-hydroxycholesterol by the mitochondrial sterol 27-

hydroxylase (CYP27A1). Newly synthesized bile acids are conjugated to the amino acids 

glycine or taurine on the side chain to form N-acyl amidates, a process that is catalyzed 

sequentially by two enzymes, bile acid-CoA ligase and bile acid-CoA:amino acid N-

acyltransferase (8,9). Conjugation of bile acids increases bile acid water-solubility under 

physiological pH and decreases bile acid toxicity. The bile of human patients with defective 

bile acid-conjugating enzymes contains high levels of unconjugated bile acids, which causes 

fat-soluble vitamin malabsorption, growth retardation and liver injury (10,11). Human bile 

contains glycine- and taurine-conjugated bile acids in a roughly 3:1 ratio, while mouse bile 

contains predominantly taurine-conjugated bile acids. In this review, the terms CDCA, CA 

and other bile acid species mentioned later will be used to refer to both the conjugated and 

unconjugated forms unless specified.

Bile acids circulate between the liver and the intestine in a process called enterohepatic 

circulation of the bile, which is stimulated by nutrient intake and occurs a few times a day in 

humans (Fig. 2). Bile acids are secreted across the apical membrane of hepatocytes and 

stored in the gallbladder. Bile acid secretion into the bile against the concentration gradient 

is mediated by ATP binding cassette transporter B11 (also called the bile salt export pump 

[BSEP]) (12). Cholesterol and phospholipids are two other major constituents in the bile, 

and their efflux is mediated by ATP-binding cassette (ABC) transporters, the ABCG5/

ABCG8 heterodimer (13) and canalicular phospholipid floppase multi-drug resistance 3, 

respectively (14). Some bile acids can be absorbed by cholangiocytes after they are secreted 

by hepatocytes. Cholangiocytes take up unconjugated bile acids via passive diffusion and 

conjugated bile acids via the apical sodium-dependent bile salt transporter (ASBT) (15). Bile 

acids in cholangiocytes are then secreted into the peribiliary plexus via organic solute 

transporter (OST) α and OSTβ, which form a heterodimer, and subsequently taken up by 

hepatocytes (15,16). Meal intake stimulates the release of bile acids into the intestinal tract 

where bile acids help emulsify dietary lipids and thus facilitate dietary lipid and fat-soluble 

vitamin absorption. In the small intestine, some colonized bacteria express bile salt 

hydrolases, which convert some of the conjugated bile acids to unconjugated bile acids. 

These unconjugated bile acids can then serve as substrates for bacterial 7α-dehydroxylase, 

which mediates the C-7 dehydroxylation reaction of primary bile acids to produce secondary 

bile acids deoxycholic acid (DCA) from CA and lithocholic acid (LCA) from CDCA. The 

majority of bile acids are efficiently reabsorbed in the ileum and transported back to the liver 

via portal circulation. The daily fecal loss of bile acids is approximately 5%, which is 

replenished by de novo bile acid biosynthesis in the hepatocytes to maintain a relatively 

constant bile acid pool. The ileum has high expression of bile acid transporters. ASBT 

mediates bile acid uptake into enterocytes, and OSTα/OSTβ heterodimers at the basolateral 

membrane of the enterocyte mediate bile acid efflux into the portal circulation. Conjugated 

bile acids in the portal circulation are taken up primarily by the sodium-dependent 
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taurocholate transporter (17). Because the first pass extraction rate of portal bile acids by the 

liver is approximately 90% (18), bile acid concentrations in the systemic circulation are 

significantly lower than those of the portal blood under normal physiology. Under normal 

conditions, bile acid excretion through the kidney is minimal. However, in cholestasis, where 

bile acid excretion via the biliary route is impaired, more bile acids are secreted across the 

basolateral side of hepatocytes into the systemic circulation (19–21). Basolateral bile acid 

efflux from the hepatocyte can be mediated by multidrug resistance-related protein (MRP) 3, 

MRP4 and OSTα/OSTβ heterodimer (16,21,22). Increased systemic bile acid concentrations 

lead to renal bile acid excretion.

In humans, the two primary bile acids CA and CDCA make up approximately 70%–80% of 

the total bile acid pool. DCA is the major secondary bile acid, which may account for 

approximately 20% of the total bile acid pool. Among all bile acid species, the secondary 

bile acid LCA is highly toxic. LCA is efficiently detoxified, and only trace amounts of LCA 

are found in the bile. In mice and rats, CDCA and UDCA are converted to α-muricholic 

acids (MCA) and βMCA, respectively. MCAs have a hydroxyl group at the C-6 position and 

are more hydrophilic than CDCA. In C57BL6J mice, the bile acid pool contains roughly 

50% MCA, ~40% CA and ~10% CDCA (23). A recent study revealed that murine Cyp2C70 

was involved in MCA formation in mice (24). Humans do not appear to have a homolog of 

murine Cyp2c70, which may explain the different bile acid composition between mice and 

humans.

