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Abstract In inverse reinforcement learning an observer infers the reward distribution available

for actions in the environment solely through observing the actions implemented by another agent.

To address whether this computational process is implemented in the human brain, participants

underwent fMRI while learning about slot machines yielding hidden preferred and non-preferred

food outcomes with varying probabilities, through observing the repeated slot choices of agents

with similar and dissimilar food preferences. Using formal model comparison, we found that

participants implemented inverse RL as opposed to a simple imitation strategy, in which the actions

of the other agent are copied instead of inferring the underlying reward structure of the decision

problem. Our computational fMRI analysis revealed that anterior dorsomedial prefrontal cortex

encoded inferences about action-values within the value space of the agent as opposed to that of

the observer, demonstrating that inverse RL is an abstract cognitive process divorceable from the

values and concerns of the observer him/herself.

DOI: https://doi.org/10.7554/eLife.29718.001

Introduction
When learning through observing others’ actions, two major strategies have been proposed: in imi-

tation learning, an individual simply learns about the actions of an observed agent, in essence by

learning to copy the agent’s behavior. An alternative strategy called inverse reinforcement-learning

(inverse RL) is to use the agent’s actions to infer the hidden or unobservable properties of the envi-

ronment, such as the reward outcomes available for pursuing particular actions. Then the observer

can use that knowledge to compute his/her own subjective expected value for taking distinct actions

in the same environment. While in imitation learning, the observer learns nothing about the structure

of the environment other than the action tendencies of the agents they observe, in inverse RL the

observer has acquired knowledge of the world which becomes ultimately abstracted from the

actions of the agent they observe. Although imitation learning can work well under a number of sit-

uations, particularly where the agent can be assumed to have similar preferences to the observer,

inverse RL offers greater flexibility to learn from diverse agents, even under the situation where the

agent has very distinct preferences or goals to that observer.

The computational framework of inverse RL was originally developed by researchers in the artifi-

cial intelligence community (Ng and Russell, 2000; Abbeel and Ng, 2004). Unlike in forward prob-

lems of reinforcement learning (RL) (Sutton and Barto, 1998), the link between action and reward is

lost and the goal becomes to infer, from the agent’s behavior and knowledge of the agent’s prefer-

ences, relevant information about the reward function which can then be used in turn to maximize

one’s own reward.
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In the realm of cognitive sciences, the application of computational modeling tools have surged

as a means of gaining insight into social behavior. Observational learning has recently been formal-

ized as an inverse problem, where observed behavior is used to infer the hidden structure at the

root of that behavior under the assumption that observed choices are goal-directed (Baker et al.,

2009, Baker et al., 2011; Goodman et al., 2009; Shafto et al., 2012). Recent computational

modeling work has focused on how humans create an understanding of other’s preferences and the

similarity to one’s own past choices, to guide future behavior (Gershman et al., 2017). Computing

abstract social inferences has been characterized as emerging already in early infancy (Lucas et al.,

2009; Jara-Ettinger et al., 2016). There is empirical evidence that subjective preferences emerge in

toddlers as early as 16 to 18 months (Repacholi and Gopnik, 1997; Ma and Xu, 2011), and by the

age of three children use inferences about social preferences to guide their own decisions

(Fawcett and Markson, 2010).

Within the nascent sub-field of social computational neuroscience, a number of studies have uti-

lized computational fMRI in order to gain insight into the neural mechanisms underlying observa-

tional learning. When learning through observation from an agent’s actions and outcomes, evidence

for a process called vicarious reinforcement learning (RL) has been found whereby reward prediction

errors generated by observing the rewards obtained by another as opposed to being received by

oneself have been reported in the striatum (Burke et al., 2010; Cooper et al., 2012). However,

vicarious RL can only ever work under situations where the rewards being obtained by another agent

can be directly observed. The problem focused on here is the situation in which the actions of the

other agent can be observed, but the reward outcomes cannot.

Other studies have found evidence for the engagement of several brain structures when making

inferences about the hidden intentions and traits of another agent. In particular, regions of the brain

often referred to as the mentalizing network which includes the dorsomedial prefrontal cortex

(dmPFC) have been implicated in this type of inference (Frith and Frith, 2006; Hampton et al.,

2008; Nicolle et al., 2012), whereas posterior superior temporal sulcus (pSTS) and adjacent tempor-

oparietal junction (TPJ) has been found to reflect learning signals about relevant attributes of other

individuals’ behavior (Hampton et al., 2008; Behrens et al., 2009; Boorman et al., 2013;

Dunne and O’Doherty, 2013). Yet, these studies have not addressed the capacity to make infer-

ences about the structure of the environment through observing an agent beyond mentalizing about

the intentions/traits of that agent him/herself. This capacity is the essence of inverse RL that we

investigate in the present study.

