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Abstract

The trace gas carbonyl sulphide (COS) has lately received growing interest in the eddy covariance 

(EC) community due to its potential to serve as an independent approach for constraining gross 

primary production and canopy stomatal conductance. Thanks to recent developments of fast-

response high-precision trace gas analysers (e.g. quantum cascade laser absorption spectrometers 

(QCLAS)), a handful of EC COS flux measurements have been published since 2013. To date, 

however, a thorough methodological characterisation of QCLAS with regard to the requirements 

of the EC technique and the necessary processing steps has not been conducted. The objective of 

this study is to present a detailed characterization of the COS measurement with the Aerodyne 

QCLAS in the context of the EC technique, and to recommend best EC processing practices for 

those measurements. Data were collected from May to October 2015 at a temperate mountain 

grassland in Tyrol, Austria. Analysis of the Allan variance of high-frequency concentration 

measurements revealed sensor drift to occur under field conditions after an averaging time of 

around 50 s. We thus explored the use of two high-pass filtering approaches (linear detrending and 

recursive filtering) as opposed to block averaging and linear interpolation of regular background 

measurements for covariance computation. Experimental low-pass filtering correction factors were 

derived from a detailed cospectral analysis. The CO2 and H2O flux measurements obtained with 

the QCLAS were compared against those obtained with a closed-path infrared gas analyser. 

Overall, our results suggest small, but systematic differences between the various high-pass 

filtering scenarios with regard to the fraction of data retained in the quality control and flux 

magnitudes. When COS and CO2 fluxes are combined in the so-called ecosystem relative uptake 

rate, systematic differences between the high-pass filtering scenarios largely cancel out, suggesting 

that this relative metric represents a robust key parameter comparable between studies relying on 

different post-processing schemes.

1 Introduction

The need for understanding human-induced climate change and in this context 

understanding the pathways and processes determining the global carbon cycle dynamics 

triggered the increased use of the eddy covariance (EC) method for carbon dioxide (CO2) 

flux measurements and resulted in the establishment of the first flux measurement network, 

the EUROFLUX project, in 1996. Today, the EC method is routinely used for measurements 
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of the energy and trace gas exchange between the atmosphere and the biosphere at >500 

sites within the FLUXNET project (Baldocchi, 2003; Baldocchi, 2014), mainly focusing on 

the exchange processes of CO2 and H2O.

By partitioning the biosphere-atmosphere CO2 fluxes (net ecosystem exchange - NEE) into 

uptake (gross primary productivity – GPP) and release (ecosystem respiration - Reco) it is 

possible to quantify the two main processes underlying the NEE. To this end, so-called eddy 

covariance CO2 flux partitioning algorithms are used. They exploit the strong contrast 

between nighttime release and daytime net uptake of CO2 (Reichstein et al., 2005; Lasslop 

et al., 2010), based on the extrapolation of nighttime Reco to daytime conditions. The fact 

that the theoretical models underlying the flux partitioning algorithms are highly simplistic 

and thus neglect or misinterpret certain processes has caused considerable criticism 

(Wohlfahrt et al., 2005b; Wohlfahrt and Gu, 2015; Wohlfahrt and Galvagno, 2017). 

However, to date the resulting GPP and Reco estimates represent the major source for data-

driven assessments of the terrestrial carbon cycle (e.g. Beer et al., 2010; Mahecha et al., 

2010) and the calibration of carbon cycle models (e.g. Friend et al., 2007).

Carbonyl sulphide (COS or OCS), a trace gas present in the atmosphere with an average 

mole fraction of 500 ppt, shares a similar pathway during leaf uptake as CO2 with the 

important difference that no ‘respiration-like’ process, i.e. emission of COS from leaves, has 

been reported. This co-diffusion with CO2 and the one-way direction of the flux into the 

land biosphere (Asaf et al., 2013) have been suggested to offer the possibility of using COS 

as a proxy of gross primary productivity (Seibt et al., 2010; Blonquist et al., 2011), even 

though bi-directional exchange by soils complicates matters (e.g. Kitz et al., 2017). 

Ecosystem-atmosphere COS flux measurements were, up to very recently, limited by the 

availability of appropriate scalar sensors with sufficient time response and sensitivity 

(Wohlfahrt et al., 2012). Developments of high-precision, fast-response trace gas analyser, 

like e.g. quantum cascade laser spectrometers (QCLAS), propelled the analysis of COS 

(Stimler et al., 2010a). Although these new devices are increasingly used for EC 

measurements (Asaf et al., 2013; Billesbach et al., 2014; Maseyk et al., 2014; Commane et 

al., 2015), a thorough characterisation of these instruments for flux measurements, an 

analysis of their limitations and the required corrections has not yet been conducted. So far 

the available studies have provided minimal methodological detail on the eddy covariance 

data processing, making it very hard to reproduce their work, which in turn is likely to 

hamper up-coming cross-site analyses.

