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Abstract

This paper explores robust recovery of a superposition of R distinct complex exponential functions 

with or without damping factors from a few random Gaussian projections. We assume that the 

signal of interest is of 2N − 1 dimensions and R < 2N − 1. This framework covers a large class of 

signals arising from real applications in biology, automation, imaging science, etc. To reconstruct 

such a signal, our algorithm is to seek a low-rank Hankel matrix of the signal by minimizing its 

nuclear norm subject to the consistency on the sampled data. Our theoretical results show that a 

robust recovery is possible as long as the number of projections exceeds O(Rln2 N). No 

incoherence or separation condition is required in our proof. Our method can be applied to spectral 

compressed sensing where the signal of interest is a superposition of R complex sinusoids. 

Compared to existing results, our result here does not need any separation condition on the 

frequencies, while achieving better or comparable bounds on the number of measurements. 

Furthermore, our method provides theoretical guidance on how many samples are required in the 

state-of-the-art non-uniform sampling in NMR spectroscopy. The performance of our algorithm is 

further demonstrated by numerical experiments.
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1. Introduction

Many practical problems involve signals that can be modeled or approximated by a 

superposition of a few complex exponential functions. In particular, if we choose the 

exponential function to be complex sinusoid, it covers signals in acceleration of medical 

imaging [16], analog-to-digital conversion [25], inverse scattering in seismic imaging [1], 

etc. Time domain signals in nuclear magnetic resonance (NMR) spectroscopy, that are 

widely used to analyze the compounds in chemistry and protein structures in biology, are 

another type of signals that can be modeled or approximated by a superposition of complex 

exponential functions [19]. How to recover those superpositions of complex exponential 

functions is of primary importance in those applications.

In this paper, we will consider how to recover those complex exponentials from linear 

measurements of their superposition. More specifically, let x̂ ∈ ℂ2N − 1 be a vector satisfying

(1)

where zk ∈ ℂ, k = 1, …, R, are some unknown complex numbers. In other words, x̂ is a 

superposition of R exponential functions. We assume R < 2N − 1. When |zk| = 1, k = 1, …, 

R, x̂ is a superposition of complex sinusoids. When zk = e−τke2πιfk, k = 1, …, R, x̂ models 

the signal in NMR spectroscopy.

Since R < 2N − 1, the degree of freedom to determine x̂ is much less than the ambient 

dimension 2N − 1. Therefore, it is possible to recover x̂ from its under-sampling [3,5,8,12]. 

In particular, we consider to recover x̂ from its linear measurement

(2)

where A ∈ ℂM × (2N − 1) with M < 2N − 1.

We will use a Hankel structure to reconstruct the signal of interest x̂. The Hankel structure 

originates from the matrix pencil method [15] for harmonic retrieval for complex sinusoid. 

The conventional matrix pencil method assumes fully observed x̂ as well as the model order 

R, which are both unknown here. Following the ideas of the matrix pencil method in [15] 

and enhanced matrix completion (EMaC) in [10], we construct a Hankel matrix based on 

signal x̂. More specifically, define the Hankel matrix Ĥ ∈ ℂN×N by

(3)
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Throughout this paper, indices of all vectors and matrices start from 0, instead of 1 in 

conventional notations. It can be shown that Ĥ is a matrix with rank R. Instead of 

reconstructing x̂ directly, we reconstruct the rank-R Hankel matrix Ĥ, subject to the 

constraint that (2) is satisfied.

Low rank matrix recovery has been widely studied [2,5,6,20]. It is well known that 

minimizing the nuclear norm tends to lead to a solution of low-rank matrices. Therefore, a 

nuclear norm minimization problem subject to the constraint (2) is proposed. More 

specifically, for any given x ∈ ℂ2N − 1, let H(x) ∈ ℂN×N be the Hankel matrix whose first 

row and last column is x, i.e., [H(x)]jk = xj+k. We propose to solve

(4)

where ||·||* is the nuclear norm function (the sum of all singular values), and A and b are 

from the linear measurement (2). When there is noise contained in the observation, i.e.,

we solve

(5)

where δ = ||η||2 is the noise level. The reconstruction of low-rank Hankel matrices via 

nuclear norm minimization were also proposed in [13] for system identification and 

realization.

An important theoretical question is how many measurements are required to get a robust 

reconstruction of Ĥ via (4) or (5). For a generic unstructured N × N matrix of rank R, 

standard theory [6,7,9,20] indicates that O(NR · poly(logN)) measurements are needed for a 

robust reconstruction by nuclear norm minimization. This result, however, is unacceptable 

here since the number of parameters of Ĥ is only 2N − 1 with the actual degrees of freedom 

R. The main contribution of this paper is then to prove that (4) and (5) give a robust recovery 

of Ĥ (hence x̂) as soon as the number of projections exceeds O(Rln2 N) if we choose the 

linear operator A to be some scaled random Gaussian projections. This result is further 

extended to the robust reconstruction of low-rank Hankel or Toeplitz matrices from its few 

Gaussian random projections.

Our result can be applied to various signals of superposition of complex exponentials, 

including, but not limited to, signals of complex sinusoids and signals in accelerated NMR 

spectroscopy. When applied to complex sinusoids, our result here does not need any 

separation condition on the frequencies, while only requiring O(Rln2 N) measurements 
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instead of O(Rln4 N) in [10]. Furthermore, our theoretical result provides some guidance on 

how many samples to choose for the model proposed in [19] to recover NMR spectroscopy.