To address this issue, we implemented a novel functional magnetic resonance imaging (fMRI)

experiment involving participants (always the observers) and social agents (the agents). After having

learned about food preferences of two observable agents, one with similar and another one with dis-

similar preferences to themselves, the participants observed these same agents perform on a slot

machine task, in which the agents learned to obtain their preferred food outcomes. Importantly, par-

ticipants never got to see the food outcomes themselves. In order to assess what participants had

learned from observing the choices of the other agents, we asked participants to play the same slot

machine task.

We hypothesized that regions of the brain traditionally implicated in mentalizing such as the TPJ/

pSTS and dmPFC would be involved in implementing inverse RL, and in subsequently utilizing knowl-

edge about the outcome distributions acquired through inverse RL to guide behavior. More specifi-

cally, building on previous findings of a key role for TPJ/pSTS in encoding of updating signals or

prediction errors during social learning (Hampton et al., 2008; Boorman et al., 2013), we hypothe-

sized that those same regions would play a role specifically in the acquisition and updating of infor-

mation using inverse reinforcement learning through observing the behavior of others, while dmPFC

was hypothesized to play a role in using the acquired knowledge to ultimately guide behavior.

Results

Observational slot machine learning paradigm
43 human participants underwent fMRI while performing an observational learning (OL) task

(Figure 1A), in which on each of two sessions they observed an agent make repeated binary choices

between pairs of slot machines, sampled by the computer from a pool of three slot machines.
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Participants were instructed that each of the slot machines would on each trial deliver one of three

different food items as a prize. These food items were selected to differ in their subjective value to

the participant (one was a preferred food item, another middle ranked, and another least preferred,

drawn from an initial list of 10 food items that were earlier ranked for preference). These items were

delivered with differing (but fixed across session) probabilities. The distributions varied across the

machines, but participants were instructed that the underlying distribution of these food items was

hidden from both the participants and the agents (Figure 1B). The critical feature of this paradigm is

that participants never got to see any outcomes of the slot machines while participants understood

that the agents did receive the outcomes. Occasionally (1/3 of trials), the participants themselves

were presented with the same slot machines as those played by the agents, and they had to make a

choice. The participants were instructed that one of their choice trials would be selected at random

at the end of the experiment, that one of the food outcomes would be delivered to the participant

Figure 1. Observational slot machine task with hidden outcomes. (A) Trial timeline. The first screen signals

whether the agent or the participant has to make a choice. Subsequently two slot machines are presented, along

with on agent trials a (pseudo) video feed of the agent making a selection, and the choice of the slot machine is

revealed after a jittered interval. (B) The probabilistic food distribution behind the slot machines: each of the three

slot machines is labeled by a unique fractal and yields the same three food items, but at differing stationary

probabilities, as indicated in the table. (C) Agent and participant choice ratio. Choice ratio is defined as choice

frequency of a slot machine given its total number of presentations. Agent performance (grey bars) are collapsed

across conditions, and depicted in agent-referential space. Participant performance (cyan for similar, pink for

dissimilar) is depicted in self-referential space. Regardless of whether they are observing a similar or dissimilar

agent, participants are equally good at choosing their best slot machine, nearly matching the agent’s

performance.

DOI: https://doi.org/10.7554/eLife.29718.002

The following figure supplement is available for figure 1:

Figure supplement 1. Additional task information.

DOI: https://doi.org/10.7554/eLife.29718.003
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according to the probabilities assigned to that chosen slot machine and that they would be asked to

consume outcomes. Thus, participants were motivated to ensure that they chose the slot machine

with the highest probability of yielding a food outcome that they preferred as opposed to one that

they liked the least. Crucially, in a previous preference learning phase (see Materials and methods

for details), participants got to learn about the food preferences of the two agents they subse-

quently got to observe playing on the slot machines. One agent had similar food preferences to the

participant while the other agent had dissimilar food preferences. Prior to the onset of the observa-

tional learning task, to confirm the efficacy of our preference learning procedure we tested partici-

pants’ knowledge of the other agent’s preferences. Each participant correctly identified the

preference rankings for each agent over the foods, as well as correctly classifying the agents as simi-

lar or dissimilar to themselves (Figure 1—figure supplement 1).

Behavioral results
Spearman’s rank correlation coefficients between participants’ choices in self-referential space and

agent choices in agent-space, revealed that participants’ choice ratios were generally in line with the

agents’: rs_sim = 0.7 (similar condition), rs_dis = 0.6 (dissimilar condition; see Materials and methods

for details). These correlations also provide evidence that participants succeeded in learning to

choose the slot machine with the highest likelihood of a preferred outcome.