In contrast to, for example, trace gas concentrations, for which national and international 

standards exist to which calibration gases are referenced to, no such standard exists for eddy 

covariance flux measurements of scalar or vector quantities, making it difficult if not 

impossible to assess their accuracy (Moncrieff et al. 1996). The best that can be done in such 

a situation is to compare against independent measurements, for example by assessing the 

energy balance closure (e.g. Foken, 2008) or by up-scaling soil and leaf level CO2 exchange 

to the ecosystem scale (e.g. Moncrieff et al. 1996). Alternatively, confidence in flux 

estimates can be obtained by cross-comparisons of instruments (e.g. Peltola et al., 2014; 

Rannik et al., 2015) or post-processing schemes (e.g. Mauder et al., 2008; Mammarella et 

al., 2016). If, as is the case for COS, no independent measurement approach exists, it is 
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critical to at least explore the consequences of different processing steps that are known to 

cause systematic uncertainties in calculated fluxes (e.g. Sturm et al., 2012) in order to be 

able to quantify the likely magnitude of any systematic bias. At a recent COS workshop in 

Finland in September 2016 (Campbell et al., 2017), the lack of clear guidelines for making 

COS flux measurements and processing the resulting data was identified as a key gap for 

progress on understanding ecosystem-scale COS exchange.

The aim of this paper is thus to characterize the QCLAS for EC COS flux measurements and 

to determine the optimal EC processing procedures for its usage. To this end we use 

measurements obtained above a managed temperate mountain grassland in the Austrian 

Alps. We particularly focus on high- and low-pass filtering of the high-frequency data, 

quality assurance and quality control (QA/QC), characterise the random flux uncertainty, 

and cross-compare our post-processing chain with independent H2O and CO2 flux 

measurements. Finally, the effects of these processing and filtering steps on obtained COS 

flux measurements are discussed.

2 Materials and Methods

2.1 Site description

EC flux measurements were conducted during May-October 2015 at the FLUXNET site AT-

Neu (http://fluxnet.ornl.gov/site/14), a managed temperate mountain grassland, located on 

the municipal territory of Neustift (47° 07’ N, 11° 19’ E) in the Stubai Valley, Austria. The 

site is situated at an elevation of 970 m a.s.l. in the middle of the flat bottom of the Stubai 

Valley with a homogenous fetch that covers about 37 ha. Dominant daytime and nighttime 

wind directions are north-east and south-west. The climate is humid continental comprising 

alpine influences with an average annual temperature of 6.5 °C and an average annual 

precipitation of 852 mm. The snow-free months usually extend from mid-March to mid-

November, leaving a vegetation period of eight months. During 2015, four cutting events 

took place (on the 2nd of June, 7th of July, 21th of Aug. and 1st of Oct.). For information 

about vegetation and soil conditions we refer to Wohlfahrt et al. (2005b).

2.2 Eddy covariance

2.2.1 Data acquisition—The three wind components, as well as the sonic temperature, 

were measured by a 3-axis sonic anemometer (R3IA, Gill Instruments, Lymington, UK) at 

2.5 m above ground. Concentrations of H2O and CO2 were measured by two different 

devices: a closed-path infra-red gas analyser (IRGA) (Li-7000, LICOR Biosciences, 

Lincoln, USA) and a QCLAS (Aerodyne Mini-QCL, Aerodyne Research Inc., Billerica, 

USA), additionally measuring COS at a wavenumber of ca. 2056 cm-1. Raw data were 

acquired on two separate PCs at 20 Hz (sonic anemometer and IRGA) and 10 Hz (QCLAS) 

using the Eddymeas (MPI Jena, Germany) and TDLWintel (Aerodyne, USA) software, 

respectively. The two PCs were synchronised in time using the NTP software (Meinberg, 

Germany).

The QCLAS and associated hardware (thermo cube and vacuum pump) were housed in a 

climate controlled (ca. 30° C) instrument hut situated near the flux tower. We insulated the 

Gerdel et al. Page 3

Atmos Meas Tech. Author manuscript; available in PMC 2017 October 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=9


QCLAS with XPS-insulating board with openings for necessary ports for additional 

temperature stabilization and placed the vacuum pump on foam rubber to minimize 

influences by pump induced vibrations on the laser optics. The QCLAS was operated at a 

pressure of 20 Torr using a built-in pressure controller and temperature of the optical bench 

and housing was controlled to 35° C.

