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SUMMARY

A meta-analysis of non-human primates performing three different tasks (Object-Match, Category-

Match, and Category-Saccade associations) revealed signatures of explicit and implicit learning. 

Performance improved equally following correct and error trials in the Match (explicit) tasks but it 

improved more after correct trials in the Saccade (implicit) task, a signature of explicit vs implicit 

learning. Likewise, error-related negativity, a marker for error processing, was greater in the Match 

(explicit) tasks. All tasks showed an increase in alpha/beta (10–30 Hz) synchrony after correct 

choices. However, only the implicit task showed an increase in theta (3–7 Hz) synchrony after 

correct choices that decreased with learning. In contrast, in the explicit tasks, alpha/beta synchrony 

increased with learning and decreased thereafter. Our results suggest that explicit vs implicit 

learning engages different neural mechanisms that rely on different patterns of oscillatory 

synchrony.

eTOC Blurb

In brief, Loonis et al. find that explicit and implicit learning use feedback about correct choices vs 

errors differently. Implicit learning relies more on theta synchrony (3–7 Hz) while explicit learning 

relies on alpha/beta synchrony (10–30 Hz).
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INTRODUCTION

Learning was once believed to be a unitary process. As it turned out, however, patient HM 

and other amnesia patients have preserved skill learning despite an inability to retain and 

recall new facts and episodes (Scoville and Milner, 1957; Milner, 1962; Milner et al. 1968; 

Cohen and Squire, 1980). This led to the notion that there are at least two major forms of 

learning: one, hippocampal-dependent and episodic in content (explicit learning) and, 

another, non-hippocampal and largely unconscious (implicit learning).

While it is clear that explicit and implicit learning engage distinct brain systems, differences 

in their neural mechanisms have been less clear. For the most part, studies of the neural 

correlates of both types of learning report similar findings. On the neuron level, tuning 

sharpens, signal-to-noise ratio improves and their activity becomes a better predictor of task 

events (Antzoulatos and Miller, 2011; Asaad and Miller, 1998; Brincat and Miller, 2015; 

Chen and Wise, 1995; Sakai and Miyashita, 1991; Pasupathy and Miller, 2005; Williams and 

Eskandar, 2006; Wirth et al., 2003; Wirth et al., 2009). On the network level, learning 

enhances oscillatory activity, improves synchrony between neurons, and even sculpts unique 

oscillatory ensembles (Antzoulatos and Miller, 2014; Brincat and Miller, 2015; Buschman et 

al., 2012; Hargreaves et al., 2012; Jutras et al., 2009; Jutras et al. 2013). Animal studies are 

generally agnostic as to whether this plasticity is related to explicit or implicit learning. 

Assignment to one or the other is typically made by whether the brain area in question has 

been associated with explicit learning (e.g., the hippocampus) or implicit learning (e.g., the 

basal ganglia) and whether learning is fast (explicit) or slow (implicit). There is no clear 

neural signature differentiating the two.

This is due, in part, to practical considerations. A typical experiment trains animals to learn 

one task. That is difficult enough. Training animals to learn two or more tasks is 

prohibitively time-consuming. It occurred to us, however, that we had data from three 

experiments that differed in their formal demands in two ways: one, in the content of what 

was learned (paired associations between objects vs category membership), and, two, in how 

that learning was “read out” (via a match decision or visuomotor association). Fortuitously, 

there was enough overlap in the tasks for us to isolate these different factors. We found 

different patterns of post-choice synchrony that varied with the read-out, not with the 

content. Examination of the animals’ behavior and neural activity supported the conclusion 

that these different synchrony patterns were signatures of explicit and implicit learning.

RESULTS

Tasks

Six monkeys (three different pairs) performed three different learning tasks (Fig. 1A–C). 

During each session of the Object Match task (OM; Fig. 1A), animals learned through trial-

and-error four novel associations between pairs of objects (see Methods). They saw two 

objects in succession: first a sample and then a test. If the test object was the pre-assigned 

paired associate of the sample, they were rewarded with juice for making a saccade to a 

subsequently displayed, randomly positioned target. If the test object was not the pre-

assigned paired associate of the sample, then they had to withhold a response to this target 
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and await the presentation of the correct test object. If they responded to the wrong test 

object, they received error feedback, i.e. there was no reward and a red screen flashed on.

The other two tasks required animals to categorize dot patterns that were distortions of 

prototype patterns (Fig. 1B, C). These prototypes were jittered according to a set of 

statistical rules to produce a large number of exemplars for each category. For each 

recording session, two novel categories were generated, and the animals had to learn through 

trial-and-error which exemplars belonged to which categories. The animals were first 

presented with a sample exemplar from one of the categories, which was then followed by a 

short delay. In the Category Match task (CM), two test exemplars appeared side-by-side 

after this delay – one on the right side of the screen, and the other on the left (Fig. 1B). One 

of the exemplars was from the same category as the sample (a category match); the other 

was from the other category. The left vs right location of the matching exemplar was 

random. The monkeys free-viewed the test exemplars and were rewarded for maintaining 

fixation on the correct one. If incorrect, the animals received error feedback: there was no 

reward and the chosen stimulus turned red. In the Category-Saccade task (CS), at the end of 

the delay, two green dots appeared on the right and left side of the screen. Each of the 

categories was arbitrarily associated with a saccade to the right or left dot. (Fig. 1C). The 

monkeys learned by trial-and-error which saccade was associated with which category. As 

before, an incorrect response was followed by error feedback (no reward and a presentation 

of the sample exemplar at the correct location).

In order to facilitate learning in the category tasks, each session was organized into a set of 

blocks. In the first block, the animals were presented with only two exemplars from each 

category. To move on from one block to the next, the animals had to perform at or above 

70% correct. With every subsequent block, a greater number of novel exemplars from each 

category was used. In each block, there were a total of 2block exemplars (Antzoulatos and 

Miller, 2011). Thus, each time they reached criterion, the animals were challenged with 

more novel exemplars, facilitating their gradual acquisition of the categories.

For all three tasks, the animals were well trained on the formal demands of the tasks, but had 

to learn new stimuli for each recording session. In each task, animals started near, or at, 

chance and gradually reached a good level of performance (> 75% correct) within a single 

recording session (average 2–3 hours). Mean performance during Category-Saccade and 

Category-Match learning was no different (CM, 79.3%; CS, 82.1%; p = 0.1637), while 

performance during Object-Match learning was somewhat lower (69.1%, vs. CS p = 1 × 

10−7; vs. CM, p = 2 × 10−24, two-sided t-test). Recordings were obtained from sites 

distributed evenly across dlPFC and vlPFC, anterior to the origin of the principal sulcus 

(Fig. 1D–E). Additional recordings were obtained in the Object-Match task from the 

hippocampus (HPC), in the Category-Saccade task from the anterior caudate (STR, 

striatum), and in the Category-Match task from dorsomedial Prefrontal Cortex in the vicinity 

of the supplementary eye fields (dmPFC).

For the sake of analysis, we divided learning into stages. In the Object-Match task, the 

animals gradually acquired the paired associations. Thus, we evenly divided the session into 

Early (first third of trials), Middle (middle third) and Late (final third) learning stages. 
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Because of the blocked structure of the category learning tasks, defining the learning stages 

was less straightforward. In order to do so, we focused on the acquisition of category 

information to determine learning stages, as we had in our prior work (Antzoulatos and 

Miller, 2015). Category knowledge was assessed by performance to the novel exemplars. 

Early in learning, the monkeys had not yet acquired any category information. When novel 

exemplars were introduced at the start of a block of trials, performance to novel exemplars 

was substantially diminished, if not at chance (i.e., they guessed). By contrast, late in 

learning, they had acquired the categories and performance to novel exemplars was at a high 

level (75% correct) and stable (i.e. the animal’s performance to novel stimuli reached an 

asymptote). In order to characterize this asymptote, we tested sequentially whether or not 

performance on novel exemplars in the first n trials differed from performance on novel 

exemplars on trials n+1 to the end of the day. When the null hypothesis could no longer be 

rejected, we considered those trials as late learning. To reject this null hypothesis, we used a 

two-sided t-test and set a threshold of p < .05. In the Category-Saccade task, this plateau of 

novel exemplar performance occurred in block 5, and, in the Category-Match task, it 

occurred in block 2.

As a result, in the Category-Saccade task, we identified an Early stage of learning (prior to 

acquisition of category information, i.e., chance performance to novel exemplars) as the first 

80 trials (the first two blocks of trials, on average). The Late learning stage occurred in 

blocks 5 to 8 (on average, trials 210–550), when performance to novel exemplars was high 

and stable (and thus the categories were learned). We could also identify a Middle stage 

(around trials 81–209 and blocks 3–4, on average) in which performance to novel exemplars 

did not drop to chance, but was below criterion and improved over the block of trials (and 

thus categories were being acquired). Finally, in the Category-Match task, learning occurred 

more rapidly. Within the first 100 trials, and by block 2, the monkeys’ average performance 

to novel exemplars reached an asymptote. There was no clear middle stage. Therefore, in the 

Category-Match task, the first 100 trials were classified as Early learning, and the following 

100 trials were classified as Late.

The idea in comparing these three tasks was that they overlapped in different ways. Two of 

them shared the requirement to make a match decision (but to different types of stimuli - a 

paired associate object vs dot category exemplars). The other two shared similar stimuli (dot 

category exemplars) but differed in response (match decision vs performing an associated 

visuomotor response).