3. Bile acid receptors in the regulation of metabolism and inflammation

Bile acid exerts its regulatory function by activating a number of nuclear receptors and 

signal transduction pathways in hepatic and extrahepatic tissues. Nuclear receptors are 

intracellular ligand-activated transcription factors (25). A typical nuclear receptor consists of 

a DNA-binding domain and a ligand-binding domain. Most nuclear receptors bind to the 

consensus DNA sequences in their target gene promoters and regulate gene transcription in a 

ligand-dependent manner. Bile acids are endogenous ligands of three nuclear receptors: the 

farnesoid X receptor (FXR) (26–28), the pregnane X receptor (29) and the vitamin D 

receptor (30). These bile acid receptors sense bile acid concentrations in the enterohepatic 

system and in turn regulate bile acid homeostasis and detoxification mechanisms. Pregnane 

X and vitamin D receptor activation induces many phase-I cytochrome p450s, phase II 

conjugating enzymes and phase-III transporters that are involved in bile acid and drug 

detoxification in the hepatocyte and the intestine (reviewed in (6)). In this review, we will 

primarily focus our discussion on the role of FXR in the regulation of bile acid, lipid and 

glucose metabolism. Bile acids also activate cell surface receptors, such as the G protein-

coupled receptor TGR5 and the sphingosine-1-phosphate receptor 2. TGR5 is expressed in 

the intestine and colon as well as metabolically active tissues, including skeletal muscle and 

brown adipose tissue, and is involved in the regulation of glucose and energy metabolism. 

Finally, bile acid-activated FXR induces the growth hormone fibroblast growth factor (FGF) 

15 in mice and its ortholog FGF19 in humans. Recent studies revealed a novel role of 

FGF15/19 in the regulation of postprandial glucose metabolism in the liver.
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3.1. FXR regulation of bile acid synthesis and transport

In the enterohepatic system, FXR is expressed in hepatocytes and enterocytes that are 

routinely exposed to high bile acid concentrations. Both unconjugated and conjugated bile 

acids, including CDCA, CA, DCA and LCA, can activate FXR (26,27). The most potent 

FXR ligand among all endogenous bile acid species is CDCA, which activates human FXR 

with an EC50 of ~10 μmol/L and murine FXR with an EC50 of ~50 μmol/L. In mice, the 

hydrophilic bile acid MCA does not activate FXR.

The role of FXR in the regulation of bile acid homeostasis has been extensively investigated. 

De novo bile acid biosynthesis is subject to bile acid feedback inhibition, which helps 

maintain bile acid homeostasis. Extensive studies over the past two decades support the 

conclusion that FXR plays a central role in mediating bile acid feedback inhibition of bile 

acid synthesis (6). Bile acids and FXR repress several bile acid biosynthetic genes, including 

CYP7A1, CYP8B1 and CYP27A1. However, major research focus has been placed on 

understanding the mechanisms underlying the transcriptional regulation of the rate-limiting 

gene CYP7A1 in the classic bile acid biosynthetic pathway. FXR can sense elevated bile 

acid concentrations in either the hepatocyte or the enterocyte and in turn decreases hepatic 

bile acid synthesis. In hepatocytes, FXR transcriptionally induces an atypical nuclear 

receptor called small heterodimer partner (SHP). Unlike other nuclear receptors, SHP does 

not have a DNA-binding domain, and it primarily interacts with other transcriptional factors 

as a transcriptional co-repressor. Two nuclear receptors, hepatocyte nuclear factor 4α and 

liver receptor homolog 1, bind to the CYP7A1 gene promoter and play a key role in 

maintaining basal CYP7A1 gene transcription. SHP interacts with both hepatocyte nuclear 

factor 4α and liver receptor homolog 1 as a co-repressor, and FXR-induction of SHP results 

in CYP7A1 inhibition (31,32). When bile acid levels increase in the intestine, FXR induces 

FGF15, which acts as an endocrine hormone to inhibit hepatic CYP7A1 gene transcription 

after binding to FGF receptor 4 (FGFR4) on hepatocytes (33,34). In mice, Fgfr4 deletion 

resulted in significantly higher hepatic CYP7A1 expression, increased bile acid synthesis 

and enlarged bile acid pool size, while active FGFR4 over-expression reduced hepatic 

CYP7A1 expression and bile acid pool size (35). Furthermore, studies have demonstrated 

that FGFR4 forms a plasma membrane signaling complex with β-Klotho (36), cytoplasmic 

tyrosine phosphatase SHP-2 (37) and FGF receptor substrate 2 (38). Additionally, ligand 

binding to FGFR4 activates extracellular signal-regulated kinase 1/2 signaling to cause 

transcriptional repression of the CYP7A1 gene (33,39,40). Humans do not express FGF15. 