Sample air was drawn from the inlet through 15.7 m heated (ca. 40°C) PFA Teflon tubing (4 

mm inner diameter) that was installed at the beginning of the measurements in May 2015, 

through a filter (1-2 µm, PTFE) to the QCLAS at a flow rate of ca. 6.5 l min-1. During the 

last five minutes of every half-hour, zero-air (N2 5.0, Messer, Vomp, Austria) and span gas 

(pressurized air, Messer, Vomp, Austria; which was cross-compared against a NOAA 

standard with 567 ppt COS in air) was switched into the QCLAS in order to determine the 

stability of the instruments zero and span. The corresponding calibration coefficients were 

then applied on a half-hourly basis to derive calibrated concentrations.

In order to minimise flux loss, due to vertical and longitudinal sensor separation (Massman, 

2000), we installed the intake tube for the QCLAS slightly below and laterally displaced 

from the sonic anemometer so that horizontal sensor separation was 0.1 m perpendicular to 

the main wind direction and the vertical sensor separation 0.1 m.

2.2.2 Data processing—Subsetting of the 20 Hz sonic anemometer data to the 10 Hz 

resolution of the QCLAS data was done by using proprietary software (Hörtnagl et al., 2014) 

programmed in MATLAB 8.1.0 (R2013a, The MathWorks, Inc, USA). A 2D coordinate 

rotation was performed according to Kaimal and Finnigan (1994). Using the post processing 

software EdiRe (University of Edinburgh), eddy fluxes of COS, CO2 and H2O were 

calculated as the covariance between the rotated vertical wind velocity and the scalar 

concentrations, using 25 min blocks of data. The QCLAS software applied the necessary 

spectroscopic corrections to account for the presence of water vapour and also converted 

concentrations to dry mole fractions (Neftel et al. 2010), avoiding the need for density 

corrections after Webb et al. (1980) during post-processing. The latter needed to be applied 

to the CO2 and H2O fluxes measured by the IRGA, assuming that temperature fluctuations 

were negligible due to sampling through a relatively long intake tube. The storage flux of 

COS was calculated as the time rate of change in COS molar density at the reference height 

and was confined to ± 2.7 pmol m-2 s-1 in 93 % of all cases. In the following all fluxes are 

reported without the storage flux, except for when investigating the underestimation during 

periods of low turbulence (i.e. u* filtering). Further details on the eddy covariance post-

processing are presented in section 3.

The determination of the total random flux uncertainty, which is due to the stochastic nature 

of turbulence and sensor noise, and the fraction of it that is due to sensor noise followed 

Langford et al. (2015), for which we refer for further details. Briefly, the approach infers the 

total random flux uncertainty based on Wienhold et al. (1995). In this approach the random 

flux uncertainty is calculated as the standard deviation of the cross-covariance at positive 

and negative lag times far away from the true lag, i.e. when the vertical wind speed and 

scalar concentrations may be supposed to be completely de-correlated. Following Langford 

et al. (2015) we used the RMSE instead of the standard deviation. Rannik et al. (2016) 
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assessed the performance of the Wienhold et al. (1995) approach and found that it 

underestimated the true random flux uncertainty because the cross-covariances at 

neighbouring lags are not independent and suggest to calculate the standard deviation from 

cross-covariance estimates at intervals exceeding the integral time scale (e.g. 10 s) over lag 

times of +/- 100-300 s, a suggestion which we followed. The standard deviation of the 

sensor noise was derived by linearly extrapolating the scalar auto-covariance function 

between 1-5 samples lag to zero lag (Langford et al., 2015). Based on that information a 

synthetic time series with a zero mean and one standard deviation derived from the previous 

step was generated and together with the true vertical wind speed time series used to 

calculate a cross-covariance function that would be obtained if there was just sensor noise. 

The corresponding random flux uncertainty was then derived the same way as the total 

random flux uncertainty (Langford et al., 2015).

3 Results and Discussion

3.1 Lag-time determination

Correcting for the travel time of the gas sample in the intake tube and the resulting lag time 

of the scalar time series with respect to the vertical wind velocity (lag time determination), is 

a key post-processing step for closed-path eddy covariance systems (McMillen, 1988). 

Additional time shifts may occur if the scalar and wind time series are acquired by different 

data acquisition systems due to drift of the respective clocks. While it would be desirable to 

avoid such time shifts caused by differing clocks of the data acquisition systems (Langford 

et al., 2015), we nevertheless chose this approach as preliminary tests showed that the 

TDLWintel software was unable to keep up the 10 Hz data acquisition rate if the sonic 

anemometer data were acquired on the same PC. To avoid PC clock drifts we used, based on 

earlier positive experience (Hörtnagl and Wohlfahrt, 2014, Pierce et al. 2015), a software 

(NTP, Meinberg, Germany) which kept the clocks synchronized throughout the 

measurement campaign. As shown in Fig. 1, with this setup the cross correlation functions 

exhibited clear and, between scalars, consistent peaks (negative for COS and CO2 which 

exhibit net uptake, positive for H2O which is released to the atmosphere). The resulting lag 

times were slightly longer than nominal lag times calculated based on tube flow and 

dimensions (1.9 s), which has been found for other closed-path eddy covariance systems as 

well and likely reflects unaccounted volumes (e.g. QCLAS cell, filters), horizontal sensor 

separation and the scalar response time (Massman, 2000). This result illustrates the 

feasibility and reliability of acquiring scalar and sonic anemometer data on separate PCs 

provided these are appropriately synchronized.

