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Atherosclerotic lesions form preferentially in arterial regions characterized by slow and 

irregular patterns of blood flow such as those found on the inner curvature of bifurcation 

branch points. Due to this non-random distribution, extensive research has focused on the 

role of shear stress, or the mechanical drag force exerted on the endothelial lining of blood 

vessels. Blood flow that follows a high shear-stress, unimpeded laminar pattern encourages 

homeostatic mechanisms in the endothelium and protects against atherosclerosis. The 

transition from laminar to disturbed flow elicits changes in endothelial cell behavior that 

include increased inflammatory signaling through the activation of NF-κB, increased 

expression of leukocyte adhesion receptors and the recruitment of immune cells. Focal areas 

exposed to detrimental shear stress, together with the synergistic effects of dyslipidemia, age 

and hyperglycemia, initiate and promote the growth of atherosclerotic lesions. The 

mechanisms by which endothelial cells sense and respond to these changes in flow have 

been intensively studied but gaps in our knowledge remain.

In this issue of Arteriosclerosis, Thrombosis, and Vascular Biology, Feng et al report on the 

ability of low shear stress to upregulate HIF1α and glycolytic programming in endothelial 

cells. HIF1α is a master regulator of the cellular response to hypoxia and its expression is 

associated with changes in metabolism, inflammation and angiogenesis1, 2. The ability of 

low oxygen tensions to increase atherosclerosis in ApoE mice3 and the genetic deletion of 

HIF1α, selectively in endothelial cells4 or macrophages5, to protect against atherosclerosis 

collectively suggest that hypoxia plays a pathogenic role. Arterial blood carries abundant 

levels of oxygen and therefore hypoxia has been hypothesized to occur deep within the core 

of large atherosclerotic lesions and this is supported by the detection of low oxygen 

concentrations and HIF1α expression within plaques in both animal models and humans6, 7. 

An interesting observation by Feng et al was that HIF1α expression was selectively 

increased in the low-flow inner curvature of non-atherosclerotic porcine aorta as well as in 

cultured endothelial cells exposed to low shear stress in the presence of atmospheric oxygen 

(findings recently confirmed by others8). This data suggests that the upregulation of HIF1α 
may also play a role in the initiation of atherosclerosis. How mechanical stress on the 

endothelium regulates HIF1α expression was an important next question. Feng et al, found 

that low and oscillatory shear stress on endothelial cells increased the activation of NF-κB 

which drives expression of HIF1α mRNA, as well as increased expression of Cezanne or 
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OTUD7B, an editor of ubiquitin chains that preserves HIF1α protein expression9. While the 

ability of oscillatory shear to activate NF-κB is well described10, others have found that the 

ability of disturbed flow to induce HIF1α expression is mediated instead by Nox4-derived 

reactive oxygen species in manner that is independent of NF-κB8. Important differences 

between these studies include the type of cell used (HUVEC versus HAEC8), strategies to 

inhibit NFκB (Rel siRNA, IκBα overexpression versus a NEMO binding domain peptide) 

and the approaches used to model disturbed flow (orbital shaking or an Ibidi parallel-plate 

versus a cone and plane).

HIF1α is a key transcription factor that orchestrates metabolic reprogramming in hypoxic 

cells towards glycolysis. Enhanced glycolysis can also occur in normoxic cells, a 

phenomena first described by Warburg11. Glycolysis not only supports enhanced rates of 

proliferation and migration, but has emerged as a powerful regulator of angiogenesis and 

inflammation12–14. Feng et al and others found increased expression of glycolytic enzymes 

in normoxic endothelial cells exposed to low or disturbed flow in culture, as well as in 

partially ligated carotid arteries and atheroprone regions of porcine aorta8. HIF1α and its 

family member, HIF2α (EPAS1), were both upregulated by disturbed flow but increased 

expression of glycolytic enzymes was dependent only on HIF1α8. HIF1α and NF-κB have a 

complicated interrelationship which is also observed in endothelial cells exposed to changes 

in flow. Hypoxia, HIF1α and increased expression of glycolytic enzymes are connected with 

increased inflammation 15, 16 and NF-κB can drive increased HIF1α expression 17. In 

endothelial cells exposed to disturbed flow, silencing both HIF1α and select glycolytic 

enzymes decreases NF-κB activation as well as the expression of pro-inflammatory genes8. 