• Complex sinusoids. When |zk| = 1 for k = 1, …, R, we must have zk = e2πιfk for 

some frequency fk. In this case, x̂ is a superposition of complex sinusoids, for 

example, in the analog-to-digital conversion of radio signals [25]. We often 

encounter the problem of signal recovery from compressed linear measurements 

of the superposition of complex sinusoids in various applications. For example, 

in compressed sensing of spectrally sparse bandlimited signals [25], the random 

demodulator obtains linear mixing measurements of spectrally sparse 

bandlimited signals through matching filters. We refer the reader to Sections III 

and IV of [25] for details. In array signal processing for Direction of Arrival 

(DoA) estimation of electromagnetic waves [26], the signals received at the 

antennas of the antenna array are a superposition of complex sinusoids with 

different frequencies. Suppose that the battery-powered antenna array aims to 

save energy in sending the measurements to the fusion center where the DoAs 

are calculated, the antenna array can send linear projections of the signals 

received across the antenna array. Moreover, if the antenna array is a non-

uniform antenna array, the observations across the antenna array are also linear 

non-uniform compressive sampling of the uniform antenna array.

The problem on recovering x̂ from its as few as possible linear measurements (2) 

may be solved using compressed sensing (CS) [8]. One can discretize the domain 

of frequencies fk by a uniform grid. When the frequencies fk indeed fall on the 

grid, x̂ is sparse in the discrete Fourier transform domain, and CS theory [8,12] 

suggests that it is possible to reconstruct x̂ from its very few samples via ℓ1-norm 

minimization, provided that R ≪ 2N − 1. Nevertheless, the frequencies fk in our 

setting usually do not exactly fall on a grid. The basis mismatch between the true 

parameters and the grid based on discretization degenerates the performance of 

conventional compressed sensing [11].

To overcome this, the authors of [4,23] proposed to recover off-the-grid complex 

sinusoid frequencies using total variation minimization or atomic norm [9] 

minimization. They proved that the total variation minimization or atomic norm 

minimization can have a robust reconstruction of x̂ from a non-uniform sampling 

of very few entries of x̂, provided that the frequencies fk, k = 1, …, R, has a good 

separation. Another method for recovering off-the-grid frequencies is enhanced 

matrix completion (EMaC) proposed by Chen et al. [10], where the Hankel 

structure plays a central role similar to our model. The main result in [10] is that 

the complex sinusoids x̂ can be robustly reconstructed via EMaC from its very 

few non-uniformly sampled entries. Again, the EMaC requires a separation of 

the frequencies, described implicitly by an incoherence condition.

When applied to complex sinusoids, compared to the aforementioned existing 

results, our result in this paper does not need any separation condition on the 

frequencies, while achieving better or comparable bounds on the number of 

measurements.
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• Accelerated NMR spectroscopy. When zk = e−τke2πιfk, k = 1, …, R, x̂ models 

the signal in NMR spectroscopy, which arises frequently in studying short-lived 

molecular systems, monitoring chemical reactions in real-time, high-throughput 

applications, etc. Recently, Qu et al. [19] proposed an algorithm based on low 

rank Hankel matrix. In this specific application, A is a matrix that denotes the 

under-sampling of NMR signals in the time domain. We remark that linear non-

uniform subsampling measurements of the signal can greatly speed up the NMR 

spectroscopy [19]. Numerical results show its efficiency in [19] for which 

theoretical guarantee results are still needed. It is vital to give some theoretical 

results on this model since it will give us some guidance on how many samples 

should be chosen to guarantee the robust recovery. Though the result in [10] 

applies to this problem, it needs an incoherence condition, which remains 

uncertain for diverse chemical and biology samples. Our result in this paper does 

not require any incoherence condition. Moreover, our bound is better than that in 

[10].

The rest of this paper is organized as follows. We begin with our model and our main results 

in Section 2. Proofs for the main result are given in Section 3. Then, in Section 4, we extend 

the main result to the reconstruction of generic low-rank Hankel or Toeplitz matrices. The 

performance of our algorithm is demonstrated by numerical experiments in Section 5. 

Finally, in Section 6, we conclude the paper and point out some possible future works.

2. Model and main results

Our approach is based on the observation that the Hankel matrix whose first row and last 

column consist of entries of x̂ has rank R. Let Ĥ be the Hankel matrix defined by (3). Eq. (1) 

leads to a decomposition

Therefore, the rank of Ĥ is R. Similar to Enhanced Matrix Completion (EMaC) in [10], in 

order to reconstruct x̂, we first reconstruct the rank-R Hankel matrix Ĥ, is satisfied. Then, x̂ 
is derived directly by choosing the first row and last column of Ĥ. More specifically, for any 

given x ∈ ℂ2N − 1, let H(x) ∈ ℂN×N be the Hankel matrix whose first row and last column is 

x, i.e., [H(x)]jk = xj+k. We propose to solve

(6)
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where rank(H(x)) denotes the rank of H(x), and A and b are from the linear measurement 

(2). When there is noise contained in the observation, i.e., b = Ax̂ + η, we correspondingly 

solve

(7)

where δ = ||η||2 is the noise level.

These two problems are all NP hard problems and not easy to solve. Following the ideas of 

matrix completion and low rank matrix recovery [6,7,9,20], it is possible to exactly recover 

the low rank Hankel matrix via nuclear norm minimization. Therefore, it is reasonable to use 

nuclear norm minimization for our problem and it leads to the models in (4) and (5).