In humans, FGF19 shares ~51% amino acid sequence homology with mouse FGF15. In 

contrast to mouse FGF15, which is expressed in enterocytes but not hepatocytes, human 

FGF19 is expressed in both hepatocytes and enterocytes and is transcriptionally induced by 

FXR and bile acids. Bile acids and FXR agonists have been shown to directly induce FGF19 
mRNA expression in human hepatocytes (39,41). In addition, plasma FGF19 levels were 

elevated in patients with obstructive cholestasis, which was presumably a result of hepatic 

FGF19 induction (42). Studies have revealed that human FGF19 also inhibits human 

CYP7A1 gene transcription via the FGFR4/extracellular signal-regulated kinase signaling 

cascade in human hepatocytes, suggesting that FXR/FGF15/19 regulation of CYP7A1 is a 

conserved mechanism (39,41). Although FGF15 is not expressed in mouse hepatocytes or 

gallbladder, it has been reported to regulate gallbladder refilling in mice (43). Mice lacking 
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Fgf15 had almost empty gallbladders, which was restored by recombinant FGF15 

administration. In contrast, FGF19 mRNA expression could be detected in human 

gallbladders (39,42). Interestingly, human gallbladders contain high FGF19 levels that are 

approximately one hundred-fold higher than those in the blood circulation (44). Gallbladder 

epithelial cells express the FGF19 receptor FGFR4 and β-Klotho (44). However, FGF19 

function in the human gallbladder has not been well defined.

In addition to the inhibition of de novo bile acid biosynthesis, FXR activation also reduced 

intracellular bile acid accumulation by modulating bile acid transporters in hepatocytes and 

enterocytes. When bile acid levels increase in hepatocytes, bile acids activate FXR to induce 

BSEP to promote biliary bile acid secretion (45) and simultaneously inhibit the sodium-

dependent taurocholate transporter and basolateral bile acid uptake (46). Similarly, intestinal 

bile acid accumulation activated FXR to induce basolateral bile acid efflux transporters 

OSTα and OSTβ (47) and repressed the apical bile acid uptake transporter ASBT (48). This 

thereby inhibited intestinal bile acid re-absorption and promoted bile acid secretion into the 

portal blood. In the kidney, bile acids are excreted via MRP2 and MRP4 into the urine. In 

addition, ASBT and OSTα/β are involved in re-absorption of bile acids in the renal proximal 

tubules. FXR repression of ASBT in the kidney may presumably increase renal bile acid 

excretion. A recent report revealed that FXR was highly expressed in the kidney, and its 

activation by bile acids induced renal aquaporin 2 and decreased urine volume in mice (49).

3.2. Bile acid signaling links nutrient sensing and metabolic homeostasis

Almost all major metabolic pathways respond to changes in nutrient availability. The 

metabolic switch from catabolism to anabolism during the fasting-to-fed transition is 

subjected to complex regulation by pancreatic hormones, incretins, adipokines and growth 

factors. After food intake, insulin promotes glucose uptake into the muscle and adipose to 

prevent prolonged postprandial hyperglycemia. Insulin also induces hepatic lipogenesis and 

thus couples postprandial glycolysis to fatty acid synthesis in the liver. Furthermore, insulin 

inhibits hepatic glycogenolysis, gluconeogenesis and hepatic very low density 

lipoprotein(VLDL) secretion. During fasting, attenuated insulin signaling and elevated 

glucagon action in the liver and adipose tissue stimulate hepatic glucose production and 

adipose lipolysis. Fatty acids are transported to the liver to be used for fatty acid oxidation, 

ketogenesis and VLDL assembly. The fasting-to-fed transition is often impaired in 

individuals with obesity and peripheral insulin resistance. In obesity and diabetes, 

uncontrolled adipose fatty acid release is considered a major contributor to hepatic steatosis 

and hyperlipidemia. Free fatty acid deposition in the skeletal muscle is also an initial trigger 

of muscle insulin resistance. In the liver, increased fatty acid influx into the hepatocytes 

causes lipotoxicity, which is thought to be an underlying cause of NASH pathogenesis.