Correct Feedback was Emphasized During the Visuomotor Learning Task

An examination of the animals’ behavior suggested that the match tasks relied on explicit 

learning while the visuomotor (saccade) task relied on implicit learning. Prior studies have 

shown that implicit learning relies more on correct than error feedback. For example, skill 

learning in amnesia patients is better when correct feedback is emphasized (Evans et al., 

2000; Squires et al., 1997; Roberts at al., 2016; Maxwell et al., 2001; Poolton et al., 2005). 

The different use of feedback information for learning seemed to divide our Match and 

Saccade tasks.
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We found that Category-Saccade learning improved more after correct choices (and correct 

feedback) than after incorrect choices (and error feedback). In fact, error feedback in this 

task appeared to be disruptive; performance worsened immediately after an incorrect trial 

and reaction times increased. Figure 2A shows performance on Category-Saccade trials that 

were immediately preceded by either a correct response (and correct feedback) or an 

incorrect response (and error feedback). Performance on the Category-Saccade task was 

significantly better if the preceding trial was correct (blue bars) than if the previous trial was 

incorrect (red bars) (+23.97% after correct choices, p < 1 × 10−4, for all stages, bootstrap). 

This performance advantage after correct trials held throughout learning, even as overall 

performance improved, and extended over several trials (Figure S1). Further, reaction times 

on those trials following an incorrect trial increased by 27.9ms (Fig. 2D, p < 1 × 10−4). This 

increase in reaction times was not driven exclusively by a rise in the number of errors, for 

even correctly performed trials after an error had much higher reaction times (23.9ms, p < 1 

× 10−4).

By contrast, during the two Match tasks (OM and CM), there was barely a difference in 

performance (+1.86% in Object-Match task, p < .005, Fig. 2B; +3.75%, in Category-Match, 

p < 0.025, bootstrap, Fig. 2C) and in reaction times (Fig. 2D: OM: 5.1ms, p < 1 × 10−4; CM: 

8.8ms, p < 1 × 10−4) on trials following correct trials vs incorrect trials. Only early in 

learning did both Match tasks differ marginally in their performance improvement after 

correct trials (Early, +2.86% CM > OM, p = 0.0524; Late, +2.32%, CM > OM, p = .1048). 

Moreover, this difference in performance was minor relative to those differences between 

both Match tasks and the Saccade task (CS vs. OM, +29.24% (early), +21.45% (late), p < 1 

× 10−4; CS vs CM, +26.31% (early), +19.13% (late), p < 1 × 10−4). In contrast, the 

differences in reaction times following an error were not statistically different between 

Match tasks (p = 0.172), and were significantly smaller than in the Saccade task (vs. OM. 

−22.8ms, vs. CM, −17.7ms, p < 1 × 10−4).

Moreover, these performance differences following error and correct feedback persisted 

across trials and independent of learning stage classification (Fig. 2E, F). We estimated a 

bivariate linear model examining whether both the mean performance of all trials prior to 

feedback and the type of feedback (correct or an error) influenced mean performance in the 

10 (Fig. 2E) or 20 (Fig. 2F) trials post-feedback. Again, we found that in the Saccade tasks 

there was significantly better performance after correct than error trials than in the Match 

tasks (20 trial model – OM: +0.0078, CM: +0.0153, CS: +0.0903; CM, OM < CS, p < 

0.0004; 10 trial model – OM: +0.0078, CM: +0.0134, CS: +0.1034; CM, OM < CS, p < 

0.0004, bootstrap). We will see next that these task differences were also mirrored in 

differences in an evoked potential called the error-related negativity.

Error-Related Negativity was Stronger for Match than Saccade Learning

Error-related negativity (ERN) is an event-related potential observed after committing errors 

during learning. It has been correlated with error awareness (Frank et al., 2005; Gehring and 

Willoughby, 2002; Scheffers and Coles, 2000; Walsh and Anderson, 2012; Wessel et al., 

2011; Wessel, 2012). The behavioral analysis described above suggested that Category-

Saccade learning was less reliant on errors than the two match tasks. This was paralleled in a 
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weaker error-related negativity (ERN) in the Category-Saccade task relative to the match 

tasks.

Figure 3 shows the event-related potentials (ERPs) following correct (blue) or error (red) 

feedback, averaged across all electrodes, for the Object-to-Match (left column), Category-to-

Match (middle column), and Category-to-Saccade (right column) tasks. In humans, the ERN 

typically peaks between 80–300ms after an error. This time period is shaded grey in Figure 

3A–F. As predicted, during Category-Saccade learning, there was no prominent ERN in the 

expected time window in either the PFC (top right) or STR (bottom right) (Fig. 3C, F). In 

contrast, in that same time window, during both Object-Match and Category-Match learning, 

there was a prominent negative potential, an ERN, following errors (Fig. 3A, D). This sharp 

negative potential on error trials (red line) was most clear when compared to its absence 

following a correct response (blue line). The ERNs in both Match tasks were seen in PFC, 

dmPFC, and HPC (Fig. 3A, B, D, E).

In order to account for any differences associated with different neural latencies across the 

tasks, we recomputed the ERN by z-scoring the raw voltage differences to a within trial 

mean and STD, and aligning each of the tasks to their maximal difference. We quantified 

these differences over a 50-ms window centered on the peak negativity for each of the 3 

tasks (Fig. 3H). There was no significant difference between the match tasks (p = 0.911, 

bootstrap). By contrast, the ERN in the Match tasks was significantly greater than in the 

Saccade task (p < .001). This supported the conclusion that errors were of greater use in the 

match tasks and, thus, that they depended on explicit learning. The lack of an ERN during 

the Saccade task supports its reliance on implicit learning.

In order to assess the relationship between ERN and task performance, we defined the ERN 

on each trial as the distance between the maximum and minimum recorded value following 

an error. As in Figure 3H, we found that the ERN was significantly greater on Match tasks 

than that on Saccade tasks (Figure S2). This did not depend on the time window 

investigated, and this pattern extended to the HPC, dmPFC, and STR (Figure S2). There was 

also a correlation between behavioral performance and ERN. To compute this correlation, 

we found for each session and each trial the mean ERN across electrodes, and the mean 

performance over the 20 preceding trials. In order to account for the variability in the ERN 

across sessions, we then subtracted from each trial’s ERN the magnitude of the ERN at the 

75% performance level for each session, and linearly regressed these corrected ERN’s on 

performance. In the end, we found that in the Match tasks as performance increased so did 

the ERN. This was not true in the Saccade task (Fig. 3H; OM: +0.0059, p = 0.002; CM: 

+0.0061, p < 1×10−3; CS: −1.46×10−4, p = 0.996, bootstrap). These coefficients are plotted 

as hatched lines in Figure 3H. Next, we’ll show that feedback-period patterns of oscillatory 

synchrony also differed between the Match vs Saccade tasks.

Neural Synchrony Differentiates Learning Styles

In a previous report using the Object-Match task, Brincat and Miller (2015) found 

differences in LFP-LFP synchrony between and within the PFC and HPC during the 

feedback period. After correct responses, there was long-latency, long-duration synchrony, 

mainly at 10–30 Hz (the alpha-2/beta band). By contrast, after incorrect responses, there was 
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short-latency, short-duration synchrony at 3–7 Hz (i.e., delta/theta band). This was 

interpreted as reflecting the network interactions that guide learning by signaling success or 

failure. The differences in how animals responded to success and failure between the Match 

tasks vs Category-Saccade task in this report raised the question of whether feedback-related 

network interactions also differed: they did.

Figure 4 plots differences in synchrony as estimated by the pairwise phase consistency 

statistic (PPC) during the feedback period between correct and error trials. PPC quantifies 

whether there are any stable phase relationships between signals of the same frequency 

across trial conditions. Because the tasks involved eye movement responses tied to the 

correct exemplar, we removed the potentials related to the saccade away from the response 

target so that it would not contribute to any synchrony effects.

Both of the Match tasks showed the same pattern: an increase in alpha-2/beta synchrony 

after a correct response and an increase in delta/theta synchrony after an incorrect response. 

During the Object-Match task, there was an increase in alpha-2/beta synchrony on correct 

trials (red colors) both within the PFC (Fig. 4A) and between the PFC and HPC (Fig. 4B). 

On error trials, there was an increase in delta/theta synchrony (blue colors), especially within 

the PFC (Fig. 4A). Note that the increase in alpha-2/beta on correct trials tended to be long 

in duration and peaked after a long latency (750–1000ms), whereas the increase in theta/

delta synchrony on incorrect trials peaked earlier (400–500ms). This is consistent with our 

prior report (Brincat and Miller, 2015). Similar results were obtained from the Category-

Match task (Fig. 4C, D), especially within the PFC (Fig. 4C).

By contrast, the Category-Saccade task produced a different pattern of results. Like the 

Match tasks, there was an increase in alpha-2/beta after correct responses (light red colors). 

However, correct responses in the Category-Saccade produced a large increase in theta/delta 

(darker red colors), unlike the Match tasks in which delta/theta synchrony only increased 

after incorrect responses. This was true both within the PFC (Fig. 4E) and especially 

between the PFC and STR (Fig. 4F).