Theoretical results are desirable to guarantee the success of this Hankel matrix completion 

method. The results in [6,7,9,20] do not consider the Hankel structure. For generic N × N 
rank-R matrix, they require O(NR·poly(log N)) measurements for robust recovery which is 

too much since there are only 2N − 1 degrees of freedom in H(x). The theorems proposed in 

[23] work only for a special case where signals of interest are superpositions of complex 

sinusoids, which excludes, e.g., the signals in NMR spectroscopy. While the results from 

[10] extend to complex exponentials, the performance guarantees in [4,10,23] require 

incoherence conditions, implying the knowledge of frequency interval in spectroscopy, 

which are not available before the realistic sampling of diverse chemical or biological 

samples. This limits the applicability of these theories.

It is challenging to provide a theorem guaranteeing the exact recovery for model (4) with 

arbitrarily linear measurements A. In this paper, we provide a theoretical result ensuring 

exact recovery when A is a scaled random Gaussian matrix. Our result does not assume any 

incoherence conditions on the original signal.

Theorem 1—Let A = BD ∈ ℂM×(2N − 1), where B ∈ ℂM×(2N − 1) is a random matrix whose 
real and imaginary parts are i.i.d. Gaussian with mean 0 and variance 1, D ∈ 

ℝ(2N − 1)×(2N − 1) is a diagonal matrix with the j-th diagonal if j ≤ N − 1 and 

 otherwise. Then, there exists a universal constant C1 > 0 such that, for an 
arbitrary ε > 0, if

then, with probability at least , we have

a. x̃ = x̂, where x̃ is the unique solution of (4) with b = Ax̂;

b. ||D(x̃ − x̂)||2 ≤ 2δ/ε, where x̃ is the unique solution of (5) with ||b − Ax̂||2 ≤ δ.

Cai et al. Page 6

Appl Comput Harmon Anal. Author manuscript; available in PMC 2017 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The scaling matrix D is introduced to preserve energy. In particular, we will introduce a 

variable y = Dx, and then the operator  induced by y = H(x) satisfies ||y||2 = || y||F; see 

details in (9). This energy preserving property is critical in our estimation that will be seen 

later.

The number of measurements required is O(Rln2 N), which is reasonable small compared 

with the number of parameters in H(x). Furthermore, there is a parameter ε in Theorem 1. 

For the noise-free case (a), the best choice of ε is obviously a number that is very close to 0. 

For the noisy case (b), we can balance the error bound and the number of measurements to 

get an optimal ε. On the one hand, according to the result in (b), in order to make the error in 

noisy case as small as possible, we would like ε to be as large as possible. On the other 

hand, we would like to keep the measurements M of the order of Rln2 N. Therefore, a 

seemingly optimal choice of ε is . With this choice of ε, the number of 

measurements M = O(Rln2 N) and the error .

Compared to results in [10,23], our theorem does not require any incoherence condition of 

the matrix Ĥ. In particular, our proposed approach for complex sinusoid signals does not 

need any separation condition on frequencies fk’s for k = 1, 2, …, R. The reason for not 

needing a separation condition in noiseless case may be due to the Hankel matrix 

reconstruction method. Our proof of this fact also depends on the assumption of Gaussian 

measurements, for which we have the tool of Gaussian width analysis framework. For 

generic low-rank matrix reconstruction, it is well known that incoherence condition is 

necessary for successful reconstruction if partial entries of the underlying matrix are 

sampled [6,7]; however, incoherence is not required if Gaussian random projections are used 

[9,20]. We are in the same situation except for the additional Hankel structure. Our proposed 

approach uses Gaussian random projections of Ĥ, while the methods in [10,23] sample 

partial entries Ĥ. However, empirically, even for non-uniform time-domain samples, we 

observe that Hankel matrix completion does not seem to require the separation condition 

between frequencies. We thus conjecture that Hankel matrix completion does not require 

separations-between-frequencies condition to recover missing data from noiseless 

measurements under non-uniform time-domain samples, for which we currently do not have 

a proof.

2.1. Hankel matrix completion for recovering off-the-grid frequencies

Our results also apply to recovering frequencies in superposition of complex sinusoids, 

instead of recovering only the superposition of complex sinusoids. We divide our discussion 

into two cases.

The first case is the noise-free case, where the observations are not contaminated by additive 

noises. In this case, since we can recover the full signal of the superposition of the 

underlying sinusoids, we can use the single-snapshot MUSIC algorithm [27] to recover the 

underlying frequencies precisely.

The second case is the noisy case, where the observation is contaminated by additive noises. 

For this case, we have obtained a bound on the recovery error for the superposition signal 
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(Theorem 1 of our paper). We can further recover the frequencies using the single-snapshot 

MUSIC algorithm by choosing the R smallest local minimum of surrogate criterion function 

R(ω) in [27]. In [27], the authors provided the stability result of recovering frequency using 

the single-snapshot MUSIC algorithm (Theorem 3 of [27]). Specifically, the error in 

surrogate criterion function R(ω) is upper bounded by the Euclidean norm of the observation 

noise multiplied by a constant C, where the constant C depends on the largest and smallest 

nonzero singular values of the involved Hankel matrix. Moreover, the recovered frequency 

deviates from the true frequency in the order of noise standard deviation when the noise is 

small (Remark 9 of [27]). We remark that this stability result from [27] is applicable without 

imposing separation condition on frequencies.

For frequencies satisfying a certain separation condition (Equation (23) of [27]), the authors 

of [27] further provide stronger and more explicit bounds on the stability of recovering 

frequencies from noisy data (by explicitly bounding the singular values of the involved 

Hankel matrix).