Both hepatic bile acid synthesis and plasma bile acid concentrations increase in response to 

food intake (50,51). Postprandial metabolism is highly active. Studies suggest that bile acid 

signaling plays an important role in the regulation of postprandial lipid, glucose and energy 

metabolism. After a meal, cholecystokinin stimulates gallbladder contraction and bile acid 

release into the small intestine, which thus increases the trans-flux of bile acids across 

enterocytes, resulting in postprandial elevation of plasma bile acid concentrations in humans 
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(50,51). In mice, plasma bile acid concentrations were lower during the light cycle and 

increased at onset of the dark cycle as well as after refeeding in mice (23). Hepatic CYP7A1 

activity and bile acid synthesis also exhibited a strong diurnal rhythm (50). In humans, 

plasma 7α-hydroxy-4-cholesten-3-one, which is a surrogate marker for hepatic CYP7A1 

activity, increased during postprandial periods (50). In mice, refeeding after fasting also 

caused marked induction of hepatic Cyp7a1 mRNA expression and hepatic CYP7A1 activity 

(23). The mechanism underlying the diurnal control of hepatic CYP7A1 expression is a 

result of complex regulation by clock genes and insulin and glucagon signaling, which is 

reviewed elsewhere (6). The following sections will summarize current knowledge regarding 

how bile acids act as metabolic regulators that integrate nutrient signaling with the 

regulation of metabolic homeostasis.

3.3. FXR regulation of fatty acid metabolism

Early studies demonstrated that using CDCA for gallstone dissolution in humans also 

decreased plasma triglyceride levels (52). Bile acid sequestrants are a class of cholesterol-

lowering drugs that bind bile acids in the intestine and prevent bile acid reabsorption and 

return to the liver. Removal of bile acids by bile acid sequestrants induces hepatic CYP7A1 
expression and cholesterol catabolism, which achieves cholesterol-lowering effects. It was 

found that treating hypercholesterolemia with bile acid sequestrants often raised plasma 

triglyceride levels in many human patients (53,54). These observations collectively suggest 

that bile acids may have triglyceride-lowering effects. Later studies in mice revealed that 

when challenged with a high fat diet, Fxr knockout mice displayed worsened hepatic lipid 

accumulation and hyperlipidemia compared with wild type control mice. In contrast, 

pharmacological activation of FXR by a semisynthetic FXR agonist attenuated diet-induced 

hepatic steatosis and hyperlipidemia in mice (55). These studies suggest that FXR plays a 

role in mediating the triglyceride-lowering effects of bile acids. Studies to date have 

provided extensive molecular insights on the mechanisms through which FXR regulates 

fatty acid and triglyceride metabolism. These bile acid- and FXR-regulated pathways are 

summarized below.

3.3.1. De novo lipogenesis—As mentioned earlier, obesity and insulin resistance cause 

increased de novo lipogenesis in the liver, which is a major contributor to fat accumulation 

and VLDL overproduction (56). Adipose-derived free fatty acids are the primary source of 

hepatic triglyceride synthesis in NAFLD (5). In addition, excess carbohydrates are also 

converted to fatty acids in the liver. Hepatic de novo lipogenesis is regulated by two 

transcriptional factors: sterol-regulatory element-binding protein-1 (SREBP-1) and 

carbohydrate-responsive element-binding protein (ChREBP). Studies have demonstrated that 

FXR activation represses both SREBP-1 and ChREBP and their target genes in de novo 
lipogenesis in the liver (57,58). SREBPs are a group of basic helix-loop-helix leucine zipper 

transcription factors involved in the regulation of fatty acid and cholesterol metabolism 

primarily in hepatocytes but also in some extrahepatic tissues (59). SREBPs are synthesized 

as precursors that are sequestered in the ER by forming a protein complex with SREBP 

cleavage activation protein and insulin-induced genes (Insig1 and Insig2). SREBP activation 

involves a sterol-sensing mechanism, whereby decreased oxysterol levels in the ER promote 

SREBP/SREBP cleavage activation protein complex translocation to the Golgi apparatus. In 
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the Golgi apparatus, SREBPs are cleaved by two serine proteases S1P and S2P, releasing an 

N-terminal transcriptionally active form of SREBP that enters the nucleus to activate target 

gene transcription. There are two SREBP isoforms: SREBP-2, which primarily induces 

genes involved in cholesterol metabolism, and SREBP-1, which is a master inducer of 

lipogenic genes. In addition to proteolytic cleavage activation, hepatic SREBP-1 gene 

transcription is also highly induced in fatty livers (60). Srebp-1 transgenic mice displayed 

elevated hepatic lipogenic gene expression and developed hepatic steatosis on a chow diet 