We quantified these differences by averaging over the 1.25 seconds after feedback was 

delivered (time zero in Fig. 4A–F). The results are shown in Fig. 4G. Positive values indicate 

greater synchrony after a correct response; negative values indicate greater synchrony after 

an incorrect response. In the alpha-2/beta band, all three tasks showed a significant increase 

in synchrony after correct trials only, within the PFC (OM, +0.012; CM, +0.0186; CS, 

+0.0358; p < 2 × 10−4, bootstrap) and, albeit weaker, between PFC and other areas (OM, 

+0.0012, p = 0.002; CM, +0.0112, p < 2 × 10−4; CS, +0.0268, p < 2 × 10-4). In the delta/

theta band, there was a marked difference between the Match tasks and the Category-

Saccade task. The Match tasks showed a significant increase in delta/theta synchrony after 

incorrect responses, especially within the PFC (OM, −0.0517; CM, −0.0129, p < 2 × 10−4) 

but also between PFC and HPC, and PFC and dmPFC (“PFC-Other”, OM, −0.018, p < 2 × 

10−4; CM, −0.0054, p = 0.0458). By contrast, in the Category-Saccade task there was an 

increase in delta/theta synchrony after correct responses within the PFC (CS, +0.067, p < 2 × 

10−4) and, more prominently, between PFC and STR (CS, +0.1057, p < 2 × 10−4).
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Because there were small differences in the error feedback across tasks (red screen in the 

OM task, correct test exemplar turning red in the CM task, and correct exemplar presented in 

the correct location in the CS task), we also examined whether these synchrony patterns (i.e. 

differences in the prevalence of theta and beta oscillations) were present on correct trials 

alone. We compared the relative amount of synchrony in different frequency bands by 

calculating the ratio of alpha-2/beta synchrony relative to delta/theta synchrony. A value 

greater than 1 indicates that synchrony in the alpha-2/beta band was greater than that in the 

delta/theta band. Values less than one indicate stronger delta/theta synchrony relative to 

alpha-2/beta. This is plotted in Figure 4H.

Both Match tasks had beta-theta ratios significantly above 1 (OM, ratio = 1.0641, p = 

0.0034; CM, ration = 1.2425, p < 2 × 10−4, bootstrap). This shows that alpha-2/beta 

dominated over delta/theta synchrony on correct trials during the Match tasks. By contrast, 

in the Category-Saccade task, the ratio was significantly less than 1 (ratio= 0.2759, p < 2 × 

10−4), indicating the dominance of delta/theta over alpha-2/beta on correct trials. Taking the 

absolute values of the ratio differences from 1 showed that the increase in delta/theta 

synchrony following correct Category-Saccade responses was greater than the increase in 

alpha-2/beta synchrony following correct trials in the Object-Match (+0.66, p < 2 × 10−4) or 

Category-Match (+0.4816, p < 2 × 10−4) tasks. None of these effects were influenced by the 

time window chosen for analysis (Figure Supplemental 3). These results suggest explicit and 

implicit learning may be differentiated by distinct patterns of network synchrony in response 

to feedback.

Neural Synchrony Changes with Learning and Learning Style

We next examined whether synchrony during the feedback period changed with learning 

and, if it did, whether it did so differently for the putative explicit vs implicit learning tasks. 

To investigate these changes, we focused on correct trials, because, for one, in the Category-

Match task, animals learned rapidly and we only had a small number of incorrect trials. Two, 

longer duration synchrony (~1–2s) tended to be seen after correct trials in all three tasks 

(albeit at different frequencies), and these longer duration events helped reduce the noise in 

our synchrony estimates. And three, whether the task was implicit or explicit, performance 

levels following correct trials was comparable (Fig. 2). To compute a frequency profile of 

the changes with learning, we computed PPC values using the traditional frequency bands: 

theta (3–7 Hz), alpha-1 (8–9 Hz), alpha-2 (10–12 Hz), beta-1 (13–17 Hz), and beta-2 (18–30 

Hz). We used the entire 1.7 second interval following delivery of feedback and compared the 

average values from early vs late in learning (as defined previously).

Figure 5 shows the change in PPC from early to late in learning. Fig. 5A shows these 

changes within PFC alone and Fig. 5B shows them between the PFC and other areas (PFC-

dmPFC, PFC-STR, and PFC-HPC). Positive values indicate an increase with learning, and 

negative values, a decrease. The largest effect was seen during Category-Saccade learning. 

There was a decrease in theta synchrony within PFC (Fig. 5A) and between PFC and STR 

(Fig. 5B) (PFC: −0.0472; PFC-STR: −0.0472, p < .005, bootstrap). By contrast, there was 

little or no change in theta synchrony with learning during either Object-Match or Category-

Match tasks. Instead, Match learning showed a moderate, but significant, increase in 
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synchrony in the higher frequencies, especially in the alpha-2/beta-1 band, within PFC (OM: 

alpha-2, +0.0097; beta-1, +0.0126, p<.005; CM: alpha-2, +0.0113, p <.005, bootstrap). 

There was also a modest, but significant, drop in beta-2 band synchrony across brain regions 

during the Match tasks, but not the Saccade task (OM: PFC-HPC, beta-2, −0.0023, p<.005; 

CM: PFC-dmPFC, beta-2, −0.0046, p <.005). There were other increases and decreases in 

alpha-1, and beta-2 with learning in the Match tasks, but they were modest and not 

consistent across tasks (OM: PFC-HPC, alpha-1, +0.0012, p<.005; beta-2, −0.0023, p<.005; 

CM: PFC, beta-1, −0.0013, p<.005). Moreover, there were no shared changes in synchrony 

in any frequency band between any of the Match tasks and the Saccade task (CS: PFC, theta, 

−0.0472; alpha-1, −0.0213; alpha-2, −0.0172; beta-1; −0.009, p < .005; PFC-STR, theta 

−0.0513, alpha-1, −0.0183, p <.005; beta-1, +0.0026). We replotted these results pooling 

alpha-2/beta-1 bands and computed these changes with learning over the entire feedback 

epoch. All time windows yielded similar results (Figure S4).

During Match Learning, Alpha-2/Beta-1 Synchrony Increased then Decreased

Above, we showed a moderate increase in alpha-2/beta-1 synchrony with learning during the 

Match tasks. A closer examination revealed something more complex. Alpha-2/beta-1 first 

increased with learning, but then late in learning, after the animals reached criterion, it 

decreased. Because the animals’ learning rate varied from task to task, from session to 

session, and even within a session itself, we could not simply relate PPC to an average 

learning curve. To better assess how alpha-2/beta-1 synchrony changed with performance, 

we computed PPC on correct trials over bins of 20 non-overlapping trials. We plotted 

average PPC values as a function of the animals’ level of behavioral performance over the 

trials bracketed by this same 20 correct-trial window. To maximize statistical power, we 

averaged across all electrodes both within and outside the PFC for each session.

Figure 6 shows the outcome of this analysis. Figure 6A, B shows the results for the Match 

tasks in the 10–17 Hz (alpha-2/beta-1) band where we observed an increase with learning 

(Fig. 5). This revealed that 10–17 Hz synchrony increased as task performance improved. 

That is, until the animals had largely learned the tasks. For both the Object-Match (Fig. 6A) 

and Category-Match (Fig. 6B) tasks, alpha-2/beta-1 synchrony increased until the animals 

reached around 80% correct performance and after that, synchrony decreased. This drop-off 

largely erased prior learning-related increases. A piecewise linear model, made up of two 

linear models, LM1 and LM2, confirmed these changes with performance (Fig. 6A, B). 

Linear Model 1 estimated the changes in synchrony with performance increases from 50 to 

80%, and Linear Model 2 estimated the changes in synchrony with performance increases 

from 80 to 100%. The coefficients for synchrony changes with performance were significant 

and opposite in sign around the 80% performance mark (OM: LM1, β = 0.028449, p 

=0.0068933; LM2, β = −0.079505, p = 0.0013742; CM: LM1, β = +0.11223, p = 4.7148e-9; 

LM2, β = −0.09765, p = 0.0087861, two-sided t-test).

Even though the drop in alpha-2/beta-1 synchrony occurred in both Match tasks when 

performance was above average, there was still sufficient trials for analysis (11% and 20% 

of both the OM and CM datasets were available for analysis at or above 90% performance, 

respectively). We applied this same analysis in the Category-Saccade task both to PFC pairs 
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alone and PFC-STR pairs included (where we saw a decrease with learning, see Fig. 6A), 

and yet we still did not find any increase with performance (PFC alone: LM1, β = −0.04015, 

p = 0.61026; PFC-STR included: LM1, β = −0.13447, p = 0.067499, two-sided t-test). 

Instead, the observed drops in alpha-2/beta synchrony were restricted to after the learning 

criterion was reached (PFC alone: LM2, β = −0.20717, p = 0.0054737; PFC-STR: LM2, 

LM2, β = −0.039018, p = 0.55914) (Fig. 7C).

During Saccade Learning, Theta Synchrony Drops Continuously

In the Category-Saccade task, we found that theta synchrony dropped with learning (Fig. 

7A). Because alpha-2/beta changed differently before and after learning, we sought to 

identify whether theta synchrony changed at the same rate before and after performance 

levels reached 80%. This was the case. In Figure 7A, we found that theta synchrony dropped 

both early (LM1, β = −0.28891, p = 0.027735, two-sided t-test) and late (LM1, β = 

−0.27005, p = 0.015615). In other words, we did not see any difference in the change in 

theta synchrony before and after learning, like we did for alpha-2/beta-1.

Eye movements tend to be made in the theta range (3–7 Hz), and a concern was that these 

movements (and their correlates) could contribute to the observed changes in theta 

synchrony. However, we found little evidence that this was the case. We first sought to 

control for timing differences in saccades made during the feedback period, both on correct 

and incorrect trials. To do so, we aligned all of the data on a trial-by-trial basis to the first 

saccade the animal made away from the target that was chosen. After this re-alignment, we 

recomputed the PPC and we found that, despite this realignment, theta synchrony remained 

significantly higher on correct trials (−200 to 0ms prior to the saccade away, +0.1012, p < 2 

× 10−4, bootstrap, Fig. 7B). In fact, it appeared that the rise in the theta synchrony preceded 

this eye movement away and was more closely time locked to the delivery of the feedback. 