Yet, learning from a dissimilar agent should be more challenging than learning from a similar

agent since in the former case the participant should take into account the fact that the agent has

different preferences to themselves and use this information to guide their choices, whereas in the

similar condition the agent can either adopt a policy of simply imitating the agent or can easily infer

that agent’s preferences as they are similar to themselves. We therefore expected that participants

would perform worse in the dissimilar condition compared to the similar condition. Indeed, partici-

pants performed significantly worse overall in the dissimilar condition compared to the similar (after

Fisher transform: one-tailed p=0.04). We further compared the choice ratio of the slot machines

across conditions on trials after the learning of the agent has reached a plateau (Figure 1—figure

supplement 1). If participants used a simple imitative behavioral (and/or inverting) strategy, we

should observe symmetrical performance changes for the best and worst machine in the dissimilar

compared to the similar condition, whereas the mid machine should stay unchanged. In other words

there should be an accuracy trade-off, that is, decreased choice frequency for the best machine

while at the same time an increase of choices of the worst machine. Here we found that although

participants performed equally well in choosing their ’best’ slot machine in both similar and dissimi-

lar conditions (t-test between similar and dissimilar choice ratios: P>0.6), the worst slot machine was

picked more often in the dissimilar condition than in the similar (P<0.05) and the mid-ranking

machine was chosen significantly less often in the dissimilar condition compared to the similar

(P<0.05, Figure 1C). This non-symmetrical choice difference between observer and agent, that is,

equal performance for the best, but not simply reversed for the mid and worst machines, alludes to

a more sophisticated strategy than simple imitation behavior.

Computational modeling of OL
To elucidate the computational mechanisms involved in solving the task we implemented an inverse

RL algorithm in which participants infer the distribution of outcomes over the slot machines chosen

by the agents, given knowledge about the agent’s utility function (the learned preferences) and the

observed actions (Materials and methods).

An alternative strategy is to deploy imitation RL, wherein the participant learns to predict the

actions taken by the other agent, based solely on the history of actions taken by that agent. These

predictions (which are formulated as value signals) are applied to the participants’ own choices with-

out any need to make an inference about the outcome distribution over the slot machines. In

essence this algorithm would implement a pure imitation strategy: simply copying the actions of the

opponent. Pure imitation would succeed in the similar case but fail abjectly in the dissimilar case, as

the observer would end up choosing slot machines leading to least as opposed to most preferred

outcomes. To give this imitation strategy a fighting chance to cope with learning from the dissimilar

other, we modified the algorithm so that it also encoded as a free parameter a representation of

how similar the agent’s preferences were to oneself (which we could assume was learned before the
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observational learning task). This similarity metric is used to invert the observer’s value function

when choosing from learning the actions of the dissimilar agent. This adapted form of imitation RL

can in principle successfully learn from both similar and dissimilar agents, and hence we refer to this

adapted model when referring to imitation RL in analyses and figures. We also constructed a differ-

ent imitation RL model with a counterfactual learning component (cf-imitation RL) that also learned

about the value of action not taken on a given trial, while incorporating separate learning rates for

those two updating strategies (Methods and Materials for more details).

Yet another viable strategy for solving this task is for the observer to assume that the agents have

distributions over the preference rankings for the different slot machines without considering the

outcome distributions per se. A preference-learning algorithm can then simply update the observers’

beliefs about the agent’s machine preferences based on the observed behavior of the agents, and

then explores the slot machines using a softmax procedure (Materials and methods for model

details, and comparisons in Figure 2—figure supplement 1.

We tested which algorithm provides the best account of participants’ behavior by using a Bayes-

ian Model Selection (BMS) process (Materials and methods). Out of all tested models, inverse RL

was found to outperform Imitation RL overall (Figure 2A) and in almost all individual subjects

(Figure 2B). The model similarly also outperformed the other candidate algorithms (Figure 2—fig-

ure supplement 1). The choices estimated by the inverse RL model match participants’ behavior

very well when plotting model predictions against participants’ actual (Figure 2—figure supplement

1).

To demonstrate that our two main competing models specify unique behavioral strategies as

opposed to making similar predictions about behavior, we constructed confusion matrices, where

each cell depicts the frequency with which each model wins based on behavior generated under

each model, and inverted by itself and all other models. If there is a high probability that a model is

confused with another, we should observe high exceedance probabilities in the off-diagonal cells.

However this comparison framework shows that our main models are indeed not confused, and

hence make different predictions (Figure 2C, and Figure 2—figure supplement 1).

Building on these initial model comparison results, we next aimed to elucidate the qualitative dif-

ference in the performance of the models. When comparing model choice predictions and partici-

pant choice ratios. While both imitation RL and inverse RL do quite reasonably in predicting choices

for the most and least preferred slot machine, we found that the behavior that discriminates the

model predictions the most is with regard to participants’ behavior to the middle preferred slot

machine when learning from the dissimilar other. There was considerable variation across individuals

in the selection of the middle preferred slot machine: this variation was much more effectively cap-

tured by inverse RL compared to imitation RL (Figure 2D). A more detailed explanation for why

inverse RL would be expected to perform better than imitation RL in capturing participants’ choice

behavior especially for the middle preferred slot is given in Materials and Methods.