(61). Currently identified SREBP-1-induced lipogenic genes include acetyl-CoA 

carboxylase, fatty acid synthase, acetyl-CoA synthase, ATP-citrate lyase, malic enzyme, 

glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and stearoyl-CoA 

desaturase-1 (59,62). FXR activation by either bile acids or a synthetic FXR agonist 

decreased hepatic SREBP-1 expression. Mechanistically, FXR-induced SHP repressed 

LXRα activation of the SREBP-1 gene promoter (58). Both high dietary sugar intake and 

postprandial hyperglycemia cause increased carbohydrate influx into the glycolysis pathway 

in hepatocytes. Pyruvate, the end product of glycolysis generated by liver pyruvate kinase, is 

converted to acetyl-CoA, which enters the TCA cycle. In the presence of high levels of 

NADH and ATP during the postprandial state, acetyl-CoA-derived citrate is preferentially 

shuttled back to the cytosol and used for fatty acid synthesis and triglyceride production. In 

response to carbohydrate influx, glucose induces ChREBP nuclear translocation and 

transcriptional activation of a set of lipogenic genes, including liver pyruvate kinase, fatty 

acid synthase and acetyl-CoA carboxylase, to facilitate fatty acid synthesis (63,64). Studies 

have demonstrated that ChREBP inhibition alleviated hepatic fat accumulation in mice 

(65,66).

3.3.2. Fatty acid oxidation—Recently, several genes involved in hepatic fatty acid 

oxidation have been identified as novel FXR targets, suggesting that bile acids also promote 

hepatic fatty acid oxidation via FXR activation. It was first shown that bile acids induced 

peroxisome proliferator-activated receptor α (PPARα) expression in human hepatocytes but 

not in mouse hepatocytes because of the lack of a conserved FXR binding site in the mouse 

Pparα gene promoter (67). PPARα is a nuclear receptor that can be activated by endogenous 

free fatty acids as well as fibrates, a class of lipid-lowering drugs. Activation of PPARα 
transcriptionally induces hepatic fatty acid oxidation genes, including the rate-limiting gene 

carnitine palmitoyltransferase 1A. Therefore, increased cellular free fatty acid levels can 

feedforward to promote fatty acid oxidation via PPARα activation. More recently, it was 

shown that FXR also transcriptionally induced liver carboxylesterase 1 (CES1), and over-

expression of CES1 in mouse liver decreased hepatic triglyceride accumulation (68). CES1 

is a neutral cholesterol ester and triglyceride hydrolase that is highly expressed in 

hepatocytes and macrophages. Previous studies have established a protective role of CES1 in 

both NAFLD and atherosclerosis (68,69). Hepatocyte CES1 mobilized intracellularly-stored 

cholesterol ester in the lipid droplets and simultaneously promoted cholesterol conversion 

into bile acids in mice (70). In macrophages, CES1 stimulated cholesterol efflux and 

prevented foam cell formation and inflammatory macrophage activation (69). Xu et al. 
demonstrated that CES1 also converted triglycerides to free fatty acids, which led to the 

feedforward activation of PPARα (68). As a result, FXR induction of CES1 simultaneously 

promoted hepatic fatty acid oxidation driven by both increased substrate availability and 
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induction of fatty acid oxidation genes. FGF21 is another catabolic hormone induced by 

PPARα in the hepatocytes. In addition, a previous study demonstrated that FXR also 

induced hepatic expression and secretion of FGF21 (71). In the liver, FGF21 has broad 

metabolic actions, including stimulation of hepatic lipid oxidation, ketogenesis and 

gluconeogenesis, and as a result, reduces triglyceride levels and improves insulin sensitivity 

(72,73). The mechanism of action of FGF21 in various metabolic tissues is reviewed in 

detail elsewhere (74).