Specifically, we found that theta synchrony on correct trials peaked 81–119ms before the 

saccade and approximately 231–269ms after the feedback (95%, CI).

Alternatively, using the eye tracking data, we assessed both saccade velocity and the average 

number of saccades made over the feedback period. We found that, while there was an 

increase in the number of saccades on incorrect trials (+4 saccades, p < 2 × 10−4, bootstrap), 

there were neither any changes with learning in the number of detectable saccades nor in the 

average saccade velocity over the entire feedback period analyzed (0–1.7s) (Fig. 7C, D). 

Finally, it was possible that the theta synchrony present in the Category-Saccade task may be 

tied to eye movements that do not occur in the match tasks. Again, this was not the case. We 

found that over the 1.7s feedback period there was a median number of 9 saccades in the 

Category-Match task, strikingly similar to the median number of 8 saccades found in the 

Category-Saccade task (Fig. 7E).

DISCUSSION

We found evidence that two tasks involving match decisions engaged explicit learning, 

whereas a task involving a visuomotor (Saccade) association engaged implicit learning. 

Further, we demonstrated that these putative explicit and implicit learning tasks had different 

patterns of neural synchrony following correct vs incorrect behavioral choices. During the 
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explicit (Match) tasks, there was an increase in alpha-2/beta synchrony following a correct 

choice and an increase in delta/theta synchrony following an incorrect choice. The implicit 

(Saccade) task showed a different pattern. Like the explicit (Match) tasks, alpha-2/beta 

synchrony increased after correct choices. But unlike the Match tasks, which showed 

increases in delta/theta synchrony after incorrect choices, the implicit (Saccade) task showed 

increased delta/theta synchrony after correct choices. The two types of tasks also showed 

differences in how synchrony changed with learning. Alpha-2/beta-1 synchrony increased 

during explicit learning (both Match tasks) until the animals reached a high level of 

performance, then it dropped off. By contrast, during the implicit (Saccade) task, alpha-2/

beta-1 did not increase with learning and theta synchrony decreased.

The evidence that the tasks engaged different learning systems came from how errors were 

treated. During the implicit (Saccade) task, performance was better immediately following a 

correct than following an incorrect trial. Correct responses drove improvements in 

performance. This is consistent with observations that amnesia patients (who rely on implicit 

learning) acquire new skills more rapidly, and retain them longer, with errorless learning 

(Squires et al., 1997; Evans et al., 2000; Maxwell et al., 2001; Poolton et al., 2005; Roberts 

et al. 2016).

By contrast, during the explicit (Match) tasks, performance was nearly equivalent following 

correct and incorrect trials. In other words, explicit learning also utilizes feedback about 

incorrect responses to improve behavior. The greater error-related negativity (ERN) in the 

explicit (Match) tasks than in the implicit (Saccade) task further supports this conclusion. In 

humans, the ERN is correlated with error awareness, conflict monitoring, and the use of 

errors to improve learning, all hallmarks of explicit learning (Frank et al., 2005; Scheffers 

and Coles, 2000; Walsh and Anderson, 2012; Wessel et al. 2011; Wessel et al. 2012). For 

example, explicit learners of a sensorimotor sequence task exhibited an enhanced ERN 

relative to implicit learners (Russeler et al. 2003). Our results are also consistent with other 

reports that use of correct vs error feedback differentiates implicit vs. explicit learning tasks 

(Morrison et al., 2015; Smith et al. 2013). Moreover, in the Match tasks, when errors arose 

in the context of higher behavioral certainty, the ERN was larger and could have reflected a 

prediction error. This was not the case in Saccade (implicit) task. Explicit, not implicit, 

learning relies on the evaluation of specific rules (predictions) to guide performance. The 

Saccade task was likely more amenable to implicit learning because it allowed a motor 

response to be associated with the sample stimulus.

Category learning, and more specifically the dot-category learning employed here, has been 

found to rely on either implicit or explicit learning systems, depending on the task structure 

and instructions (Ashby and O’Brien, 2005; Ashby and Maddox, 2011; Carpenter et al., 

2016; Reber et al. 1998; Milton et al., 2011; Seger and Miller, 2010). If the dot learning was 

accompanied by motor instructions (such as point to center of dot pattern), or the task was 

an A-/not-A category distinction, implicit memory was used (Squire and Knowlton, 1995; 

Zeithmova et al., 2008). If instead, participants were told that there were different patterns, 

explicit memory was used (Aizenstein et al.,2000; Reber et al.,2003). Likewise, two of our 

tasks (Category-Match and Category-Saccade) required categorization of dot patterns, but 

had different behavioral requirements that seemed to engage explicit vs implicit learning, the 
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latter based on a motor decision. Our results are also in line with other observations that 

working memory tasks that seem formally equivalent (e.g., “remember objects”) can have 

different neural correlates depending on whether those memories are reported by actively 

choosing a match from alternatives or recognizing their match (Warden and Miller, 2011).

During explicit learning, alpha-2/beta band synchrony increased on correct choices, 

increased over the course of learning, and decreased after learning. Alpha-2/beta band 

synchrony has been tied to cognitive functions such as attention, top-down control, and 

feedback processing. This seems consistent with its role in explicit memory formation. 

Moreover, in a previous report, this feedback-period, alpha-2/beta band synchrony had been 

found to first arise from the hippocampus (Brincat and Miller, 2015). Together, all of this 

information suggests that the alpha-2/beta band synchrony found in the feedback period may 

reflect the activity of specialized neural circuits originating from the hippocampus 

responsible for explicit learning.

Theta synchrony, on the other hand, has been linked with learning, memory, and conflict 

monitoring (Colgin, 2013). Theta oscillations and theta stimulation have been known to 

facilitate both long-term potentiation (LTP) and long-term depression (LTP) in vitro and in 

vivo (Huerta et al., 1995; Hyman et al. 2003). Theta synchrony has never been reported in 

non-human primates in response to correct feedback, nor has its decrease with learning. It 

has been found to become more prevalent in patients with even mild Alzheimer’s, who by 

definition increasingly rely on implicit learning strategy (Coben et al., 1989; Jeong, 2014). 

Our observations of theta synchrony within prefrontal cortex and between prefrontal cortex 

and striatum, in addition to the hippocampus, suggest that theta synchrony is a widespread 

plasticity signal. Implicit learning, therefore, may depend on global changes in LTD and 

LTP, rather than the activation of specific hippocampal-based networks.

Alternatively, theta oscillations may act as a mechanism organizing neural activity between 

brain areas. Previous studies have suggested that low frequency synchronizations facilitate 

long-distance communication. For instance, theta synchrony has been reported to coordinate 

activity between regions, such as V4-FEF (Liebe et al., 2012), STR-HPC (DeCouteau et al., 

2007), FEF-ACC (Babapoor-Farrokhan et al., 2017), PFC-HPC (Benchenane et al. 2010), 

PFC-STR-HPC (Herweg et al., 2016), and LIP-TEO-V4-Pulvinar (Wang et al., 2012). In 

particular, one study found that as animals learned a procedural task, theta oscillations 

within STR and HPC became anti-phasic (DeCouteau et al., 2007). The presence of theta 

synchrony, hence, between PFC and STR may facilitate the functional connectivity between 

PFC and STR over that of PFC and HPC.

In sum, our results suggest that explicit vs implicit learning not only engages different brain 

systems, it may also engage different neural mechanisms that rely on different patterns of 

oscillatory synchrony.
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STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Earl K. Miller (ekmiller@mit.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were performed in adult (~8–10 years old) rhesus macaques (Macaca 
mulatta), ranging from 5 to 13 kg. All procedures followed the guidelines of the MIT 

Animal Care and Use Committee and the US National Institutes of Health. In total, 4 

females and 2 males were trained in this study. They were pair-housed, and on a normal 12-

hr diurnal schedule. In the Category-Saccade task, one of the animals had been previously 

trained on a conditional association task. In the Category-Match task, one of the animals was 

being actively treated with cyclosporine daily. All animals spent approximately 1–2 years of 

training on their respective tasks.

METHOD DETAILS

Task Details—The details of the Object-Match task have been presented previously 

(Brincat and Miller, 2015). In each session, six novel objects were chosen from an image 

database (Hemera Photo-Objects). Four were randomly designated as cue objects, and the 

remaining two as associate objects. In turn, each cue object was randomly paired with an 

associate object. The monkeys’ task throughout each session was to learn, through trial-and-

error, which associate was paired with each cue. To initiate a trial, each monkey fixated on a 

central white dot for 0.5s. After this fixation period, a cue object (foveal, 3° wide) was 

presented for 0.5s, followed by a blank delay of 0.75s. Two associate objects were then 

presented in a randomly-ordered series. Each object presentation lasted 0.5s, and was then 

followed by another a brief delay of 0.6s. To indicate that an object was a match, the monkey 

had to saccade to a subsequently presented visual target, a white dot presented 7.5° to the 

left or right of fixation. And if it did so, the animal received juice and a new trial began 

within 3s. If incorrect, instead of juice, a red “error screen” flashed on for 1.5 s, and the 

animal had to wait 6s for the subsequent trial. The location (left versus right) of the response 

target after each associate was randomized and unrelated to task performance.