Neural representation of outcome prediction in agent-referential
preference space
To determine whether participants’ neural signals tracked value for the observed actions in self-refer-

ential or agent-referential preference space, we constructed two regressors with trial-by-trial value

predictions for the actions taken by the similar and dissimilar other. To obtain an estimate of the

value from the perspective of the agent, the agent’s preferences over the outcomes were multiplied

by the outcome probabilities estimated by inverse RL (cf. Materials and methods). We tested for

regions correlating with these value signals across the whole brain. If value signals are represented

in the observer’s brain in the preference space of the other agents, then we would expect significant

positive correlations with the observee’s value signal for both the similar and dissimilar agents. On

the other hand, if the value signals are represented with respect to the observer’s own (self-referen-

tial) preferences and not those of the agent (agent-referential), then we would expect to find a sig-

nificant positive correlation with the value regressor in the similar condition and a significant

negative correlation with the value regressor in the dissimilar condition, because the dissimilar

agent’s preferences are opposite to those of the observer.

We found no evidence of a region exhibiting correlations for value signals in self-referential space

anywhere in the brain. Instead, we found a significant cluster in the dmPFC (Figure 3A; peak x = 0,

y = 40, z = 40, whole brain cluster corrected threshold of FWE at p<0.05 with a height threshold of
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p<0.001) correlating positively with the agent’s value signals in the similar condition, as well as posi-

tively with the agent’s value signals in the dissimilar condition (Figure 3B, parameter estimates

extracted via a leave-one-out approach to avoid a non-independence bias [Esterman et al., 2010]).

Further, no statistical difference was found between conditions (t-test p>0.5). These results indicate

that expected value signals for outcomes are represented in agent-referential preference space.

Next, we aimed to test if inverse RL best explained the correlation within dmPFC, or if the imita-

tion RL model also captured this activity. We therefore performed a Bayesian Model Selection (BMS)

analysis to compare the model correlations within an anatomically defined dmPFC region where we

would expect inverse RL related computations to be implemented (Dunne and O’Doherty, 2013;

Apps et al., 2016). Our results show that the anterior part of the dorsomedial cluster is much more
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Figure 2. Model comparison. (A) Bar plots illustrating the results of the Bayesian Model Selection (BMS) for the two main model frameworks. The

inverse RL algorithm performs best, across both conditions (similar and dissimilar). On the left, the plot depicts the BMS between the two models in the

similar condition; on the right the plot shows the BMS in the dissimilar condition (BMS analysis of auxiliary models are shown in Figure 2—figure

supplement 1A). (B) Scatter plots depicting direct model comparisons for all participants. The lower the Bayesian Information Criterion (BIC), the better

the model performs, hence if a participant’s point lies over the diagonal, the inverse RL explains the behavior better. The figure on the left illustrates

the similar condition; the plot on the right depicts the dissimilar condition. (C) Confusion matrix of the two models to evaluate the performance of the

BMS, in the dissimilar condition. Each square depicts the frequency with which each behavioral model wins based on data generated under each

model and inverted by itself and all other models. The matrix illustrates that the two models are not ’confused’, hence they capture different specific

strategies. Confusion matrices of the similar condition and for auxiliary models are shown in Figure 2—figure supplement 1C) (D) Scatter plots depict

the participant choice ratio of the mid slot machine plotted against the predictions of the inverse and imitation RL models.

DOI: https://doi.org/10.7554/eLife.29718.004

The following figure supplement is available for figure 2:

Figure supplement 1. Additional model information.

DOI: https://doi.org/10.7554/eLife.29718.005
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likely to be engaged in computing expectations derived from the inverse RL model, compared to

the imitation RL (Figure 3C, exceedance probability threshold of p>0.95 for inverse RL).

Inverse RL signals
We next tested for brain areas involved in updating beliefs in the inverse RL model at the time of

feedback. We computed the KL divergence between posterior and prior outcome distributions for

the chosen slot machine at the time of action observation and regressed the divergence signal

against the BOLD response. We found significant correlations with the entropy reduction signal in

both similar and dissimilar conditions, in TPJ/pSTS (whole brain cluster corrected threshold of FWE

at p<0.05 with a height threshold of p<0.001). In addition we found significant correlations with this

learning signal in several other brain regions including the pre-SMA and dorsal striatum (Figure 4).