3.4. FXR regulation of glucose metabolism

In type 2 diabetes, peripheral insulin resistance, especially in the skeletal muscle, impairs 

glucose clearance resulting in postprandial hyperglycemia. In addition, hepatic 

gluconeogenesis is increased because of the attenuated suppressive effects of insulin, which 

leads to fasting hyperglycemia. Feeding mice a CA-containing diet or administration of an 

FXR agonist reduced fasting plasma glucose levels and improved insulin sensitivity in obese 

and diabetic mice (55,75). The glucose-lowering effects of bile acids and FXR may be 

primarily attributed to the reduction in hepatic glucose production via transcriptional 

repression of key gluconeogenic genes, including the genes encoding phosphoenolpyruvate 

carboxykinase, PEPCK, and glucose 6-phosphatase, G6Pase. To date, FXR-induced SHP 

has been shown to interact with and inhibit PEPCK and G6Pase transactivation through 

cAMP response element-binding protein (76), forkhead transcription factor O1 (77) and 

glucocorticoid receptor (78). Elevation of intracellular glucose concentrations can induce 

FXR expression and enhance FXR activity via O-Glc-N-acylation (79,80), suggesting that 

FXR can also sense intracellular glucose levels and consequently control glucose 

metabolism. In humans, circulating plasma FGF19 concentrations exhibited a pronounced 

diurnal rhythm and peaked during the postprandial period (51). Recently, bile acid/FXR-

induced gut FGF15 has been suggested to act as a postprandial hormone, in addition to 

insulin, that regulates hepatic glucose metabolism (81,82). FGF15/19 has also been shown to 

inhibit hepatic lipogenesis (83) and increase metabolic rate (84). Fgf19 transgenic mice were 

resistant to diet-induced obesity and insulin resistance (84). Human patients with fatty liver 

disease and insulin resistance had decreased fasting FGF19 levels or an impaired hepatic 

response to FGF19 (85,86).

3.5. Bile acid regulation of autophagy

Autophagy is a well-conserved cellular self-degradation process that helps eliminate protein 

aggregates and damaged organelles to maintain cellular integrity (87). Autophagy is also a 

catabolic process that produces nutrients and energy by degrading macromolecules in 

response to nutrient deprivation (88). Cellular autophagy is under the reciprocal control of 

nutrient-sensing mechanistic target of rapamycin and AMP-activated protein kinase 

signaling in response to changes in nutrient availability and growth hormone signaling (88). 

As a result, autophagy is normally induced after fasting/starvation and repressed during the 

postprandial period. Recent studies revealed that autophagy transported intracellularly stored 

lipids to the lysosomes for mobilization, a process termed “lipophagy” (89). Several recent 

studies have linked bile acid signaling to the regulation of hepatic autophagic activity. Whole 

genome chromatin binding assays revealed that FXR bound to many autophagy genes, and 

FXR activation caused transcriptional repression of autophagy gene expression and 

Li and Li Page 9

Liver Res. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



decreased hepatic autophagic activity (90,91). In addition, Manley et al. reported that hepatic 

autophagic flux was inhibited in cultured primary hepatocytes treated with bile acids and in 

the liver of Fxr knockout mice because of increased bile acid concentrations (92). This study 

suggested that bile acids impaired hepatic autophagic flux by inhibiting autophagosome-

lysosome fusion. Consistent with the repressive effect of bile acids on autophagic activity, 

administration of the bile acid sequestrant cholestyramine induced hepatic autophagy in 

mice, which was likely a combined result of reduced hepatic mechanistic target of 

rapamycin signaling and bile acid concentrations (93). The novel role of bile acid signaling 

regulation of hepatic autophagy further supports the general notion that bile acids act as 

nutrient sensors to regulate hepatic metabolism during the fasting-to-fed transition.

3.6. Bile acid-activated G protein-coupled receptors

The Gαs protein-coupled receptor TGR5 is a bile acid-activated membrane receptor (94,95). 

TGR5 signals through the adenylate cyclase/cAMP cascade, resulting in protein kinase A 

activation. TGR5 can be activated by both conjugated bile acids and free bile acids, 

including CDCA, CA, DCA and LCA. LCA is the most potent TGR5 agonist with an EC50 

of ~0.5 μM, while DCA, CDCA and CA activate TGR5 with EC50 values ranging between 1 

and 10 μM. In the enterohepatic system, TGR5 is expressed in the intestine, with relatively 

higher expression found in the terminal ileum and colon (94). In the liver, TGR5 is not 

expressed in hepatocytes but is expressed in sinusoidal endothelial cells (96), gallbladder 

epithelial cells and Kupffer cells (97). In other extrahepatic tissues, TGR5 is expressed in the 

white and brown adipose tissue, spleen, kidney, pancreas, lung, macrophages and central 

nervous system (94).