3.2 High-pass filtering

Laser spectroscopy-based eddy covariance flux measurements are well known to be sensitive 

to sensor drift, which may systematically bias flux estimates, if not corrected for (Kroon et 

al., 2007; Mammarella et al., 2010). In order to quantify possible drift by the QCLAS we 

used so-called Allan variance plots (Werle et al., 1993; Werle, 2010, 2011), generated by 

feeding the QCLAS with pressurized air under ambient conditions in the instrument shelter 

in the field. As shown in Fig. 2, the system was dominated by white noise up to an averaging 

time of ca. 10 s and started to drift in an approx. linear fashion after around 50 s. Among the 
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published COS eddy covariance flux studies (Asaf et al., 2013; Maseyk et al., 2014; 

Billesbach et al., 2014; Commane et al., 2015), this is the first time that QCLAS drift was 

characterised under field conditions. The Allan variance plot obtained by the manufacturer 

under laboratory conditions (http://www.aerodyne.com/products/carbonyl-sulfide-monitors) 

indicates white noise up to ca. 8 s integration time, quite comparable with Fig. 2. At longer 

integration times, however, the Allan variance plot by the manufacturer exhibits much less 

increase with increasing averaging time. Most likely, this is the result of less stable thermal 

conditions in our instrument hut compared to laboratory conditions. This finding highlights 

the importance of optimising the experimental setup (minimisation of temperature 

variations, insulation of QCLAS, etc.) for minimising sensor drift in the first place. In order 

to explore the effects of the drift on flux estimates, the following eddy covariance flux 

calculations were conducted for three high-pass filtering scenarios commonly used in the 

literature: (i) block averaging (BA), (ii) linear detrending (LD), and (iii) recursive filtering 

(RF) with a time constant of 50 s as determined from Fig. 2. In addition, we followed Wehr 

et al. (2017) and removed the measured instrument offset by linear interpolation between 

half-hourly background measurements, termed linear background correction (LBC). The 

latter approach assumes the linear interpolation of half-hourly background measurements 

(median absolute COS change equal to 20 ppt) to successfully represent any sensor drift, 

while LD and RF may remove real flux in case of true trends in the ambient concentration 

time series.

3.3 High-frequency correction

Cospectral analyses, shown for unstable conditions and horizontal wind speeds of 1.00-1.25 

m s-1 in Fig. 3, demonstrate the expected high-frequency correction (low-pass filtering) of 

COS at normalised (natural frequency normalised with the measurement height above the 

zero-plane displacement height and mean horizontal wind speed) frequencies > 0.5, caused 

by the combined effects of tube attenuation, limited sensor time response, path averaging 

and sensor separation (e.g. Moncrieff et al., 1997; Massman, 2000). At normalised 

frequencies > 1.5, the low-pass filtering effects described above apparently weakened, which 

coincides with the normalised frequency at which COS power spectra became less 

dependent of frequency, which suggests an increasing influence of white noise (Eugster et 

al., 2007). The same behaviour was found for CO2 and H2O, however for these two the 

effects of low-pass filtering appeared at higher and lower frequencies, respectively, while the 

onset of noise was confined to the highest frequencies. Similar findings, i.e. noise appearing 

in the power spectra at natural frequencies > 0.19 Hz, were reported by Eugster et al. (2007) 

using a QCL for N2O flux measurements above a mixed forest in Switzerland. Figure 3 also 

shows the ratio of the COS/CO2/H2O to sensible heat cospectra. Recognising that sensible 

heat cospectra are only marginally affected by low-pass filtering, these ratios represent 

experimentally derived transfer functions for low-pass filtering of COS, CO2 and H2O. 