Furthermore no significant difference in the representation of updating signals was found between

the similar and dissimilar conditions. Here, we compared the conditional beta values extracted using
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Figure 3. Outcome prediction signals in agent-referential preference space. (A) Neural response to parametric changes in inverse RL outcome

prediction in agent-referential space. Activity in dmPFC at the time of presumptive agent decision significantly correlated with outcome prediction

inferred from the inverse RL model, independent of condition. All depicted clusters survive whole brain cluster correction FWE at p<0.05, with a height

threshold of p<0.001. Z-score map threshold as indicated, for illustrative purposes. (B) Effect sizes of the outcome prediction correlation in dmPFC

cluster separately for each condition (similar = blue, dissimilar = green, parameter estimates are extracted with a leave-one-out procedure, mean ±SEM

across participants, p<0.05 for both conditions). (C) Group-level exceedance probability map of the Bayesian Model Selection, comparing predictions

from the imitation RL against inverse RL voxelwise in an anatomically defined dmPFC region. The depicted map was thresholded to show voxels where

the exceedance probability for the inverse RL model is greater than p=0.95, revealing that the anterior part of dmPFC is much more likely to encode

inverse RL computations.

DOI: https://doi.org/10.7554/eLife.29718.006

The following source data is available for figure 3:

Source data 1. areas exhibiting significant changes in BOLD associated with predicted outcome in similar and dissimilar.

DOI: https://doi.org/10.7554/eLife.29718.007
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a leave-one-out method as before. The findings suggest that learning from similar and dissimilar

others involves overlapping computational mechanisms involving the same brain regions.

We also looked at the neural correlations with the prediction error signal from the imitation RL

model in a separate GLM. However no cluster survived the predefined threshold (whole brain cluster

corrected threshold of FWE at p<0.05 with a height threshold of p<0.001).

Value correlations in dmPFC predict behavioral performance
To test whether BOLD responses in the brain while learning from the dissimilar agent is ultimately

predictive of performance on the slot machine task, we extracted activity from the dmPFC region

found to encode expected value in the agent space. We computed a behavioral index that mea-

sured the degree of success in integrating preference information about the dissimilar agent in order

to guide personal choices, namely, the degree to which the participant matched the performance of

the agent. We found a significant correlation between this social information integration index (SI

index, Materials and methods) and the extent to which dmPFC represented learned values for the
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DOI: https://doi.org/10.7554/eLife.29718.008

The following source data is available for figure 4:

Source data 1. areas exhibiting significant changes in BOLD associated with entropy signals.

DOI: https://doi.org/10.7554/eLife.29718.009
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dissimilar other (Figure 5A, p<0.01, R = 0.39). For comparison, we performed the same correlation

against activity in the TPJ/pSTS, and we found no such significant correlation (Figure 5B).

Discussion
Here, we implemented a novel fMRI experiment to shed light on how, at the computational and neu-

ral level, humans deploy knowledge about the preferences of other agents when learning about the

environment through observing the actions of those agents. We designed our experiment in order

to discriminate between two distinct strategies for implementing learning through observation. The

simplest strategy is to learn about which action to take by imitating, or avoiding, the actions of the

other agent. A more sophisticated strategy is to make an inference about the distribution of reward

features available on the actions being pursued by the other agent and use this knowledge to guide

one’s own choices. We dissociated between these two strategies by exposing observers to three

slot machines with hidden outcomes and two different agents, one who had similar preferences over

available foods as the observer, and another one whose food preferences differed. While imitation

could work effectively when learning from an agent with similar preferences, we hypothesized that

such a strategy would not be effective enough when learning from observing the actions of an agent

with dissimilar preferences.

Using this experimental design, we were able to show that participants used the more sophisti-

cated strategy of inferring, from the agent’s actions, the hidden distribution of food outcomes for

each choice. This inverse RL algorithm provided a better account of the observer’s behavior even if

we altered the competing model, the imitation RL model, to accommodate diverging preferences

between observer and agent. The inverse RL model continued to outperform the imitative learning

model even if we added the capacity to learn from counterfactual actions. Finally, inverse RL also

outperformed a slightly more sophisticated algorithm than imitation, in which the observer was

assumed to learn the agent’s ranking of the three available slot machines, without explicitly learning

about the distribution of outcomes available on those actions. Taken together, these findings sug-

gest that the human brain implements a mechanism akin to inverse reinforcement learning, and that

the knowledge acquired through this mechanism is used to guide behavior.
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Figure 5. dmPFC signal predicts performance in slot machine game. (A) Scatter plot showing beta estimates of

outcome prediction signals in the dmPFC ROI across participants, plotted against the social information

integration index (SI index), which characterizes each participant’s performance in the slot machine game. The

higher the score, the better the participants are at inferring the best option for themselves from observing the

other. (B) Scatter plot of entropy update signals in the TPJ/pSTS ROI across participants plotted against the social

information integration index.