The details of Category-Saccade task have also been presented previously (Antzoulatos and 

Miller, 2011 and 2014). In this task, animals had to learn to classify a number of category 

exemplars generated from two different prototypes into two categories. Each category was 

directly tied to a specific saccadic target (right or left). To start a trial, animals first fixated 

within 1.5–2° of a red, central target (0.4° in diameter) for 0.7s. After this fixation period, a 

randomly chosen category exemplar (6° by 6°) from either category was presented for 0.6s. 

Trials from both categories were randomly interleaved throughout the session. One second 

after the end of the exemplar period, two saccade targets (a green dot, 0.6° in diameter) 

appeared on the left and right of the center of fixation (5° from the center). In order t o 

indicate a response, the animals had to make a single, direct saccade within 1s of target 

presentation and maintain fixation on it for 0.2s. If the animal chose correctly, it was 
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rewarded with drops of juice. If the animal did not, it was punished with a 5-s timeout, 

during which the cue was presented again at the location of the corresponding target.

In each session of the Category-Match, animals had to classify a number of category 

exemplars generated from two novel different prototypes into two categories. Each category 

here, however, was neither tied to any particular saccade nor saccade location. Instead at the 

test period, the animal had the opportunity to freely investigate two exemplars, one of which 

matched the category of the sample exemplar, and then had to choose by fixating on this 

match. To initiate each trial, each animal had to fixate within 2.5° of a centrally located, red 

dot (0.2° i n diameter) for 0.5s. After this fixation, an exemplar of one of the two categories 

was presented at the center of the screen (7° by 7°) for 1s. If the animal continued to fixate 

throu gh this sample period, and a subsequent delay of 0.85s (with an additional jitter of 

0.4s), then the central fixation dot disappeared and two new exemplars were presented on the 

left and right side of the screen (9° from the center of the screen). Once the test exemplars 

appeared, the animal had the opportunity to freely view both of the exemplars presented and 

make the correct choice. To indicate this choice, the animal had to fixate on one of the two 

peripherally presented exemplars for 0.7s. If it made the correct choice, the white dots of the 

chosen exemplar turned green and the animal received juice. If the animal did not make the 

correct choice, the chosen exemplar turned red and no juice was given. Depending on the 

animal, the length of timeout incurred on error trials varied from 5–16s.

Neurophysiology and Hardware—In both the Category-Saccade and Object-Match 
task stimulus presentation and reward delivery were controlled by Cortex (NIMH, 

Laboratory of Neuropsychology) and presented on a 100 Hz CRT monitor. Eye movements 

and pupil size were monitored and recorded using an infrared eye tracking system (Eyelink I 

& Eyelink II, SR Research @ 500 Hz). In these tasks, up to 16 electrodes were lowered in 

PFC, HPC, or STR acutely. All recordings from PFC and STR, and most from HPC, were 

performed with epoxy-coated tungsten microelectrodes (FHC). On some HPC recordings, 

24-channel linear probes with 300-um spacing between adjacent platinum iridium contacts 

were used (U-probes, Plexon). For targeting, the animals’ implanted chambers were co-

registered with structural MRI images. For all of the PFC, STR, and some HPC recordings, 

these electrodes were lowered daily though the dura using custom-built, screw micro-drives. 

The exact location on the grid and orientation of the grid were varied to limit cortical 

damage and maximize coverage of the intended regions. For the linear probes, electrodes 

were lowered through a 25-gauge transdural cannula using a motorized drive system (NAN-

S4, NAN instruments). The electrodes would be lowered until spiking was detected, and 

then electrodes were allowed to sit for about an hour to limit apparent neural drift. Neural 

activity was amplified, filtered, digitized and stored using an integrated multichannel 

recording system (Multichannel Acquisition Processor, Plexon). The signal from each 

electrode was amplified by a high input–impedance, unitary gain headstage (HST/8o50-G1, 

Plexon), referenced to ground, filtered from 0.7–300 Hz, and amplified 1000-fold. LFPs 

were recorded continuously at 1 kHz. Only electrodes with cells present on them were 

included for these analyses and, after trial cutting, evoked potentials were subtracted out 

from each individual trial.
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In the Category-Match task, stimulus presentation and reward delivery were controlled by 

custom software written in Matlab using PsychToolbox. All stimuli were presented on a 

LCD screen at 144 Hz (ViewSonic VG2401mh 24″ Gaming Monitor). Eye movements and 

pupil size were monitored using EyeLink II at 1000 Hz sampling. Four 8×8 channel 

Blackrock Cereport arrays with 1mm long electrodes were implanted in dorsomedial 

prefrontal cortex (dmPFC), dorosolateral prefrontal cortex (dlPFC), and ventrolateral 

prefrontal cortex (vlPFC). Each electrode was separated by 400 um. vlPFC, dlPFC, and 

dmPFC were all defined by anatomical landmarks following the craniotomy. The vlPFC 

array was placed 1 mm ventral to the principal sulcus and was centered at 9–12 mm anterior 

to the genu of the arcuate sulcus. In contrast, the dlPFC array was positioned slightly more 

rostral, 12–15 mm anterior to the genu of the arcuate and 1 mm dorsal to the principal 

sulcus. Finally, we placed the dmPFC (dorsomedial prefrontal cortex) array in the vicinity of 

where others have reported to identify the supplementary eye fields. The medial edge of the 

array was placed 5mm from the midline, and 5mm anterior to the genu of the arcuate sulcus. 

We recorded using Blackrock headstages (Blackrock Cereplex M and Cereplex E). Signals 

were sampled at 30 kHz, band-passed between 0.3 Hz and 7.5 kHz (1st order Butterworth 

high-pass and 3rd order Butterworth low-pass), and digitized at a 16-bit, 250 nV/bit. All 

LFPs were recorded with a low-pass 250 Hz Butterworth filter, referenced to ground, 

sampled at 1 kHz, and AC-coupled. In Monkey G, an error in the design of the Cereplex E 

head-stage made the system susceptible to ground loops and to DC-drifts in the signal. This 

required us to apply a high-pass, 0.5 Hz FIR filter in both directions on the whole dataset to 

avoid any phase distortions. All arrays had units present on at least 5, if not typically a large 

proportion of channels. All channels were included in this analysis, and for all synchrony 

analyses the evoked potentials averaged across trials were subtracted from each individual 

trial.

Prototype and Exemplar Generation—In both the Category-Match and Category-

Saccade tasks, the visual stimuli were composed of 7 randomly located dots on a black 

background. To construct the categories, we followed previously published procedures 

(Posner et al., 1967; Vogels et al., 2002, Antzoulatos and Miller, 2011). Every day, two novel 

prototypes were created at random. These prototypes (as would be the exemplars) were 

generated as 7 arbitrarily positioned, 7-pixel dots on a grid of 140 by 140 pixels. In order to 

control for difficulty and ease, these arbitrarily constructed prototypes had to obey a number 

of rules: (1) They had no dot centers that fell within 14 pixels of one another. (2) The 

average dot position of the prototype was at the center of the grid. (3) No dots from each 

exemplar fell within a 10-dot margin on the edge. And, (4) the minimum Euclidean distance 

between all pairs of dots between each prototype was no greater than 200 pixels. Each of 

these 140 × 140 pixel exemplars subtended 6–7 degrees of visual angle.

In order to generate the exemplars, the prototype dot patterns were jittered according to a 

procedure first established by Posner and colleagues (Posner et al., 1967). To determine this 

jitter, we first defined 5 concentric annular regions. These annuli were centered around each 

dot, and spaced apart radially by 7 pixels. Region 1 refers to the annulus immediately 

surrounding the dot center, 1 dot-diameter away, and region 5 refers to the annulus 5 dot-

diameters away from this dot. Next, each dot from each prototype was shifted away from its 
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prototypical location by at least 1 region; no exemplar was identical to the prototype. 

Whether any particular dot was moved to regions 2 to 5 depended on the distortion level 

desired. Each exemplar had to be unique, different from any other exemplar, and, to ensure 

such, no more than 2 dots from each exemplar could be less than 10 pixels away from any 

other exemplar’s dots.

Posner et al. defined 9 distinct levels of distortion, based on the probability of a dot to shift 

to each of these 5 concentric regions. Two of these 9 distortions were used in this task. At 

distortion level 1, 88% of dots were shifted to region 1, 10% to region 2, 1.5% to region 3, 

0.4% to region 4, and 0.2% to region 5. At distortion 2, 75% of dots were shifted to region 1, 

15% to region 2, 5% to region 3, 3% to region 4, and 2% to region 5. In the Category-

Saccade task, the generated exemplars were largely at distortion level 2. In the Category-

Match task, which appeared more difficult for animals to acquire, distortion level 1 

exemplars were used for both animals. As a side note, in order to rule out that any of the 

reported effects were a result of the level distortion, we repeated 3 sessions in one of the two 

monkeys at distortion level 2. The results were similar; the monkey showed an enhancement 

of synchrony in the beta band on correct trials and theta band on incorrect trials.

Overall, the use of these visual stimuli in both tasks provided for us a number of advantages: 

(1) These categories were not imbued with any overt meaning to the subject, for they held no 

apparent relationship to objects seen in daily life. (2) The exemplars which could, in fact, 

look distinctively different from one another were always perceptually related and averaged 

out to the original prototype. And (3), these categories could not be distinguished by any 

simple rule.