Moitra [28] proved that stability of recovering frequencies from noisy observations depends 

on the separation of frequencies. In particular, [28] shows a sharp phase transition for the 

relationship between the cutoff time observation index m (namely 2N − 1 in this paper) and 

the frequency separation δ. If m > 1/δ + 1, there is a polynomial-complexity estimator 

converging to the true frequencies at an inverse polynomial rate in terms of the magnitude of 

the noise. And conversely, when m < (1 − ε)/δ, no estimator can distinguish between a 

particular pair of δ-separated signals if the magnitude of the noise is not exponentially small.

However, the converse results in [28] are dealing with worst-case frequencies and worst-case 

frequency coefficients. Namely if the separation condition is not satisfied, one can always 

finds a worst-case pair of signals x and x′ such that telling them apart requires exponentially 

small noise. Thus Moitra’s result in [28] is not for an average-case, fixed signal x. Moreover, 

Moitra’s results does not mean that the single-snapshot MUSIC cannot tolerate small noises 

in recovering frequencies. By comparison, in this paper, our stability result is an average-

case stability result, where our spectrally sparse signal is a fixed signal of superposition of 

complex exponentials, and our stability result is obtained over the ensemble of random 

Gaussian measurements. Our results are especially useful when the observations are 

noiseless or have high SNR.

3. Proof of Theorem 1

In this section, we prove the main result Theorem 1. The most crucial factors are that i) one 

has an explicit formula for the subdifferential of the objective function, and ii) the Gaussian 

width under the current measurement model is computable.

3.1. Orthonormal basis of the N × N Hankel matrices subspace

In this subsection, we introduce an orthonormal basis of the subspace of N × N Hankel 

matrices and use it to define a projection from ℂN×N to the subspace of all N × N Hankel 

matrices.
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Let Ej ∈ ℂN×N, j = 0, 1 …, 2N − 2, be the Hankel matrix satisfying

(8)

where Kj = j + 1 for j ≤ N − 1 and Kj = 2N − 1 − j for j ≥ N − 1 is the number of non-zeros in 

Ej. Then, it is easy to check that  forms an orthonormal basis of the subspace of all 

N × N Hankel matrices, under the standard inner product in ℂN×N.

Define a linear operator

(9)

The adjoint * of  is

Obviously, *  is the identity operator in ℂ2N − 1, and * is the orthogonal projector onto 

the subspace of all Hankel matrices.

3.2. Recovery condition based on restricted minimum gain condition

First of all, let us simplify the minimization problem (4) by introducing D ∈ 

ℂ(2N − 1)×(2N − 1), the diagonal matrix with j-th diagonal . Then, by letting y = Dx, (4) is 

rewritten as,

(10)

where B = AD−1. Recall that  satisfies *  = ℐ, which is crucial in the proceeding 

analysis. Similarly, for the noisy case, (5) is rearranged to

(11)

By our assumption in Theorem 1, B ∈ ℂM×(2N − 1) is a random matrix whose real and 

imaginary parts are both real-valued random matrices with i.i.d. Gaussian entries of mean 0 
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and variance 1. We will prove ỹ = Dx̂ (respectively ||ỹ − ŷ||2 ≤ 2δ/ε) with dominant 

probability for problem (10) for the noise free case (respectively (11) for the noisy case).

Let the descent cone of ||  ·||* at ŷ be

(12)

To characterize the recovery condition, we need to use the minimum value of  for 

nonzero z ∈ (ŷ). This quantity is commonly called the minimum gain of the measurement 

operator B restricted on (ŷ) [9]. In particular, if the minimum gain is bounded away from 

zero, then the exact recovery (respectively approximate recovery) for problem (10) 

(respectively (11)) holds.

Lemma 1—Let (ŷ) be defined by (12). Assume

(13)

a. Let ỹ be the solution of (10) with b = Bŷ. Then ỹ = ŷ.

b. Let ỹ be the solution of (11) with ||b − Bŷ||2 ≤ δ. Then ||ỹ − ŷ||2 ≤ 2δ/ε.

Proof: Since (a) is a special case of (b) with δ = 0, we prove (b) only. The optimality of ỹ 
implies ỹ − ŷ ∈ (ŷ). By (13), we have

Minimum gain condition is a powerful concept and has been employed in recent recovery 

results via ℓ1 norm minimization, block-sparse vector recovery, low-rank matrix 

reconstruction and other atomic norms [9].

3.3. Bound of minimum gain via Gaussian width

Lemma 1 requires to estimate the lower bound of . Gordon gave a solution 

using Gaussian width of a set [9,14] to estimate the lower bound of minimum gain.

Definition 1—The Gaussian width of a set S ⊂ ℝp is defined as:

where ξ ∈ ℝp is a random vector of independent zero-mean unit-variance Gaussians.
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Let λn denote the expected length of a n-dimensional Gaussian random vector. Then 

 and it can be tightly bounded as  [9]. The following 

theorem is given in Corollary 1.2 in [14]. It gives a bound on minimum gain for a random 

map Π: ℝp ↦ ℝn.

Theorem 2. (See Corollary 1.2 in [14].)—Let Ω be a closed subset of {x ∈ ℝp|||x||2 = 

1}. Let Π ∈ ℝn×p be a random matrix with i.i.d. Gaussian entries with mean 0 and variance 
1. Then, for any ε > 0,

provided λn − w(Ω) − ε ≥ 0. Here , and w(Ω) is the Gaussian width of Ω.

By converting the complex setting in our problem to the real setting and using Theorem 2, 

we can get the bound of (13) in terms of Gaussian width of , where ℝ(ŷ) is a 

cone in ℝ4N − 2 defined by

(14)

Lemma 2—Let the real and imaginary parts of entries of B ∈ ℂM×(2N − 1) be i.i.d. Gaussian 

with mean 0 and variance 1. Let ℝ(ŷ) be defined by (14) and  be the unit sphere in 
ℂ2N − 1. Then for any ε > 0,

where  is the unit sphere in ℝ4N−2.