DOI: https://doi.org/10.7554/eLife.29718.010
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Utilizing computational fMRI, we illuminated the brain systems involved in inverse RL. Two brain

networks appear to be implicated: the mentalizing network, including TPJ/pSTS and dmPFC, as well

as a network of brain regions implicated in goal-directed learning, including the anterior dorsal stria-

tum and pre-SMA (Kolling et al., 2012; Boorman et al., 2013). The signals encoded in these areas

associated with inverse RL go beyond prior reports about the involvement of regions of the mental-

izing network and reward-learning network in observational learning. In previous studies implicating

regions of the mentalizing network in social learning, the computational signals identified were

about learning about the beliefs, traits and intentions of others, such as for example predictions

about the other agent’s beliefs in a competitive interaction (Hampton et al., 2008). Here, we focus

on a quite distinct type of computation, the capacity to infer the distribution of rewards available on

actions in the environment through observing the behavior of other agents. Furthermore, while pre-

vious studies such as Cooper et al. (Cooper et al., 2012) have found evidence for a role of the dorsal

striatum in encoding reward prediction errors during observational learning, those signals were

invoked when observing the rewards experienced by another agent i.e. vicarious reinforcement. Cru-

cially in the present situation, the outcomes experienced are hidden away from the observer and

must be inferred. Thus, the computations being revealed in the present are very distinct from those

that have been reported previously in the literature.

Within the mentalizing network, the dmPFC was found to be involved in encoding the expected

value of the actions chosen by the other agent, at the time that the agent’s choice was being

observed. The expected value of the action is computed using the observer’s estimates of the distri-

bution of outcomes over the chosen action. Importantly, there are two different ways in which the

observer might represent expected values for the observed actions. One possibility would be to rep-

resent the value of actions in their own, observer-centric space, that is based on the value of subjec-

tive preferences the observer him/herself has for the food outcomes. Alternatively, the observer

could represent the value of the food outcomes using acquired knowledge of the agent’s preferen-

ces. Because observers were given the opportunity to learn from observing the actions of agents

with similar and with dissimilar preferences, we were able to dissociate these alternatives. We found

that the observer was representing the value of the observed actions in the agent’s value space as

opposed to their own. In other words, the observer was simulating ‘what it would be like’ to be the

agent. This signal was represented in the dmPFC regardless of whether the agent was similar or dis-

similar. These findings illustrate that the dmPFC can flexibly acquire knowledge about the outcome

distributions through knowledge of the agent’s preferences. The ability to do inference in agent-ref-

erential preference space, in contrast to self-referential, shows that participants approach social

inference learning abstractly rather than concretely; in other words, the environment valuation varia-

bles are represented in the acting observee’s perspective, in contrast to a simpler self-centered

representation which would be directly relevant to their own choice situation.

Activity in an overlapping region of TPJ/pSTS was found to reflect the degree to which the

observer updated his/her knowledge of the distribution of food outcomes on the different slot

machines. Our findings build on previous studies using computational models to implicate TPJ/pSTS

in updating predictions about other people’s behavior, such as in the encoding of prediction errors

about the influence one’s action will have on the opponent’s next game move (Hampton et al.,

2008), prediction errors about others’ intentions (Suzuki et al., 2012) or prediction errors about an

agent’s expertise (Boorman et al., 2013). The finding that this region is involved to a similar degree

in updating the observer’s knowledge for both similar and dissimilar social agents, and that it is not

predictive of the observer’s performance possibly suggests a more general role for this area in learn-

ing about hidden states in a social situation.

Beyond the mentalizing network, several other brain regions were found to be involved in learn-

ing about the outcome distributions, including the dorsal striatum, lateral prefrontal cortex and pre-

SMA. Although we report signals referring to a reduction of entropy in these regions, it is important

to note that, in our model, these variables are also related to value updates in accordance with pre-

vious findings, since the agent is concerned about the update of posterior mean values of the slot

machines. Dorsal striatum has previously been implicated in learning about the value of actions,

both in experiential learning tasks as well as in observational learning (O’Doherty et al., 2004;

Schönberg et al., 2007; Cooper et al., 2012). Dorsolateral prefrontal cortex has previously been

implicated in encoding representations of goal outcomes during decision-making (McNamee et al.,

2015), as well as update signals of outcome estimates (Barraclough et al., 2004), implicating this
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structure in goal-directed decision-making during experiential learning. Therefore, the fact that this

region is involved in updating knowledge of outcome distributions that are inferred through observ-

ing others, is broadly consistent with a role for this region in representing and performing inference

over outcomes whether those outcomes are being learned through direct experience or through

observation. Finally, pre-SMA is a region that has previously been implicated in action-based deci-

sion making and in encoding the values of actions at the time of decision-making during experiential

learning (Seo and Lee, 2007; Wunderlich et al., 2011; Wunderlich et al., 2009; Kolling et al.,

2012; Kolling et al., 2014). Consequently, it appears that the capacity to acquire knowledge about

outcome distributions through inverse RL depends on areas that may be specifically involved in

social inference, as well as regions involved in action-based decision-making and experiential learn-

ing more generally.