Block Design—To facilitate learning, in both the Category-Match and Category-Saccade 

task, each learning session was organized into blocks. The blocks were defined by a 

progressively growing pool of available exemplars from which any could be used for a given 

trial and any task period (sample or test). In any given block, with the exception of block 1 

in the Category-Saccade task, there were a total of 2block number of exemplars for each 

category. In the Category-Saccade task, in the first block, there was a single exemplar per 

category. The pool of available exemplars grew by accretion, “new” exemplars were added 

to a bank of “familiar” ones, so that the total available exemplar was equal to 2block. The 

terms novel and familiar are not an indication for how familiar any exemplar was to an 

animal, but simply a reflection of when it became available in the pool of potentially usable 

exemplars. As the blocks progressed, the chances for only seeing novel exemplars increased 

substantially, and performance on these novel exemplars suggested successful 

categorization. In fact, block transition was not possible without successful categorization, 

and the overlap of available exemplars between blocks favored a smoother learning process.

In order to pass from one block to another, each animal had to achieve a particular 

behavioral criterion. The criteria diverged somewhat between the two category tasks. In the 

Category-Saccade task, a block transition occurred when the animal had correctly responded 

to 80% of the previous 20 trials. In the Category-Match task, both animals had a tremendous 

capacity for being biased in either choosing a particular location and/or a particular category. 

In order to limit these behavioral biases, each animal had to successfully complete 70% of 
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the previous 10 trials for each potential condition (Category A – on left, Category A – on 

right, Category B – on left, and Category B – on right). Because of these behavioral criteria 

in both tasks, not all available exemplars were presented in each block. In the Category-

Match task, an additional restraint was imposed on the pool of available exemplars presented 

in block 1. Because both animals struggled to pass block one, in which two exemplars from 

each category were presented, the exemplars from each category had to have a Euclidean 

distance of less than 20 pixels apart. This constraint reduced the difficulty of the first block, 

promoted rapid block passage, and ultimately favored category abstraction. Following block 

one, there was no limitation on the presented exemplars.

Bias Correction—The Category-Match was a more difficult task to maintain high levels 

of performance and, as a result, if left to each of their own devices, each of the animals 

engaged in suboptimal strategies and would fail to learn to categorize stimuli. To avoid these 

aberrant behaviors, we detected the animals’ biases, and scaled the probability that any 

particular condition was shown to counteract these “easier,” inefficient strategies. In order to 

assess bias in any one of the four conditions enumerated above, we compared performance 

in each of the four conditions to one another, and computed the Mann Whitney U test 

statistic (U) for each of these comparisons. R1 represents the sum of ranks for condition 1 

and the n1 represents the sample size for sample 1. From this test statistic, we obtained the 

area under the curve, subtracted 0.5 to obtain a bias measure, and remapped this bias 

measure to a value between [0–1] by dividing it by 0.5. We then used this measure to scale 

the probability that any particular condition would be seen. We only implemented this bias 

correction algorithm after 20 trials were performed in each of the blocks.

Eqn. 1

Eqn. 2

Eqn. 3

QUANTIFICATION AND STATISTICAL ANALYSIS

Learning Stages—In a previous report, which analyzed this same Category-Saccade task, 

block 5 similarly marked the transition towards a late stage of learning (Antzoulatos and 

Miller, 2011). In that study, early learning (alternatively called stimulus-response 

association) was defined as the first two blocks of the task, where novel exemplar 

performance was at chance. By contrast, late learning (alternatively called category-

performance) was defined as those blocks when novel performance on each category in a 16-

trial window was above 75% correct. This behavioral criterion was reached on average by 

block 5. The middle stage of learning (alternatively called category learning) was defined, 

therefore, as those blocks which remained, i.e. those blocks between the early and late stages 

Loonis et al. Page 17

Neuron. Author manuscript; available in PMC 2018 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of learning, and hence blocks 3 and 4. Due to the congruence of the sliding t-test first 

presented here and those previously published behavioral results, we separated learning into 

the same learning stages.

In the Category-Match task, novel performance had already plateaued by block 2 (on 

average, trial 89), and a division of learning stages by blocks was not appropriate. Because 

future analyses divided behavioral curves by 20 trial bins, we rounded the 89- trial criterion 

to the next multiple of 20, and defined early learning as the first 100 trials and late learning 

as the next 100. Moreover, because of the rapid learning particularly present in the Category-

Match task, we restricted these analyses involving the learning stages in both the Category-

Saccade and Category-Match tasks to those days in which learning was a bit more difficult 

and performance on all trials (not just novel) was less than or equal to 80% in the first 20 

trials. In the Category-Match task, 39 days matched these criteria, evenly spread across both 

monkeys (23 days from Monkey P, 16 days from Monkey G). In the Category-Saccade task, 

12 days matched these criteria (8 days from Monkey 1, 4 days from Monkey 2). All days 

from all monkeys in each task were pooled together. As we will see, learning in these 

analyses was assumed to be somewhat linear, and we expected to see physiological changes 

that correlated with average changes in performance in late vs. early trials. And while we 

did, we also show (when binning trials from the entire session by performance) that none of 

these results depend on a particular learning stage classification nor any assumption that 

learning need be linear.

Because the Object-Match task was not blocked, unlike the category tasks, the behavioral 

criteria for learning stages differed as well. As previously reported, in the Object-Match 

task, only those sessions for which each of the final cue-associate pairings were performed 

at 32 correct response over the final 50 trials (p ≅ .01, binomial test) were included in this 

final analysis. 61 sessions met these criteria, and trials within them were simply divided into 

thirds. The first-third of the session was early learning, the second-third middle learning, and 

the last-third late learning.

Behavioral Analyses—In all three tasks, we computed performance in the trial following 

a correct trial or an incorrect trial irrespective of the following category or cue-associate 

presented. A binomial distribution was fit to each of the post-correct and post-incorrect trial 

performances, and 95% confidence intervals were generated. During these same trials, we 

compared reaction times on trials following correct and incorrect trials. In both the 

Category-Saccade task and Object-Match task, we computed the differences in the time it 

took the animals to respond following target presentation between correct and incorrect 

trials. In the Category-Match task, because the task involved free viewing, we computed the 

differences in time between the presentation of the match exemplars and the chosen response 

after controlling for the number of saccades. To control for saccade number, we subtracted 

correct and incorrect trial times when the animal completed a single saccade, and the same 

for two saccades. All significance testing was done on a distribution generated through 

10,000 bootstraps of correct-incorrect trial time differences over sessions in each task. From 

these distributions, we computed 95% confidence intervals by finding the 2.5% and 97.5% 

quantiles of each distribution.
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In order to confirm that performance following errors was greatly reduced in the Saccade 

task relative to the Match tasks, we also examined whether mean performance over 10 and 

20 trials after a correct or an error differed in each task. We computed a linear regression 

model without interactions and treated both total trial performance pre-feedback, and the 

type of feedback (correct or an error) as independent variables, and mean trial performance 

in those 10 or 20 post-feedback trials as the response variable. The type of feedback (correct 

or error) was treated as a categorical variable and, thus, the design matrix had a single 

column of 1’s or 0’s for feedback type. We then pooled all combinations of trial feedback, 

post-feedback performance, and pre-feedback performance (10 or 20 trials) across all 

sessions, and used normal equations to analytically compute the coefficients for intercept, 

pre-feedback influence, and correct-incorrect post-feedback differences. We then randomly 

sampled all of the trials from all days, and computed an empirical distribution for each 

coefficient of the model. In Figure 2E and 2F, we plotted correct-incorrect feedback 

coefficient for each of the tasks. In Figure 2E, we examined the post feedback coefficient for 

10 trials, and in Figure 2F for 20 trials.

In Figure S1, we visualized performance differences after correct and incorrect trials across 

a sequence of 8 trials post-feedback. Again, we pooled all post feedback trials after correct 

and incorrect trials across all sessions, and randomly sampled the trials from across the days 

to obtained a mean performance difference for each post-feedback trial (i.e. post-feedback 

trial 1, post-feedback trial 2, etc.). We plot in Figure S1, an error-bar reflecting the standard 

deviation of this bootstrapped distribution.

Evoked Potential and Error-Related Negativity—In three tasks, we computed evoked 

potentials on correct and incorrect trials by averaging across trials on each electrode from 

each region. As in previous work, in both the Object-Match and Category-Saccade tasks, 

recordings from each of these acute electrodes were considered independent (Brincat and 

Miller 2014, Antzoulatos and Miller 2011). In these two sets of recordings, pairs of 

electrodes were placed >1.5 mm apart across a large swath of ventrolateral and dorsolateral 

prefrontal cortex. Evoked potentials from all of these sites were averaged and plotted. For 

these analyses and others, we performed statistical testing by bootstrapping the trials and 

pairs to ensure that the reported findings were not dependent on any independence 

assumption. In the Category-Match task, evoked potentials were computed across an entire 

array and averaged across sessions. The error-related negativity is an evoked potential that 

arises more prominently on incorrect trials and occurs in epochs spanning 80–300 ms 

following feedback. In order to compute the error-related negativity, the evoked potential 

from incorrect trials was subtracted from correct trials. We aligned all of the tasks to their 

maximal peak (i.e. where the error-related negativity is greatest), and then normalized the 

entire signal by the mean and standard deviation of the differences across the entire trial and 

feedback (-2s to 1.7s post-feedback). To compare the error-related negativity across the 

tasks, we computed the mean value of the normalized voltage differences for a 50ms period 

of time centered around the maximum difference from each task. We computed 10,000 

bootstraps and found the empirical value for each comparison. In order to account for 

multiple comparisons, we applied a Bonferroni correction and multiplied all p-values by 3.
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In order to further test that the ERN was greater in the Match tasks than in the Saccade task, 

we defined the ERN by estimating the amplitude of the evoked potential arising subsequent 

to an error. In order to compute this amplitude, we found the maximum and minimum value 

for each z-scored signal averaged across all incorrect trials in the feedback period for each 

electrode. The magnitude of the ERN was equal to the distance between the max and min 

values, and we compared the mean ERN across electrodes. To avoid questions on the 

independence of different electrodes, we first bootstrapped the trials and then the electrodes 