Proof: In order to use Theorem 2, we convert the complex setting in our problem to the real 

setting in Theorem 2. We will use Roman letters for vectors and matrices in complex-valued 

spaces, and Greek letters for real valued ones. Let B = Φ + ιΨ ∈ ℂM×(2N−1), where both Φ 
∈ ℝM×(2N−1) and Ψ ∈ ℝM×(2N−1) are real-valued random matrices whose entries are i.i.d. 

mean-0 variance-1 Gaussian. Then, for any z = α + ιβ ∈ ℂ2N−1 with α, β ∈ ℝ2N−1,

Cai et al. Page 11

Appl Comput Harmon Anal. Author manuscript; available in PMC 2017 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Then

(15)

implies

Therefore,

It is easy to see that both [Φ −Ψ] and [Ψ Φ] are real-valued random matrices with i.i.d. 

Gaussian entries of mean 0 and variance 1. By Theorem 2,

and therefore we get the desired result.

3.4. Estimation of Gaussian width 

Denote  be polar cone of ℝ(ŷ) ∈ ℝ4N−2, i.e.,

(16)

Following the arguments in Proposition 3.6 in [9], we obtain
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(17)

where ξ ∈ ℝ4N−2 is a random vector of i.i.d. Gaussian entries of mean 0 and variance 1. 

Hence, instead of estimating Gaussian width , we bound 

. For this purpose, let ℱ : ℝ4N−2 ↦ ℝ be defined by

(18)

The following lemma gives us a characterization of  in terms of the 

subdifferential ∂ℱ of ℱ.

Lemma 3—Let  and ℱ be defined by (16) and (18) respectively. Let ω̂1, ω̂
2 ∈ ℝ2N−1 

be the real and imaginary parts of ŷ respectively and denote . Then

(19)

Proof: It is observed that ℝ(ŷ) in (14) is the descent cone of the function ℱ

According to Theorem 23.4 in [21], the cone dual to the descent cone is the conic hull of 

subgradient, which is exactly (19).

The following lemma gives us an estimation of Gaussian width  in terms of 

E(|| g||2).

Lemma 4—Let ℝ(ŷ) and  be defined by (14) and (9) respectively. Then

where E(|| g||2) is the expectation with respect to g ∈ ℂ2N−1. Here g is a random vector 
whose real and imaginary parts are i.i.d. mean-0 and variance-1 Gaussian entries.
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Proof: By using (17) and Lemma 3, we need to find ∂ℱ(ω̂) and thus . Let Ω̂
1 = ω̂1 

and Ω̂
2 = ω̂

2. Then ŷ = Ω̂
1 + ιΩ2̂. Let a singular value decomposition of the rank-R 

matrix ŷ be

(20)

where Θ1, Θ2, Ξ1, Ξ2 ∈ ℝN×R and Σ ∈ ℝR×R, and U ∈ ℂN×R and V ∈ ℂN×R satisfies U*U = 

V*V = I. Then, by direct calculation,

(21)

satisfy ΘTΘ = ΞTΞ = I. Moreover, if we define , then

(22)

is a singular value decomposition of the real matrix Ω̂, and the singular values Ω̂ are those of 

ŷ, each repeated twice. Therefore,

(23)

Define a linear operator ℰ : ℝ4N−2 ↦ ℝ2N×2N by

By (23) and the definition of Ω̂, we obtain . From convex analysis theory and 

Ω̂ = ℰω̂, the subdifferential of ℱ is given by

(24)
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On the one hand, the adjoint ℰ* is given by, for any  with 

each block in ℝN×N,

(25)

On the other hand, since (22) provides a singular value decomposition of Ω̂,

(26)

Combining (24), (25), (26) and (21) yields the subdifferential of ℱ at ω̂

We are now ready for the estimation of the Gaussian width. Let the set  be a subset of the 

set of complex-valued vectors

(27)

where U, V are in (20). Then, it can be checked that

(28)

Actually, for any W = Δ1 + ιΔ2 satisfying U*W = 0, WV = 0 and ||W||2 ≤ 1, we choose 

. Obviously, this choice of Δ satisfies the constraints on Δ in ∂ℱ(ω̂). 

Furthermore, . Therefore, (28) 

holds.

With the help of (28), we get

(29)
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We then convert the real-valued vectors to complex-valued vectors by letting g = ξ1 + ιξ2 

and c = γ1 + ιγ2, where ξ1 and ξ2 are the first and second half of ξ respectively and so for 

γ1 and γ2. This leads to

Since *  is the identity operator and * is an orthogonal projector, for any λ ≥ 0 and c ∈ 
,

(30)

where W satisfies the conditions in the definition of  in (27). Define two orthogonal 

projectors ℘1 and ℘2 in ℂN×N by

Then, it can be easily checked that: ℘1X and ℘2X are orthogonal, X = ℘1X + ℘2X, and

(31)

where U, V, W are the same as those in (27). We choose

Then, W satisfies constraints in (27). This, together with (29), (30), (31), implies

We will estimate both ||℘1( g)||F and ||℘2( g)||2. For ||℘1( g)||F, we have
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where in the last line we have used the inequality

and similarly . For ||℘2( g)||2,

Altogether, we obtain

which together with (17) gives

3.5. Bound of E(|| g||2)

The estimation of E(|| g||2) plays an important role in proving Theorem 1 since it is needed 

to give the tight bound of the Gaussian width . The following theorem 

gives us a bound for E(|| g||2).