3.6.1. TGR5 in energy expenditure and glucose metabolism—TGR5 was first 

reported to mediate the anti-obesity effect of bile acids (98). Feeding mice a CA-containing 

diet activated TGR5 in the brown adipose tissue and skeletal muscle. TGR5 subsequently 

induced type 2 deiodinase and the conversion of thyroxine to the active 3,5,3′-tri-

iodothyronine and thus increased energy expenditure. A similar anti-obesity effect was also 

observed when mice were administered a potent synthetic TGR5 agonist INT-777 (99). In 

contrast to the clear anti-obesity effects of pharmacological TGR5 activation, TGR5 

deficiency did not appear to have a profound impact on obesity development in mice. One 

study revealed higher weight gain in female but not male TGR5 knockout mice (100). 

However, another study demonstrated that TGR5 knockout mice did not gain more weight 

than wild type controls under chow-fed conditions or after a high fat diet challenge (101). As 

mentioned earlier, systemic bile acid concentrations are usually very low because of the 

efficient first pass extraction rate of bile acids from the portal blood by the liver. Therefore, 

TGR5 in the muscle and adipose may not be highly activated by physiological 

concentrations of systemic bile acids.

TGR5 has also been shown to exhibit hypoglycemic effects by stimulating glucagon-like 

peptide-1 (GLP-1) production. GLP-1 is a gut incretin secreted by the enteroendocrine L 

cells in the ileum and colon. During the postprandial period, dietary carbohydrates and fats 

stimulate GLP-1 secretion, which enhances insulin secretion from the pancreatic β cells, 

inhibits glucagon production from the α cells (102), slows gastric emptying and promotes 
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satiety (103,104). These metabolic effects are thought to collectively contribute to the 

glucose-lowering effect of GLP-1. It was first reported that bile acids can induce GLP-1 

production in the enteroendocrine cell line STC-1 via TGR5 activation (105). It was later 

confirmed in mice that administration of the TGR5 agonist INT-777 enhanced GLP-1 

secretion and improved glucose homeostasis (99). Currently, GLP-1 mimetics and inhibitors 

of dipeptidyl peptidase-4, the enzyme that rapidly inactivates GLP-1 in the circulation, are 

clinically used as novel type 2 diabetes therapies. Recently, the bile acid sequestrant 

colesevelam, which has been used as a cholesterol-lowering drug, was found to also exhibit 

glucose-lowering effects when given to patients with type 2 diabetes mellitus (106). This 

effect has been attributed, at least in part, to GLP-1 induction in the gut (107). It is thought 

that colesevelam, by preventing bile acid re-absorption in the ileum, may increase the 

amount of bile acids that reach the colon, where TGR5 is highly expressed. Furthermore, 

bile acid sequestrants may also delay dietary fat solubilization and absorption, which allows 

a higher concentration of dietary fatty acids to reach the distal ileum and induce GLP-1 

secretion (108). As such, bile acid sequestrants may synergistically enhance the stimulatory 

effect of dietary nutrients and bile acids on gut GLP-1 production after a meal. More 

recently, studies have suggested the involvement of TGR5 signaling in mediating the 

beneficial effects of gastric bypass surgery (109,110). Many of the metabolic improvements, 

particularly in glucose homeostasis, were attenuated in TGR5 knockout mice after vertical 

sleeve gastrectomy. Such effects may be partially attributed to altered bile acid composition 

and action in TGR5 target tissues, which is consistent with altered bile acid metabolism in 

TGR5 knockout mice (100,111).

3.6.2 The anti-inflammatory role of TGR5 in macrophages—TGR5 is functionally 

expressed in macrophages and plays an anti-inflammatory role. To date, TGR5 activation 

has been shown to attenuate inflammation in various experimental models, including 

diabetes, NAFLD, atherosclerosis, cholestasis and inflammatory bowel disease (94,97,112–

116). Recently, several new studies have revealed novel mechanistic insights on the anti-

inflammatory effects of TGR5 signaling in macrophages. TGR5 activation was first shown 

to antagonize nuclear factor kappa(NF)-κB signaling in macrophages, leading to reduced 

cytokine expression upon lipopolysaccharide challenge (112). TGR5 activation has also 

been shown to decrease chemokine expression, which, under obese conditions, reduced 

adipose macrophage infiltration and improved insulin sensitivity (117). In addition to 

antagonizing cellular pathways that induce cytokine synthesis at the transcriptional level, a 

new study reported that TGR5 activation could reduce cytokine maturation and secretion by 

inhibiting Nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome 

activation (118). The inflammasome is a pattern-recognition receptor-containing multi-

protein oligomer that recognizes pathogen-derived pathogen-associated molecular patterns 

and endogenously produced danger-associated molecular patterns (119). Inflammasome 

activation can in turn activate caspase-1, which cleaves the pro-inflammatory cytokines 

Interleukin (IL)-1β and IL-18 to their bioactive forms. High fatty acid and glucose levels 

and intracellular accumulation of cholesterol crystals have all been shown to activate the 

NLRP3 inflammasome, which thus links metabolic stress and intracellular organelle damage 

to tissue inflammation (120–123). The study by Guo et al. demonstrated that TGR5 
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activation caused protein kinase A-dependent phosphorylation and ubiquitination of NLRP3, 

resulting in decreased NLRP3 inflammasome activation (118).