1,000 times to obtain an empirical probability distribution on the size of the ERN. However, 

given both the large number of electrodes recorded daily (PFC, n=128; dmPFC, n=64) and 

the large number of error trial counts, we chose to be conservative for the Category-Match 

task and bootstrapped across the sessions. In order to test our a priori hypothesis that the 

ERN in the Match tasks was greater than in the Saccade task, we computed the p-values by 

finding the number of bootstraps that were greater in the match distributions than that in the 

saccade distribution, and dividing by the total number of bootstraps. To visualize the 

independence between the specific timing and the magnitude of the ERN computed, we took 

the maximum and minimum values found within three different time windows (Figure S2: 

50–350ms, 100–400ms, and 150–450ms). Also un-plotted we compared those results when 

taking the entire 50–450ms interval; the p-values were equal equivalent to those in the 50–

350ms window. Regardless of the interval chosen, we found that the ERN in the Match tasks 

in the PFC was greater than that in the Saccade task. We also repeated these analyses in the 

HPC (OM), dmPFC (CM), and STR (CS). Again, the same pattern was true: the ERN in 

both the HPC and the dmPFC was greater than that in the STR.

Using a similar method to that described above, we also obtained the magnitude of the ERN 

on a per trial basis. We again found the distance between the maximum and minimum value 

in the feedback; however, in this case we did not average across trials. Instead, before taking 

this distance, we averaged across all PFC electrodes. For each session, we had a single ERN 

magnitude for each incorrect trial. Moreover, for each incorrect trial, we found the mean 

performance over the previous 20 trials. Since we were carrying out a regression analysis 

examining how performance interacts with the ERN, we corrected the ERN magnitudes in 

each session by subtracting its mean magnitude at 75% performance. This was meant to 

facilitate the comparison of the ERN magnitudes by removing any day-specific effects. We 

next pooled trials across all sessions and used robust regression (as described below in the 

Linear Regression section) to assess how a single trial ERN correlated with prior 

performance (Fig. 2G). To compute statistical differences, we again randomly sampled 

across all of the magnitude-ern pairs, and the compared the computed coefficient to zero.

Time-Frequency Analysis—Spectrogram and coherograms were computed by applying 

the continuous wavelet transform to the trial-by-trial data. In order to compute the transform 

efficiently, for each complex-valued Morlet wavelet of wave number 6, we multiplied its 

Fourier transform by the Fourier transform of the trial data, and took the inverse Fourier 

transform of this product (Torrence and Compo, 1998). The 61 daughter wavelets sampled 

the frequency space exponentially (base of 2), starting at a max frequency of 80 Hz, and 

ending 6 (numoctaves) exponential decreases later (here, 80/26 = 1.25 Hz). For every 
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exponential decrease, here, for every halving, we sampled 10 frequencies (num_per_octave). 

All of the sampled frequencies from this paper can be given by the following equation:

Eqn. 5

In order to obtain the amplitude or power from the complex output of the wavelet transform, 

we took the complex modulus of wavelet coefficients. Alternatively, for phase values, we 

took the inverse tangent of the ratio of the real and imaginary components of the wavelet 

coefficients.

Synchrony Analysis—To estimate synchrony, we computed the pairwise phase 

consistency (PPC), an unbiased estimator of the magnitude squared resultant (Vinck et al., 

2010). In other words, the pairwise phase consistency statistic is a measure equivalent on the 

population level to the square of the oft-used phase locking value (PLV) but which is 

uninfluenced in its average by trial number. In this study, differences in trial number were 

prominent, as there were both differences in the number of incorrect and correct trials for 

any given session, as well as differences in the number of correct trials in any given 20-trial 

window. In order to implement the PPC statistic, we used a simplification derived previously 

(Kornblith, Buschman, and Miller, 2016)

Eqn. 6

where θ is the vector of angular differences between two channels at any given point in 

frequency and time. N is the number of trials. For every single channel-pair, we subtracted 

the phases (obtained from the wavelet-transformed data) of one channel from those of 

another, took the variance of the sine and cosine of these angle differences across trials, and 

subtracted both of these variances from 1. To compute changes in synchrony early and late 

in learning, we bootstrapped the channels or sessions 1,000 times and obtained an empirical 

distribution. We used this distribution to estimate p-values. Because we were looking for 

differences above or below 0, we applied both a two-way test as well as a Bonferroni 

correction. The Bonferroni correction was used, instead of a more statistically powerful 

multiple comparisons correction, because it is particularly effective at controlling the type I 

error when different tests are potentially correlated.

Subtraction of Eye Movement Away—Because one of the animals in the Category-

Match task had some stereotyped eye movements after correct responses, we removed from 

both eye movement tasks (in this case, both Category tasks) the saccade related to the eye 
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movement away from the response target. In order to do so, we identified the time of the 

saccade away by taking the derivative of the eye trace and setting a voltage threshold 

(+0.02V for the Category-Saccade, +0.05V for the Category-Match). We determined each of 

these thresholds based on the threshold evoked by the saccade to the target. Once this 

threshold was reached, we cut the data prior to the threshold crossing (50 ms) and after 

(Category-Match, 450ms; Category-Saccade, 250 ms). These times were determined by the 

shape of the evoked potentials in each of the tasks (i.e. when the mean saccade potential 

returned to 0V). Different time windows around the saccade were used, and none changed 

the results. After all of the saccadic periods were cut from each trial, we obtained a template 

for a saccade for each electrode by taking the mean across all of saccades. Once we obtained 

this template, we returned to the original data, and applied linear regression to obtain an 

optimal fit of the template to the saccade potential on each individual trial. Once we found 

the optimal fit of the template to the data, we subtracted the template from the original data. 

In order to avoid spurious edge effects, we re-filtered all of the data in both directions by two 

FIR equiripple filters. Filter 1 was a 106 order, low pass, equiripple FIR filter at 80 Hz 

(Fpass = 80 Hz, Fstop = 100, Apass = 1, Astop = 60). Filter 2 was a 1047 order, high pass, 

equiripple FIR filter at 1.5 Hz (Fstop = 0.7, Fpass = 1.5, Astop = 20, Apass = 1).

Linear Regression—To both better assess the synchrony changes across learning, and 

avoid particular assumptions regarding whether learning occurred linearly over time, we 

estimated synchrony using PPC across all electrode pairs over 20-trial window bins across 

each session. We computed the PPC only on correct trials, for we had previously found that 

most of the longer duration synchrony events occurred on correct trials. These 20-trial 

windows were non-overlapping, and hence independent. For every 20-trial bin, we had a 

single PPC value (averaged across all electrode pairs of interest) and an average performance 

value. We pooled all 20-trial PPC values across all sessions in each of the 3 tasks, and 

performed linear regression to assess whether PPC varied directly with performance. Our 

design matrix was simply a column of 1s (our intercept) for each 20-trial bin and another 

column for performance. After solving the normal equation and calculating the residuals, we 

computed a t-value and a corresponding p-value. In order to confirm that the assumptions 

underlying linear regression were met, we plotted how synchrony varied performance from 

chance (50%) to high performance (100%). We found that over the range of different 

performance level the variances at each level were largely equivalent with the exception at 

100%. To ensure that our results were resistant to this possible violation of 

heteroscedasticity, we performed both linear regression on a reduced performance range 

from 50% to 95% (where variances were equal), and robust regression using iteratively 

reweighted least squares with a bi-square weighting function and a tuning constant of 4.685. 

Robust regression, unlike ordinary least squares regression, minimizes the influence of data 

points that are outliers by penalizing their influence. Neither of these methods changed the 

results; and are unreported here.

Category-Saccade Controls—Because eye movements tend to be rhythmic and occur in 

the 3–4 Hz range, we wanted to ensure that both correct-incorrect synchrony differences and 

learning-related synchrony decreases were unrelated to changes in eye movements. To 

address these concerns, we did two things: One, we controlled for the latency differences in 
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the saccade away from the target that arose between correct and incorrect trials. Two, we 

examined whether eye movements, like theta synchrony, changed with learning. To control 

for the latency differences in the eye movement away from the target, we first estimated 

when saccades were made following the initial saccade to the target using analog outputs 

from the eye monitoring system. After computing our wavelets and removing the evoked 

potentials related to the feedback, we aligned each individual trial to this saccade away from 

the target. Despite this procedure controlling for eye movements, theta synchrony 

differences emerged immediately following feedback, and did not appear influenced by the 

realignment procedure.

In order to investigate eye movement changes with learning, we compared the mean saccade 

velocity and the number of saccades made in the feedback period (0–1.7s). To assess 

saccade velocity, we cut the raw eye signal into trials, computed the animal’s position on the 

screen relative to center (by taking the square root of the sum of squares of the X and Y eye 

position signals), and took the 1st derivative of the resulting position signal. Saccade velocity 

was averaged across the 1.7s of the feedback period, and the number of saccades identified 

was equal to the number of time points that exceeded a voltage threshold of .025V (~178 

deg/s). The feedback period is a difficult time to capture behavioral events such as saccades, 

because the animal may move out of eye tracking limits. As a result, the values computed 

here may be underestimates of the true saccade count. Moreover, while visual inspection of 

the eye traces at the thresholds given above suggests that many of these events are saccades, 

we cannot preclude that some of the saccadic events are, in fact, eye blinks. Note that their 

inclusion here is conservative, and these flaws of behavioral observation are shared across 

tasks. To compute significance, we bootstrapped the trials and sessions 10,000 times.