Theorem 3—Let g ∈ ℝ2N−1 be a random vector whose entries are i.i.d. Gaussian random 
variables with mean 0 and variance 1, or g ∈ ℂ2N−1 a random vector whose real part and 
imaginary part have i.i.d. Gaussian random entries with mean 0 and variance 1. Then,

where C1 are some positive universal constants.

We will use the moment method (see Chapter 2.3 in [24] for more details) to prove Theorem 

3. In order to help the reader easily understand the proof, we begin with the real case and 

introduce some ideas and lemmas first. Assume g ∈ ℝ2N−1 has i.i.d standard Gaussian 

entries with mean 0 and variance 1. Notice that g is symmetric. Therefore, for any even 
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integer k, (tr ( g)k)1/k is the k-norm of vector of singular values, which implies || g||2 ≤ (tr 

( g)k)1/k. This together with Jensen’s inequality,

(32)

Thus, in order to get an upper bound of E(|| g||2), we estimate E(tr(( g)k)). Denote M = g. 

It is easy to see that

(33)

Therefore, we only need to estimate Σ0≤i1, i2,..., ik≤N−1 E(Mi1i2Mi2i3... Mik−1ikMiki1).

To simplify the notation, we denote ik+1 = i1. Notice that , where gi+j is a 

random Gaussian variable and Kj is defined in (8). Hence, Miℓ, iℓ+1 = Miℓ′, iℓ′+1 if and only if iℓ 
+ iℓ+1 = iℓ′ + iℓ′+1. In order to utilize this property, we would like to introduce a graph for any 

given index i1, i2, ..., ik and its equivalent edges on the graph. More specifically, we 

construct graph i1, i2,..., ik with nodes to be i1, i2, ..., ik and edges to be (i1, i2), (i2, i3), ..., 

(ik−1, ik), (ik, i1). Let the weight for the edge (iℓ, iℓ+1) be iℓ + iℓ+1. The edges with the same 

weights are considered as an equivalent class. Obviously, Miℓ, iℓ+1 = Miℓ′, iℓ′+1 if and only if 

(iℓ, iℓ+1) and (iℓ′, iℓ′+1) are in the same equivalent class. Assume there are p equivalent classes 

of the edges of i1,i2,...,ik. These equivalent classes are indexed by 1, 2, ..., p according to 

their order in the graph traversal i1 → i2 → ... → ik → i1. We associate with the graph 

i1,i2,...,ik a sequence c1c2 ... ck, where cj is the index of the equivalent class of the edge (ij, 
ij+1). We call c1c2 ... ck the label for the equivalent classes of the graph i1,i2,...,ik.

The label for the equivalent classes of the graph i1,i2,...,ik plays an important role in 

bounding E(|| g||2). In order to help the reader understand this concept better, we give two 

specific examples here. For N = 6, k = 6, i1 = 1, i2 = 4, i3 = 1, i4 = 3, i5 = 1, i6 = 4, we have a 

corresponding graph and its label for the equivalent classes of the graph is 112211. For N = 

6, k = 6, i1 = 2, i2 = 3, i3 = 2, i4 = 4, i5 = 2, i6 = 3, the label for the equivalent classes of the 

corresponding graph is 112211 as well. Therefore, there may be several different index 

sequences i1i2 ... ik that correspond to the same label for the equivalent classes of the 

corresponding graph. Let c1c2...ck be the set of indices whose label of equivalent class of 

the corresponding graph is c1c2 ... ck, i.e.

(34)
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For given c1c2 ... ck, c1c2...ck is a subset of {i1i2 ... ik |ij ∈ {0, 1, ..., N − 1}, ∀ j = 1, ..., k}. 

The following lemma gives us an estimate for the bound Σi1,i2...ik∈ c1c2...ck 

E(Mi1i2Mi2i3 ...Mik−1ikMiki1).

Lemma 5—Let ζ be the Riemann zeta function and c1c2...ck be defined in (34). Define 
B(s) = ln(N + 1) if s = 2 and B(s) = ζ (s/2) ≤ π2/6 for s ≥ 4. Then

(35)

where p is the number of equivalent classes shown in c1c2 ... ck, and sℓ, ℓ = 1, ..., p, is the 
frequency of ℓ in c1c2 ... ck.

Proof: We begin with finding free indices for any i1, i2, ..., ik in the set c1c2...ck. Let (j1, j2) 

be the first edge of the class 1. Therefore, the weight of the first class is j1 + j2. For 

convenience, we define k1(j1) = j1. The first edge of the class 2 must have a vertex k2(j1, j2), 

depending on j1 and j2, and a free vertex, denoted by j3. The weight of the second class is 

k2(j1, j2) + j3. Similarly, the first edge in class 3 has a vertex k3(j1, j2, j3) and a free vertex j4, 

and the weight is k3(j1, j2, j3) + j4, and so on. Finally, the first edge in class p has a vertex 

kp(j1, j2, ..., jp) and a free vertex jp+1, and the weight is kp(j1, j2, ..., jp) + jp+1. Recall that the 

entry Mij is , where gi+j is a random Gaussian variable. Therefore, for any i1i2 ... ik ∈ 

c1c2...ck,

(36)

where mℓ = kℓ (j1, j2, ..., jℓ) + jℓ+1. Therefore, it is non-vanishing if and only if s1, s2, ..., sp are 

all even. In these cases,

(37)

Summing (37) over c1c2...ck, we obtain
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Since, for any 0 ≤ c ≤ N − 1,

where ζ is the Riemann zeta function. By defining B(s) = ln(N + 1) if s = 2 and B(s) = ζ 
(s/2) ≤ π2/6 for s ≥ 4, the desired result easily follows.