Following Aubinet et al. (2001), each of these transfer functions was fit to a one parameter 

sigma function by optimising the so-called half-point frequency (indicated by vertical dotted 

lines in the lowermost panels of Figure 3). By integrating the ratio of the sensible heat 

cospectrum to the sensible heat cospectrum convoluted with the experimental transfer 

function, an experimental high-pass filtering correction factor (Aubinet et al. 2001) could be 

obtained for each species, three stability (z/L < -0.25; -0.25 < z/L < 0.25, z/L > 0.25) and 
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eight wind speed classes (0.25 m s-1 bin size in 0-2 m s-1 range). Consistent with Aubinet et 

al. (2001), the experimentally derived low-pass filtering correction factors scaled linearly 

with the horizontal wind speed (Figure 4). Even though low-pass filtering coefficients are 

expected to be larger for stable compared to unstable/neutral conditions, no such effect was 

observed. This reflects the findings of Wohlfahrt et al. (2005a), who showed that sensible 

heat cospectra at this site change much less from unstable/neutral to stable conditions 

compared to the classical Kaimal cospectra (Kaimal and Finnigan, 1994). Thus a single 

linear relationship forced through unity was fitted to all experimental low-pass filtering 

correction factors independent of stability (Fig. 4). These linear relationships explained > 

71 % of the variability, with slopes of 0.19 s m-1 (COS), 0.18 s m-1 (CO2) and 0.31 s m-1 

(H2O). For comparison, using a closed-path IRGA and similar tubing dimension and flow 

rate, but half the tube length, Aubinet et al. (2001) obtained slopes of 0.044 and 0.063 s m-1 

for CO2 and H2O, respectively. The close correspondence between the slopes for COS and 

CO2 lends support to other studies (e.g. Wehr et al. 2017), which based low-pass filtering 

corrections of COS on those determined for CO2. The larger slope (and thus larger low-pass 

filtering) for H2O compared to COS and CO2 is likely due to interactions of water with the 

tubing (Ibrom et al. 2007), even though it was heated in this study. A more detailed 

correction for H2O could be obtained by analysing the dependency of the correction factor 

on relative humidity, as in Mammarella et al. (2009). The linear relationships with wind 

speed were then used to correct for low-pass filtering. The overall frequency response 

corrections included these low-pass filtering corrections, as well as high-pass filtering due to 

block averaging and linear detrending or recursive filtering (where applicable).

3.4 Quality control

For quality control, first, biologically or physically implausible flux values were discarded 

by percentile filtering, leaving 81 % of the COS (5th – 95th percentile) and 89 % of both the 

CO2 and H2O (1st – 99th percentile) flux data. See Table 1 for the corresponding flux limits.

Stationarity, i.e. that the scalar and vertical wind velocity time series and their covariance do 

not vary over time, is a basic requirement of the eddy covariance method. The stationarity 

test by Foken and Wichura (1996) assesses how much the covariance deviates (in %) from 

perfect stationarity by comparing the mean covariance calculated from shorter sub-periods 

(six 4 min periods in our case) to the 25 min average. Following Foken & Wichura (1996) 

the results were binned into five classes (0-15 %, 15-30 %, 30-60 %, 60-100 %, >100 % 

deviation). As shown in Fig. 5, the application of high-pass filtering (LD and RF) compared 

to block averaging significantly increased the fraction of acceptable data (χ2-test, p = 0.000 

for all cases) in the lowest category from 19 % BA to 41 % RF for COS, 33 % BA to 51 % 

RF for CO2 and 28 % BA to 41 % RF for H2O, and decreased in all other categories. The 

most prominent decline was observed in the 60-100 % class with 19 % BA to 9 % RF for 

COS, 15 % BA to 12 % RF for CO2 and 21 % BA to 13% RF for H2O. Allowing a 

maximum deviation of 100 %, between 67 % (BA) to 79 % (RF) (COS) and 75 % (BA) to 

82 % (RF) (CO2) passed the stationarity test (Table 1). The linear background correction 

(LBC), available only for COS, performed similarly to BA (Table 1).
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Different authors have shown that during periods of low turbulence and stable stratification, 

typical nighttime conditions, eddy flux measurements can systematically underestimate 

ecosystem respiration (Goulden et al., 1996; Aubinet et al., 2000; Papale et al., 2006; Gu et 

al., 2005; Wohlfahrt et al., 2005a). To assess any underestimation of nighttime (PAR < 5 

µmol m-2 s-1) fluxes we plotted CO2 and COS fluxes as a function of the friction velocity 

(u*) by using a change point detection algorithm (Barr et al., 2013). As shown in Fig. 6, the 

absolute magnitude of both COS and CO2 fluxes were positively related to friction velocity 

in the lower range of friction velocities, which is presently understood to indicate 

insufficient turbulent mixing (Massman and Lee, 2002). Only when fluxes become 

independent of friction velocity, i.e. for friction velocities higher than 0.12 m s-1 to 0.14 m 

s-1 (CO2) and 0.09 m s-1 to 0.12 m s-1 (COS), turbulent mixing is deemed sufficient to not 

result in a systematic underestimation of nighttime fluxes. Using an infrared gas analyser for 

CO2 flux measurements, Wohlfahrt et al. (2005a) found u* thresholds between 0.1 m s-1 and 

0.15 m s-1 for the same study site. Adopting the u* threshold determined for CO2 for COS, 

as done for example by Commane et al. (2015), thus appears not to result in larger 

differences. Using these thresholds to filter data, between 28 % - 47 % and 45 % - 55 % of 

the COS and CO2 fluxes were excluded, respectively, with RF removing the largest and BA 

the least fraction of data (Table 1).