HIF1α is not the only shear stress sensitive transcription factor and previous studies have 

identified KLF2 as a gene that is strongly upregulated by laminar flow18 and suppressed by 

disturbed flow 8. In effects opposite to HIF1α, KLF2 has been shown to repress 

inflammatory signaling19 and glycolytic metabolism 20. Whether KFL2 impacts disturbed 

flow-induced upregulation of HIF1α is not yet known. This is an important question as 

KLF2 has been shown to potently inhibit HIF1α expression and function21. In contrast, 

silencing HIF1α in endothelial cells exposed to disturbed flow resulted in increased 

expression of KLF2 suggesting that the mechanism by which disturbed flow decreases 

KLF2 expression is via increased HIF1α 8.

The posttranslational modification of proteins by the addition of ubiquitin, a small 8.5kDa 

“ubiquitous” protein, to select lysine residues is an important regulator of protein function 

and cell signaling. Protein degradation is one of the best known consequence of ubiquitin 

modification, but ubiquitin can also alter protein conformation and function and subcellular 

targeting 22. In normoxic conditions HIF1α typically undergoes VHL-dependent 

ubiquitination and degradation23, 24. An underappreciated aspect of ubiquitin modification is 

its reversibility and proteins targeted for elimination can earn a reprieve through the actions 

of a group of enzymes known as DUBs (DeUBiquitinating enzymes). The role of DUBs in 

shear stress and atherosclerosis is poorly understood. Otud7b (Cezanne) is a DUB that 

belongs to A20 like ovarian tumor domain subfamily. In addition to targeting protein 

substrates with Lys48- and Lys63- ubiquitin chains, Cezanne specifically breaks ubiquitin 

chains linked to Lys11, endowing it with potentially important roles in regulating protein 

stability and signaling25. Cezanne has emerged as an important regulator of both NF-κB 
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signaling and HIF1α expression 9, 26–28. In the study by Feng et al, Cezanne was 

upregulated by low flow and its expression was necessary to stabilize NF-κB-induced 

HIF1α protein expression. The inability of Cezanne to impact disturbed-flow induced-

upregulation of NF-κB is an apparent contradiction of previous findings27, 29. The authors 

address this conundrum by suggesting shear stress may activate NF-kB in a manner that is 

immune to Cezanne mediated de-ubiquitination.

In summary, Feng et al have expanded our knowledge of the role of HIF1α in the 

development of atherosclerosis. In specific they show that in addition to a role in regulating 

intraplaque angiogenesis in advanced lesions, HIF1α also functions in the early stages of 

atherosclerosis to initiate lesion formation by promoting inflammatory signaling in arterial 

regions exposed to low or non-laminar shear stress. Endothelial cells in culture and in 

regions of blood vessels exposed to low and turbulent flow have increased HIF1α expression 

along with the upregulation of numerous glycolytic enzymes and increased inflammatory 

signaling through enhanced activation of NF-κB (see outline in Figure 1). While these 

results are in excellent agreement with a recent publication 8, important gaps in our 

knowledge remain including a better understanding of the shear stress-dependent signaling 

events leading to expression of HIF1α. A role for Nox4 in shear-stress mediated induction 

and stabilization of HIF1α as proposed by others8 is complicated by numerous studies 

showing that loss of Nox4 exacerbates atheroclerosis30 although there may be confounding 

temporal considerations. How shear-stress impacts Cezanne expression is also ambiguous 

with some publications showing little to no effect compared to proinflammatory cytokine 

such as TNFα and upregulation by laminar flow 26, 31. The impact of KLF2 on HIF1α 
expression and how Cezanne and other DUBs affect shear-dependent changes in NF-κB 

await further clarification. VEGF is robustly upregulated by HIF-1α and has been shown to 

be proatherogenic 32, but whether shear-dependent changes in VEGF have an important role 

is not known. The effect of low ambient oxygen concentrations on atherosclerosis is also 

complex and while 3 week exposure to hypoxia in ApoE null mice 3 and chronic intermittent 

hypoxia increase lesion burden 33, the long term adaptation to hypoxia is protective in both 

mice and humans at altitude 34.
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Figure 1. Mechanosensitive pathways in endothelial cells subject to (A) laminar flow or (B) 
disturbed flow
Laminar shear stress upregulates KLF2 which has been shown to inhibit HIF1α by 

promoting its degradation and collectively these events lead to increased expression of 

homeostatic enzymes such as eNOS, inhibition of NF-κB and inflammation, decreased 

angiogenesis and suppression of key glycolytic enzymes such as PFKFB3. In contrast, 

turbulent flow and oscillatory shear stimulate NF-κB which induces HIF1α resulting in the 

loss of KLF2. HIF1α protein expression is stabilized by the upregulation of Cezanne which 

removes ubiquitin modifications and also by Nox4. HIF1α drives increased glycolysis, 

inflammatory signaling via NF-κB and expression of adhesion molecules as well as 

increased angiogenesis.
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