The desired bound for E(|| g||2) can be obtained if we know how many different sets of 

c1c2…ck are available in the set {i1i2 … ik|ij ∈ {0, 1, …, N − 1}, ∀ j = 1, …, k}. Let 

s1s2…sp be the set of all labels of p equivalent classes with ℓ-th class containing sℓ 
equivalent edges respectively, i.e.

(38)

Let ℭp be the set of all possible choice of p positive even numbers s1, …, sp satisfying s1 +s2 

+…+sp = k. Then

(39)

By bounding the cardinality of s1s2…sp and ℭp, we can derive the bound E(tr(Mk)) hence 

E(|| g||2) for the real case. The complex case can be proved by directly using the results for 

the real case. Now, we are in position to prove Theorem 3.

Proof of Theorem 3—Following (39), we need to count the cardinality of s1s2…sp. For 

any c1c2 … ck ∈ s1s2…sp, we must have c1 = 1. Therefore, there are  choices of 

the positions of remaining 1’s in c1c2 … ck. Once positions for 1’s are fixed, the position of 

the first 2 has to be the first available slot, we have  choices for the positions of 

remaining 2’s, and so on. Thus,
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which together with (35) implies, for any s1s2 … sp ∈ ℭp,

(40)

Summing (40) over ℭp yields

(41)

Let us estimate the sum in the last line. Let s be the number of 2’s in s1s2 … sp. Then,

(42)

Since each s1, …, sp ≥ 2 and there are p − s terms greater than 4 among them, we have

(43)

and k − s1 − … − sℓ = sℓ+1 + … + sp ≥ 2(p − ℓ), which implies

(44)
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There are  choices of the positions of the s 2’s. Moreover, once the s 2’s in s1s2 … sp 

are chosen, there are at most

choices of the remaining p − s sj ‘s. Altogether,

(45)

Finally, (45) is summed over all possible p and we obtain

(46)

By using the fact that, for any A > 0,

(46) is rearranged into
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Let k be the smallest even integer greater than . Then using ||M||2 ≤ (tr(Mk))1/k 

lead to

where the constant C1 is some universal constant.

Next, we estimate the complex case. In this case, g ∈ ℂ2N−1, where both its real part and 

imaginary part have i.i.d. Gaussian entries. Write g = ξ + ıη, where ξ, η ∈ ℝ2N−1 are real-

valued random Gaussian vectors. From the real-valued case above, we derive

Therefore,

3.6. Proof of Theorem 1

With Lemmas 1, 2, 4, and Theorem 3 in hand, we are in position to prove Theorem 1.

Proof of Theorem 1—Since (10) is equivalent to (4) by the relation y = Dx, we only need 

to prove that ŷ = ỹ for noise free data (||ŷ−ỹ||2 ≤ 2δ/ε for noisy data) with dominant 

probability. According to Lemma 1, we only need to prove (13). By Lemma 2,

Lemma 4, Theorem 3, and the inequality  imply that

When , we can easily get 

. We get the desired result.
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4. Extension to structured low-rank matrix reconstruction

In this section, we extend our results to low-rank Hankel matrix reconstruction and low-rank 

Toeplitz matrix reconstruction from their Gaussian measurements.

Since the proof of Theorem 1 does not use the specific property that ŷ is an exponential 

signal, Theorem 1 holds true for any low-rank Hankel matrices. We have the following 

corollary, which reads that any Hankel matrix of size N × N and rank R can be recovered 

exactly from its O(Rln2 N) Gaussian measurements, and this reconstruction is robust to 

noise.

Corollary 1 (Low-rank Hankel matrix reconstruction)—Let Ĥ ∈ ℂN×N be a given 
Hankel matrix with rank R. Let x̂ ∈ ℂ2N−1 be satisfying x̂i+j = Ĥij for 0 ≤ i, j ≤ N − 1. Let A 
= BD ∈ ℂM×(2N−1), where B ∈ ℂM×(2N−1) is a random matrix whose real and imaginary 
parts are i.i.d. Gaussian with mean 0 and variance 1, D ∈ ℝ(2N−1)×(2N−1) is the same as 
defined in Theorem 1. Then, there exists a universal constant C1 > 0 such that, for any ε > 0, 
if

then, with probability at least , we have

a. H(x̃) = Ĥ, where x̃ is the unique solution of

with b = Ax̂;

b. ||H(x̃) − Ĥ )||F ≤ 2δ/ε, where x̃ is the unique solution of

with ||b − Ax̂||2 ≤ δ.

Moreover, Theorem 1 can be extended to the reconstruction of low-rank Toeplitz matrix 

from its Gaussian measurements. Let T̂ ∈ ℂN×N be a Toeplitz matrix. Let x̂ ∈ ℂ2N−1 be a 

vector satisfying x̂N−1+(i−j) = T̂
i,j for 0 ≤ i, j ≤ N − 1. Let P ∈ ℂN×N be an anti-diagonal 

matrix with anti-diagonals of 1. Then, it is easy to check that T̂ = H(x̂)P. Thus, we define a 

linear operator T that maps a vector in ℂ2N−1 to a N × N Toeplitz matrix by T(x) = H(x)P. 