The following two quality criteria were applied independent of the scalar and high-pass 

filtering method:

The integral turbulence test (Foken and Wichura, 1996) is able to identify deviations of 

mechanical turbulence from expected Monin Obukhov similarity theory (Obukhov, 1954), 

caused for example by flow over complex terrain or flow distortion by measurement 

infrastructure. Allowing a maximum deviation of 100 %, 1 % of the data was excluded by 

the integral turbulence test with a larger fraction, mostly during nighttime, being excluded in 

the sector where the instrument hut is located.

In order to remove unwanted flux contributions by other ecosystem types (forest or 

settlements) beyond the study site, we used the footprint model by Hsieh et al. (2000) and 

required 80 % of the flux to originate from within the grassland area, which removed 10 % 

of all data.

After applying all quality criteria to the data set, between 39 % (RF-COS) and 73 % (RF-

H2O) of the data were retained.

3.5 Random flux uncertainty

As shown in Figure 7, the total random flux uncertainty (due to the stochastic nature of 

turbulence and sensor noise) was the smallest for RF, followed by LD and largest with BA 

(and LBC), i.e. the two high-pass filtering approaches, in particular RF, reduced the random 

flux uncertainty. As random uncertainties vanish with increasing sample size (Moncrieff et 

al., 1996), this increases the likelihood of being able to detect relationships between fluxes 

estimates (e.g. the ecosystem relative uptake rate; Asaf et al., 2013) and between fluxes and 

environmental conditions. The random flux uncertainty that was due to sensor noise was at 

least one order of magnitude smaller than the total random flux uncertainty and barely 
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differed between the high-pass filtering scenarios (dashed lines in Figure 7). As a 

consequence, sensor noise made a relatively larger contribution to the total random flux 

uncertainty of RF and LD as opposed to BA (and LBC).

3.6 Cross-comparison with IRGA CO2 and H2O fluxes

An independent cross-comparison of the entire post-processing chain was conducted by 

comparison with CO2 and H2O eddy covariance fluxes routinely measured with the closed-

path IRGA at the study site. The results are shown in Fig. 8. Both data sets were filtered for 

flux range, stationarity, footprint and integral turbulence characteristics as described above. 

IRGA fluxes were calculated based on block averaging only, due to negligible sensor drift. 

For CO2, the results confirm that the QCLAS is capable of accurately measuring the eddy 

fluxes as found also by Billesbach et al. (2014), who compared CO2 fluxes measured with 

the same model of QCLAS and an open-path IRGA. QCLAS-derived H2O fluxes were ca. 

15 % higher than those measured with the IRGA, which may be indicative of problems with 

the closed-path IRGA-based H2O flux measurements (Ibrom et al., 2007) as evident in the 

lack of energy balance closure (the sum of the latent and sensible heat exchange falling short 

of the available energy by ca. 25 %; Haslwanter et al. 2009). Possibly, the correspondence 

could be improved by accounting for variability in relative air humidity in the low-pass 

filtering corrections, as suggested by Ibrom et al. (2007) or Mammarella et al. (2009). The 

statistics (R2, MAE) showed only minor differences between the three processing 

procedures, indicating that our cross-comparison provides no definite outcome in favour for 

choosing a specific high-pass filter. We however emphasise that this cross-comparison 

cannot validate the COS fluxes, due to the differences in line strength and noise properties 

compared to CO2 and H2O.

3.7 COS exchange

Finally, we investigated how the four processing procedures (BA, LD, RF, LBC) affect the 

COS flux estimates. As shown in Figure 9a, the mean diurnal cycles of the COS exchange 

were overall quite similar between the processing options, but RF and, to a lesser degree, LD 

tended to yield less negative fluxes than BA and LBC. For CO2 fluxes (Fig. 9b), differences 

between the three processing options (BA, LD, RF) were basically absent during daytime, 

while during nighttime RF and LD yielded clearly lower fluxes.

In order to link the COS to the CO2 exchange (e.g. gross primary productivity), a primary 

motivation for conducting ecosystem-scale COS exchange measurements (Wohlfahrt et al., 

2012), the concept of the leaf relative uptake rate (LRU; Sandoval-Soto et al., 2005) has 

been instrumental (e.g. Asaf et al., 2013). The LRU represents the ratio of the COS to CO2 

deposition velocity and has been suggested to converge to a value of ca. 1.7 under conditions 

of high radiation (Berkelhammer et al., 2014). An emerging pattern, both at the leaf (e.g. 