We further found that the degree to which BOLD activity in the observer’s dmPFC correlated

with the values of the agent predicted the observer’s success guiding their own behavior. We com-

puted a numerical score (SI index, see Materials and methods for details) that captured the degree

to which an individual observer was able to successfully incorporate knowledge of the dissimilar

agent, and it exhibited a significant relationship with activation in dmPFC. These findings suggest

that the more successfully an observer can represent the other agent’s action-values in dmPFC, the

better the observer can utilize these representations to guide their own behavior. These findings

suggest a direct relationship between dmPFC activity and the capacity to integrate knowledge of

other agents’ preferences into the value computation, to effectively learn hidden outcome

distributions.

At the time that the observer him/herself had to choose between the slot machines, we found evi-

dence for involvement of a cluster in the medial prefrontal cortex (mPFC) positioned more rostrally

to the region of dmPFC found to represent the agent’s preferences. This rostromedial PFC sub-

region exhibited signals correlating with the participant’s value of the chosen option, specifically in

the dissimilar condition. In contrast, at a more liberal statistical threshold we found chosen value sig-

nals in the ventral striatum only when observing the similar agent. These findings indicate that the

observer is not only capable of representing expected values according to the subjective preferen-

ces of the observed agent, but that when the observer is required to make his/her own choices, the

observer can use the same knowledge to compute expected values in own preference space, using

a network of brain areas involved in social comparisons.

In conclusion, here we showed that the human brain is capable of performing a variation of

inverse reinforcement learning, whereby one learns through observation of actions of other agents

with potentially diverging preferences. By inferring the distribution of outcomes over available

actions from the choices of the agent, participants successfully guided their own choices on the

same task. We found evidence that a network of regions in the brain, especially areas traditionally

implicated in mentalizing and theory of mind, such as the TPJ, pSTS and anterior dmPFC, appear to

play a direct role in inverse RL. Importantly, neural signals in dmPFC implied that participants

learned by representing action values in agent preference space, not their own, suggesting that their

inference was abstract (i.e., disconnected from their own involvement) rather than concrete (i.e.,

directly relevant to their own choice situation). The findings are consistent with distinct contributions

of the mentalizing network in different components of inverse RL. Posterior cortical areas such as the

TPJ and adjacent pSTS were found to be especially involved in updating and learning about agent

preferences and expectations irrespective of the specifics of the task participants had to fulfill them-

selves. By contrast, rostral dmPFC was particularly involved in representing agents’ valuations in a

way that these could eventually be used to guide own choices. Furthering an understanding of how

the brain is capable of performing inverse RL may prove important in subsequent work aimed at

identifying the nature of the dysfunction in certain psychiatric and neurological disorders involving

deficits in social cognition such as in autism spectrum disorder.

Materials and methods

Participants
50 participants were recruited between the ages of 18 and 40 (mean: 27.1 years ± 4.9, 25 female).

All were healthy, had normal/corrected to-normal vision, were free of psychiatric/neurological
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conditions, and did not report taking any medications that might interfere with fMRI. All participants

received $60 compensation, and were asked to remain for 30 min after the end of the MRI sessions,

where they were allowed to consume the won food item ad libitum. We excluded seven participants

due to excessive head motion or technical difficulties during scanning (leaving 23 male, 20 female).

The included participants did not exhibit scan to scan movements of greater than one voxel within a

session. The research was approved by the Caltech Institutional Review Board, and all participants

provided informed consent prior to their participation.

Experimental paradigm
The experiment is divided into three tasks, one outside the MRI scanner, and two inside. First partici-

pants revealed their preferences over 10 food items outside MRI. Second, inside the scanner, the

participants learned the food preferences of an agent. Third, participants played an observational

learning slot machine game with this agent in order to win a food item they could consume at the

end of the experiment. The second and third phase is played once with a similar agent, and once

with a dissimilar agent, pseudo-randomized across participants. A debrief after the experiment

revealed that all participants thought they were observing real agents. Participants could deduce

that both agents were male (’Franky’ and ’Andrew’ were used as names, as well as video-feeds of

male agents). Experiments were programmed and displayed with Psychtoolbox within the Math-

works Matlab (RRID:SCR_001622) environment.

Construction of food preferences of social agents
Before the MRI session, each participant was asked to express his/her food preferences over 10

food items through pairwise comparisons. The ranking we got from this pre-MRI phase was used to

pair the participant with two agents: one very similar to her, and the other very dissimilar (Figure 1—

figure supplement 1).