Since P is a unitary matrix, one has ||T(x)||* = ||H(x)P||* = ||H(x)||*. Therefore, the above 

corollary can be adapted to low-rank Toeplitz matrices.
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5. Numerical experiments

In this section, we use numerical experiments to demonstrate the empirical performance of 

our proposed approach, and compare it with other methods including those in [10,23]. We 

use superpositions of complex sinusoids as test signals. Note that the application of our 

approach is not limited to such signals but any signals that are superpositions of complex 

exponentials. We are going to consider two sampling schemes, namely, the random Gaussian 

sampling model in Theorem 1 and the non-uniform sampling of entries studied in [10,23]. 

For the latter sampling scheme, it randomly observes M entries of x̂ whose locations are 

uniformly distributed in all M-subsets of {0, 1, …, 2N −2}. We also consider two signal 

reconstruction algorithms, the Hankel nuclear norm minimization and the atomic norm 

minimization, from the given samples. Therefore, we have four different approaches to 

compare: the Hankel nuclear norm minimization with random Gaussian sampling (our 

proposed approach), the Hankel nuclear norm minimization with non-uniform sampling of 

entries (EMaC in [10]), the atomic norm minimization with random Gaussian sampling, and 

the atomic norm minimization with non-uniform sampling of entries (off-the-grid CS in 

[23]).

We fix N = 64, i.e., the dimension of the true signal x̂ is 127. We conduct experiments under 

different M and R for different approaches. For each approach with a fixed M and R, we test 

100 runs, where each run is executed as follows. We first generate the true signal x̂ = [x̂(0), 

x ̂(1), …, x̂(126)]T with  for t = 0, 1, …, 126, where fk are frequencies 

drawn from the interval [0, 1] uniformly at random, and ck are complex coefficients 

satisfying the model ck = (1+100.5mk)ei2πθk with mk and θk being uniformly randomly 

drawn from the interval [0, 1]. Then we get M samples of x̂ according to the corresponding 

sampling scheme. Finally, a reconstruction x̃ is obtained by solving the corresponding 

reconstruction algorithm, which is numerically implemented by alternating direction method 

of multipliers (ADMM). If , then we regard it as a successful reconstruction.

We plot in Fig. 1 the rate of successful reconstruction with respect to different M and R for 

different approaches. The black and white region indicate a 0% and 100% of successful 

reconstruction respectively, and a grey between 0% and 100%. From the figure, we see that 

the atomic norm minimization has similar performance under the random Gaussian sampling 

and the non-uniform sampling of entries. Moreover, the Hankel nuclear norm minimization 

also has similar performance under these two types of different sampling schemes. 

Compared with the atomic norm minimization, the Hankel nuclear norm minimization 

method is more robust when neighboring frequencies are close, despite different sampling 

schemes used.

6. Conclusion and future works

In this paper, we study compressed sensing of signal that is a weighted sum of R complex 

exponential functions with or without damping factor. The measurements are obtained by 

random Gaussian projections. We prove that, as long as the number of measurements is 

greater than O(Rln2 N) with N the dimension of the signal, minimization (4) is guaranteed to 
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get a robust reconstruction of the underlying signal. Compared to results in [10,23] where 

partial entries of the underlying signal are observed, our proposed approach does not require 

any incoherence condition (i.e. does not require any separation condition on frequencies for 

signals without damping).

The bound O(Rln2 N) we obtained is not optimal. There are several possible direction to 

improve it. Firstly, we may improve the estimation of E(|| g||2), a key step in our proof. We 

empirically observed that , which is better than the bound in 

Theorem 3. We would prove this bound theoretically. Secondly, we may borrow techniques 

from compressed sensing to get the optimal bound under Gaussian measurements. Actually, 

there has been recent work that yields precise bounds [17,18,22]. These results assume 

Gaussian measurements, but all quantities involved are reals. It is interesting to explore 

whether those results can be extended to our setting.
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Fig. 1. 
Numerical results.
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y = H(x) satisfies ||y||2 = ||
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y||F; see details in (9). This energy preserving property is critical in our estimation that will be seen later.The number of measurements required is O(Rln2 N), which is reasonable small compared with the number of parameters in H(x). Furthermore, there is a parameter ε in Theorem 1. For the noise-free case (a), the best choice of ε is obviously a number that is very close to 0. For the noisy case (b), we can balance the error bound and the number of measurements to get an optimal ε. On the one hand, according to the result in (b), in order to make the error in noisy case as small as possible, we would like ε to be as large as possible. On the other hand, we would like to keep the measurements M of the order of Rln2 N. Therefore, a seemingly optimal choice of ε is . With this choice of ε, the number of measurements M = O(Rln2 N) and the error .Compared to results in [10,23], our theorem does not require any incoherence condition of the matrix Ĥ. In particular, our proposed approach for complex sinusoid signals does not need any separation condition on frequencies fk’s for k = 1, 2, …, R. The reason for not needing a separation condition in noiseless case may be due to the Hankel matrix reconstruction method. Our proof of this fact also depends on the assumption of Gaussian measurements, for which we have the tool of Gaussian width analysis framework. For generic low-rank matrix reconstruction, it is well known that incoherence condition is necessary for successful reconstruction if partial entries of the underlying matrix are sampled [6,7]; however, incoherence is not required if Gaussian random projections are used [9,20]. We are in the same situation except for the additional Hankel structure. Our proposed approach uses Gaussian random projections of Ĥ, while the methods in [10,23] sample partial entries Ĥ. However, empirically, even for non-uniform time-domain samples, we observe that Hankel matrix completion does not seem to require the separation condition between frequencies. We thus conjecture that Hankel matrix completion does not require separations-between-frequencies condition to recover missing data from noiseless measurements under non-uniform time-domain samples, for which we currently do not have a proof.
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