4. Conclusions

Extensive studies over the past two decades have significantly expanded our knowledge of 

the physiological and pathophysiological functions of bile acid metabolism and signaling. 

Bile acids are no longer considered merely physiological detergent molecules that facilitate 

nutrient absorption, but are also important regulators of various cellular processes in lipid, 

glucose and energy metabolism and immune responses. Under normal physiology, bile acid 

signaling plays a role in integrating nutrient sensing to the regulation of metabolic 

homeostasis. Dysregulation of bile acid homeostasis may underlie the pathogenesis of many 

human diseases. Importantly, new mechanistic understanding of bile acid signaling action in 

the liver and extrahepatic tissues to date has laid the groundwork for the development of 

promising bile acid-based drug therapies for the treatment of liver and metabolic diseases. 

Indeed, bile acid sequestrants have been used for a long time as a cholesterol-lowering 

therapy in addition to statins. More recently, the bile acid sequestrant colesevelam has been 

approved to be used in combination therapies to improve glycemic control in type 2 diabetes 

because of its effects on inducing gut GLP-1 production (53,106,124). Additionally, the 

FXR agonist obeticholic acid has been approved for primary biliary cholangitis treatment 

(125,126). Obeticholic acid treatment has also been shown to significantly improve fibrosis 

and NAFLD Activity Score in a completed Phase 2b FLINT trial (127). Other bile acid-

based therapies, such as the selective TGR5 agonist and the FXR and TGR5 dual agonist, 

are being tested in preclinical studies and phase 1 trials as potential therapies for metabolic 

and inflammatory diseases (113,128–131).
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Figure 1. Bile acid synthesis
A. Primary bile acids can be synthesized by two pathways in hepatocytes. The classic bile 

acid synthesis pathway is considered the primary pathway in humans. In this pathway, 

cholesterol is first converted to 7α-hydroxycholesterol (7α-HOC) by the rate-limiting 

enzyme cholesterol 7α-hydroxylase (CYP7A1) in the endoplasmic reticulum. 7α-hydroxy-4 

cholesten-3-one (C4) is a common precursor for chenodeoxycholic acid(CDCA) and cholic 

acid (CA). Sterol 12α-hydroxylase (CYP8B1) catalyzes the C-12 hydroxylation of C4, 

which leads to the synthesis of CA. In the alternative pathway, cholesterol is first converted 

to 27-hydroxycholesterol (27-HOC) by mitochondrial sterol 27-hydroxylase (CYP27A1). 

Oxysterol 7α-hydroxylase (CYP7B1) then catalyzes C-7 hydroxylation. The alternative 

pathway only produces CDCA. B. Cholesterol and cholic acid molecular structures.
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Figure 2. Bile acid transport in the enterohepatic circulation
In the enterohepatic circulation, bile acids are secreted from the canalicular side of 

hepatocytes into the bile and stored in the gallbladder. Meal intake stimulates gallbladder 

bile release into the small intestine, where ~95% of bile acids can be re-absorbed in the 

ileum and secreted into the portal circulation. Approximately 5% of the total bile acids are 

lost in feces. Bile acids are taken up by the hepatocytes from the basolateral side and re-

secreted into the bile. Bile acid uptake and secretion are mediated by transporters. Bile salt 

export pump (BSEP) is the primary canalicular bile acid efflux transporter in hepatocytes. 
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Cholesterol is secreted into the bile by the ATP binding cassette (ABC)G5/ABCG8 

heterodimer, and phospholipids are secreted by ABCB4 into the bile. Cholesterol, bile acids 

and phospholipids are the major constituents in the bile. They form mixed micelles for 

cholesterol solubilization and to prevent bile acid damage to the biliary system. In the small 

intestine, bile acids are taken up into the enterocytes by apical sodium-dependent bile salt 

transporter (ASBT) and are secreted into the portal circulation by the organic solute 

transporter (OST)α/OSTβ heterodimer. Sodium–dependent taurocholate transporter(NTCP) 

is the major basolateral conjugated bile acid uptake transporter on hepatocytes, while OATP 

isoforms can also mediate uptake of primarily unconjugated bile acids.
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