Stimler et al. 2010b, 2011) and ecosystem-scale (e.g. Maseyk et al., 2014; Commane et al., 

2015; Wehr et al., 2017), is that the LRU and ecosystem relative uptake rate (ERU; the 

concept of LRU extended to the ecosystem-scale) deviate (increase) from a constant value at 

low light intensities. This increase is due to the progressive limitation of photosynthesis at 

low light, which does not affect COS uptake, as the carbonic anhydrase, the enzyme 

responsible for the hydrolysis of COS, is thought to be light-independent (Wehr et al., 2017). 
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As shown in Figure 9c, the various processing options reproduced the increase of ERU with 

decreasing incident light, with little differences between BA, LD and RF, suggesting that the 

underestimation of COS and CO2 fluxes with RF and LD (Figs. 9a and 9b) tends to cancel 

out in the ERU.

4 Conclusion

Even though the number of published eddy covariance COS flux measurements has 

increased significantly during the past few years (Asaf et al., 2013; Billesbach et al., 2014; 

Maseyk et al., 2014; Commane et al., 2015; Wehr et al., 2017), this is the first study to 

systematically examine the use of QCLAS instruments for making defensible COS flux 

measurements, the necessary processing steps and QA/QC procedures and characterise the 

random flux uncertainty.

We found flux measurements to be affected by sensor drift (e.g. Mammarella et al., 2010), 

which was accounted for using two common high-pass filtering methods, linear detrending 

(LD) and recursive filtering (RF), and compared these results against flux calculations based 

on simple block averaging (BA) and by linear removal of regular background measurements 

(LBC). LD and RF are based on the measured time series only and their application thus 

risks removing true changes in ambient concentrations and corresponding flux contributions 

(Mammarella et al., 2010). LBC, in contrast, accounts for changes in the QCLAS 

background on the basis of half-hourly background measurements and attempts to remove 

these changes by linear interpolation (Wehr et al., 2017). LBC, even though the Allan 

variance analysis (Fig. 2) showed drift not to be strictly linear, may thus be considered 

conceptually superior for correcting for sensor drift. Yet, in this study LBC yielded fluxes 

that were very close to those calculated with BA (Fig. 9), suggesting that the sensor drift 

over half-hourly periods (median of absolute COS changes: 20 ppt), had a small effect on 

inferred fluxes. LD and RF, as expected, yielded fluxes that were lower compared to BA 

(and LBC), however when COS and CO2 fluxes were combined in the ERU, differences 

between the high-pass filtering scenarios largely cancelled out. Minor differences between 

different high-pass filtering methods were also obtained in the cross-comparison with 

independent IRGA-based CO2 and H2O fluxes (Fig. 8). By using the high-pass filtering 

operations, LD and RF expectedly increased the fraction of data retained in the stationarity 

test, but at the same time LD and RF were associated with higher u* thresholds, which 

caused more nighttime data to be excluded, resulting in overall similar fractions of data 

retained after QC (Table 1). While high-pass filtering, since it operates at lower frequencies, 

did not affect the random flux uncertainty due to sensor noise, RF and LD reduced the total 

random flux uncertainty (due to the stochastic nature of turbulence and sensor noise) 

compared to BA (and LBC) by the same mechanism that increases stationarity and reduces 

the flux.

This is the first study to directly address low-pass filtering and u*-filtering for COS eddy 

covariance flux measurements and shows that previous ad hoc approaches assuming 

similarity to CO2 appear not to cause systematic bias. Overall, our study thus suggests that 

previous studies, even though using different post-processing approaches, should be 
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reasonably comparable, in particular with regard to ERU estimates, paving the way for 

corresponding first cross-site syntheses.
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Figure 1. 
The covariance of vertical wind speed with the COS (black line), CO2 (red line) and H2O 

(blue line) molar density as a function of the (mostly) tube-induced time delay. Lag times in 

this example were: COS = 2.6 s, CO2 = 2.5 s, H2O = 2.85 s. Data correspond to 05.07.2015 

10:00-10:30 am (Central European Time).
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Figure 2. 
Plots of the Allan variance (blue symbols and lines) as a function of the averaging time (τ) 

as described in Werle (2010). The time series was obtained under ambient conditions in the 

instrument hut in the field by providing pressurized air from a cylinder to the QCLAS. The 

red line indicates the expected decline of the variance with increasing averaging time in case 

of white noise, the black dashed and solid lines the expected increase in variance due to non-

linear and linear drift, respectively.
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Figure 3. 
Spectra (upper panels) and cospectra (middle panels) for temperature (referred to as t and 

wt) and COS (left column), CO2 (middle column) and H2O (right column) (referred to as x 

and wx, with x representing the three scalars). Spectra (S) and cospectra (CO) were 