DATA AND SOFTWARE AVAILABILITY

Custom code for analyses will be provided upon request to the Lead Contact.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Model: Organisms/Strains

Rhesus Macaque (Macaca Mulatta) Primate Center N/A

Software and Algorithms

MATLAB Mathworks https://www.mathworks.com

CORTEX National Institute of 
Mental Health

https://www.nimh.nih.gov/labs-at-nimh/research-areas/clinics-and-labs/ln/shn/index.shtml

Psychtoolbox-3 Brainard, 1997; Pelli, 
1997

http://psychtoolbox.org/

Other

64 ch. (8×8) Utah Array 
(Electrodes)

Blackrock Microsystems N/A

FHC-Electrodes FHC N/A

U-probe (24 ch.) Plexon N/A

Cereplex M Headstage Blackrock Microsystems PN#8603
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REAGENT or RESOURCE SOURCE IDENTIFIER

Cereplex E Headstage Blackrock Microsystems PN#8010

Eyelink I/II SR Research N/A

Custom built microdrives N/A

Cerebrus (128 channels) Blackrock Microsystems PN#4176

Multichannel Acquisition Processor Plexon N/A

HST/8o50-G1 (Headstage) Plexon N/A

VG2401mh 24″ Gaming Monitor Viewsonic N/A

5-RLD-E2-C Gravity feed 
dispenser

Crist N/A

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Explicit vs implicit learning have different post-choice oscillatory synchrony.

• Explicit learning exploits feedback about errors, implicit learning does not.

• Alpha/beta synchrony increases with explicit learning.

• Theta synchrony decreases with implicit learning.
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Figure 1. 
A. In the Object-Match, task the animal was instructed to learn by trial- and error- whether a 

sample and test object were the correct pair. In each trial, the animal was first presented a 

sample object for 0.5s, and after a delay of 0.75s, a test object. The animal had to confirm 

whether the test object was the correct associate of the sample object (i.e. the correct match). 

In every session, each animal learned to associate 4 different sample objects with 2 test 

objects (Brincat and Miller, 2015). B, In the Category-Match task, each animal had to learn 

by trial-and-error two different, de novo dot-pattern categories. In each trial, the animal was 

first presented with a sample exemplar from one of two possible and, then after a variable 

delay (.85–1.25s), test exemplars one from each of the two possible categories. In order to 

select the test exemplar corresponding to the category of the sample, the animal had to fixate 

on it for .7s. In this task, the animals were matching the category of the sample to the 

category of the test, hence Category-Match learning. C. In the Category-Saccade task, each 

animal had to learn two different, de novo categories. In this task, the animal was presented 

with a sample exemplar for 0.6s, held fixation through a 1s delay, and had to indicate the 

category membership of this exemplar by making a saccade to the right or left target 

(Antzoulatos and Miller, 2011). D. In the Object-Match task, we recorded from 617 pairs 

within prefrontal cortex (PFC) and 941 pairs between PFC and hippocampus (HPC). 

Electrodes within PFC were spread equally across ventrolateral and dorsolateral prefrontal 

cortex (vlPFC and dlPFC). E. In the Category-Match task, we recorded from 64 electrode 

arrays in each vLPFC, dLPFC, and dorsomedial PFC (dmPFC). For PFC, we combined 

vlPFC and dlPFC electrode pairs, and recorded from 4032 pairs. For PFC-dmPFC, we 

recorded from 8192 pairs of electrodes. F. In the Category-Saccade task, we recorded from 

240 PFC pairs (across both vl- and dlPFC), and 426 PFC-striatal (STR) electrode pairs.
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Figure 2. 
In A, each bar represents performance separated out by monkey on trials following either an 

incorrect response (red bar) or a correct response (blue bar) during Category-Saccade 

learning. All trials were pooled across days for each stage of learning (presented as separate 

columns). Error bars show 95% confidence interval generated from a binomial distribution. 

In B, C we again plotted performance following a correct and incorrect trial for both the 

Object-Match and Category-Match tasks; however, both monkeys in each task were pooled. 

D. Post-error slowing across the 3 different learning tasks: Object-Match (OM), Category-

Match (CM), and Category-Saccade (CS). CM and OM post-error slowing were not 

significantly different (p = 0.172). CS post-error slowing was significantly larger than both 

Match tasks (p < 1 × 10−4). Error bars represent the SEM. In E, F mean performance 

changes over 10 trials and 20 trials following feedback (correct vs. error) after regressing out 
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total mean performance. In both Match tasks, performance increased marginally following 

correct trials, while in the Category-Saccade task performance improved by 10-fold relative 

to the Match tasks. See also Figure S1.
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Figure 3. 
A–C. Across all electrodes in prefrontal cortex, we computed the evoked potentials in each 

task separately. The blue line is the evoked potential averaged across correct trials, and the 

red line is the evoked averaged across the incorrect trials. The shaded grey region represents 

the time of an expected error-related negativity, between 80–300 ms after feedback. In the 

Object-Match and Category-Saccade tasks, we averaged across 242 and 64 electrodes 

distributed across vl- and dlPFC, respectively. In the Category-Match task, we averaged 

across each array within vl- and dlPFC (n = 97 arrays). D. Evoked potentials within the 

hippocampus (n= 162 electrodes), E. the supplementary eye fields (n = 30 arrays), and F. the 

striatum (n=65 electrodes) during the Object-Match, Category-Match, and Category-Saccade 

tasks respectively. G. The error-related negativity is plotted here for each task. The error-

related negativity was computed by subtracting the evoked potentials on correct and 

incorrect trials, and aligned to the maximal differences across tasks. We compared the peak 

negativity by averaging around this peak (+/− 25 ms). The error bars represent +1 SEM. The 

hatched lines over lying the bars reflect the estimated coefficients for the change in the ERN 

as a function of performance (10 trial mean prior to feedback). In both Match tasks, the ERN 
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increased with performance and hence behavioral certainty. The estimated coefficient in the 

Saccade task was near to 0, and not statistically significant. See also Figure S2.
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Figure 4. 
In panels A–E., plotted is the difference in pairwise phase consistency between correct and 

incorrect trials. Red means a greater synchrony value on correct trials, and blue means a 

greater synchrony value on incorrect trials. Note the difference in color scales among the 3 

panels. In G., we compared how the magnitude of these normalized synchrony values 

differed within the theta (3–7 Hz) and the alpha-2/beta bands (10–30 Hz) over time. In H, 
we computed that the ratio of beta-theta synchrony on correct trials varied for each task. We 

found that in both Match tasks the beta-theta ratio was greater than 1. This was not true in 

the Category-Saccade task (ratio = 0.2759). The error bars represent +1 SEM. See also 
Figure S3.
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Figure 5. 
We compared synchrony on correct trials early and late in learning. The bar plots represent a 

change from early to late learning, a positive value is associated with an increase in 

synchrony with learning and a negative value, a decrease. We computed synchrony at 5 

different frequency bands: theta (3–7 Hz), alpha-1 (8–10 Hz), alpha-2 (10–12 Hz), beta-1 

(13–17 Hz), and beta-2 (18 – 30 Hz). Error bars represent the SEM, and the stars represent 

significance. In A., we compared synchrony increases within PFC. In B. we compared 

synchrony changes with learning across different brain regions (OM: PFC-HPC, CM: PFC-

dmPFC, CS: PFC-STR). See also Figure S4.

Loonis et al. Page 35

Neuron. Author manuscript; available in PMC 2018 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Synchrony binned by non-overlapping, 20-trial window intervals. Error-bars represent the 

standard error of the mean. The dotted lines represent the fits of two different linear models, 

accounting for changes with learning. The mean synchrony at 50% performance level has 

been subtracted from each graph for visual purposes only. Linear Model 1 estimated the 

changes in synchrony with performance increases from 50% to 80%. Linear Model 2 

estimated the changes in synchrony with performance increases from 80% to 100%. In A., 
all electrodes from within and between PFC and HPC in the OM task were used to obtain a 

single synchrony value for each performance bin. In B., we took all electrodes from within 

PFC and again obtained a single synchrony value for each 20-trial non-overlapping bin. C. 
We applied the same methods (as above) for all PFC electrodes within the Category-Saccade 

task. We repeated the same analysis with the PFC-STR electrodes (not shown), and still 

found no change before or after the criterion. The error bars represent ± SEM.
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Figure 7. 
A, Theta band synchrony binned by non-overlapping, 20-trial window intervals in the 

Category-Saccade task. LM1 and LM2 estimate changes with learning from 50–80% 

learning, and 80–100% learning respectively. B, Instead of aligning the LFPs to the 

feedback, all of the data was aligned to the saccade away from the target – which occurred 

on average 339ms after feedback. For the sake of visualization, this data has been 

normalized to the mean synchrony across the theta and beta bands. Here, theta synchrony 

increased on correct trials prior to the saccade away. C, Average saccade velocity early and 

late in learning (the mean of the first derivative of the eye position signal relative to the 

center of the screen). D, The number of saccades was taken as the number of threshold 

crossings of the eye signal during the entire feedback period (1.7s). E, Probability 

distributions of the number of saccades for both the Category-Match and Category-Saccade 

tasks. All of the error bars reflect ± SEM.
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