normalised by their variance (var) and covariance (covar), respectively. The natural 

frequency (f) was normalised by the measurement height above the zero-plane displacement 

height (z - d) and the mean horizontal wind speed (u). Solid lines and shaded areas refer to 

the average and one standard error. Data were filtered for unstable conditions (z/L < -0.25) 

and wind speeds between 1.00 and 1.25 m s-1. The dashed line in the upper panel indicates 

the expected -5/3 decay in the inertial subrange. Vertical dotted lines in the middle panel 

encompass the frequencies between which cospectra were normalized to each other. The 

lower panels show experimental transfer functions as the ratio of the normalised COS, CO2 

and H2O to temperature cospectra. Vertical dotted lines in the lower panels indicate the half-

point frequency. Only data indicated by closed symbols in the lower panels were used to 

estimate the half-point frequency.

Gerdel et al. Page 17

Atmos Meas Tech. Author manuscript; available in PMC 2017 October 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. 
Wind speed dependence of experimentally derived low-pass filtering correction factors for 

COS. Symbols refer to different stability conditions (unstable: z/L < -0.25; neutral: -0.25 ≤ 

z/L ≤ 0.25; stable: z/L > 0.25), the solid black line to a linear regression (coefficients and 

coefficient of determination are indicated in the upper left corner).
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Figure 5. 
Stationarity test after Foken and Wichura (1996) for COS (a), CO2 (b) and H2O (c) fluxes 

calculated for different high-pass filtering scenarios: block averaging (BA), linear detrending 

(LD), recursive filtering (RF) and linear background correction (LBC; COS only). The 

colour coding refers to percentage deviations from perfect stationarity (Foken and Wichura, 

1996).
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Figure 6. 
Nocturnal COS (upper panel) and CO2 (lower panel) fluxes (inclusive of the storage term) as 

a function of friction velocity (u*). The flux data, calculated with a recursive filter (RF) 

using a time constant of 50 s, was divided into 13 bins The u* threshold (vertical red line) 

was determined on the basis of the change point detection algorithm by Barr et al. (2013).
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Figure 7. 
Frequency distribution of calculated total random uncertainties (solid lines) and instrument 

noise (dashed lines) for COS (upper panel), CO2 (middle panel) and H2O (lower panel) and 

different high-pass filtering scenarios (block averaging – BA, linear detrending – LD, 

recursive filtering – RF, LBC – linear background correction). The vertical lines indicate the 

respective median values.
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Figure 8. 
Correlation between IRGA and QCLAS CO2 (upper panels) and H2O (lower panels) fluxes 

using block averaging (BA, left panels), linear detrending (LD, middle panels) and a 

recursive filter with a 50 s time constant (RF, right panels). The solid grey line indicates the 

1:1 line and the solid red line is the geometric mean regression fit. The regression 

coefficients, the coefficient of determination (r2), the mean absolute error (MAE) and the 

number of samples (n) are indicated in each panel.
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Figure 9. 
Mean diurnal variation of the COS (a) and CO2 (b) exchange and light dependency of the 

ecosystem relative uptake rate (c) calculated based on different high-pass filtering scenarios 

(block averaging – BA, linear detrending – LD, recursive filtering – RF, linear background 

correction – LBC (COS only)). Data were filtered as described in the text. In addition, data 

shown in panel c were filtered for negative COS and CO2 fluxes and a leaf area index ≥ 5 m2 

m-2. CET stands for Central European Time.
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Table 1

List of flags, their limiting values and the percentage of data left after application, for each gas. The first two 

criteria pertain to all gases and processing scenarios (block averaging (BA), linear detrending (LD), recursive 

filtering (RF), linear background correction (LBC)).

Exclusion criteria Limiting value Data left (%)

Integral turbulence test (%) ≤ 100 99

Footprint (%) ≥ 80 90

COS BA LD RF LBC BA LD RF LBC

Flux range (pmol m-2 s-1) -91 to 29 -79 to 19 -65 to 8 -100 to 49 81

u* (m s-1) 0.08 0.10 0.12 0.09 72 61 53 68

Stationarity (%) ≤ 100 67 74 79 68

All exclusion criteria - 50 44 39 45

CO2 BA LD RF LBC

Flux range (µmol m-2 s-1) -42 to 97 -35 to 78 -28 to 42 - 89 -

u* (m s-1) 0.12 0.12 0.14 - 55 54 45 -

Stationarity (%) ≤ 100 - 75 78 82 -

All exclusion criteria - 46 46 40 -

H2O BA LD RF LBC

Flux range (mmol m-2 s-1) -2 to 10 -0.7 to 10 -0.3 to 10 - 89 -

u* (m s-1) - - -

Stationarity (%) ≤ 100 - 70 74 76 -

All exclusion criteria - 68 71 73 -
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