MRI task 1
Preference learning. During the first MRI session, the participants learn the preferences of the agent

through an observational learning game, and were subsequently asked to recall the agent’s prefer-

ences and rate the similarity of their own preference to those of this agent on a scale from 1 to 7

(Figure 1—figure supplement 1). During this observational learning game, participants observed

the agent as it expressed its preferences through pairwise comparisons, just as participants had

done during the earlier construction of food preferences. The fMRI results from this phase of the

experiment are not reported in the current manuscript due to space limitations and in order to main-

tain the focus of the present manuscript on inverse RL, but the results from this phase will be

reported in a subsequent manuscript.

MRI task 2
Observational learning of agents with diverse preferences. Following the preference learning of one

agent, the participants played a slot machine game with that same agent. The participants observed

the choices of the agent. Participants were not informed that the agent was artificial; rather they

were instructed that they would be observing another player by live video-feed. Before the game

starts, the participants see the three involved slot machines (depicted by different fractals) and the

three food items that can be won. They were informed that each slot machine would deliver the

three food items, but at different probabilities. However, they have no knowledge about these prob-

abilities. The three food items are chosen from the five items ranked by the other agent: the most

preferred, the middle and the least preferred. On each trial two out of the three slot machines were

presented for choice. On 2/3 of the trials, participants observed the choice of the agent. Notably,

the participants could not see the outcome of the chosen slot machine, however they knew that the

agent would see the food outcome. On 1/3 of the trials, participants were asked to choose a slot

machine, but here again no outcome was revealed. Importantly, this means that the participants

never get to see any food outcomes – hence the choices were based solely on the observer’s capac-

ity to observe and learn from the actions taken by the other agents. This phase of the experiment

totaled 150 trials: 100 observations and 50 self-choices. In this phase, the agent was implemented as

a softmax learner, which was simulated for each session with a fixed learning rate and temperature.
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The agent model started with flat priors over the three slot machines (e.g. 1/3 for each machine), it

then made a softmax choice over the two displayed machines, and updated the value of the chosen

slot machine through a weighted prediction-error, when the food outcome was revealed. In this sim-

ulation procedure, the food outcomes were numerically coded according to increasing preference,

from 1 to 3. The outcomes were sampled stochastically, according to the fixed probability distribu-

tions of the chosen slot machine (cf. Figure 3B). Thus, the simulated agent exhibited the same

behavioral characteristics in the similar and dissimilar condition.

Computational models
Inverse reinforcement learning (inverse RL): general ideas
Learning policies through a direct approach, that is, imitation or observational learning, where both

agent and participant have the same goal, have recently been used in investigations of social phe-

nomena (Burke et al., 2010). The aim of inverse RL is to implement an indirect learning approach,

where a reward outcome distribution is recovered for which the agent’s choices are optimal, i.e.

which explains the agent’s behavior (Abbeel and Ng, 2004; Ng and Russell, 2000). In our inverse

RL approach the participant infers the reward outcome distribution of the slot machines using a

framework with a participant-specific likelihood as to how the agent chooses given certain out-

comes. Then, rather than mimicking the actions of the agent, the learned reward outcome distribu-

tions are subsequently used to construct participants’ own optimal policies.

Complete inverse RL model
The design of this task is such that the agent gets outcome information for each chosen action, while

the participants only see the agent’s (binary) choice without the outcome. Further, the instructions

note that both the participant and the agent will each receive one actual food outcome at the end

of the experiment, which is drawn randomly from all their respective outcomes during the game.

Note that the approach described here does not guarantee the model to retrieve the true reward

distribution, but to find a reward distribution which explains the actions of the agent, supposedly

optimal, sufficiently well, relative to his preferences. Our inverse RL solution of the computational

problem at hand proposes to incorporate information about the likelihood of choosing a machine

given a certain outcome on the reward distribution. In this section we first describe a full model rely-

ing on true Bayesian updating, and then we propose a simplification of the updating, which is used

in this study.

Agent. Let us denote D as the 3 � 3 matrix of outcome probabilities (rows: arms; columns: out-

comes), and va the vector of values of outcomes for agent (3 � 1). Prior pt (D|�) is Dirichlet with

parameters � represents the trial index. Expected value of arms in trial t is denoted Vt (3 � 1 vector).

It equals:

Vt ¼

Z

DvaptðDj�Þd�¼
h

Z

DptðDj�Þd�
i

� va (1)

Choice is softmax (logit), so the chance that arm c is chosen when pair offered is (c,u) is:

f ðcjpairðc;uÞÞ ¼ logitðVtðcÞ�VtðuÞjbÞ (2)

with u as unchosen option; b the exploitation intensity parameter. We write the updating of � based

on outcome o after choice of arm c using Dirichlet updating equations as follows:

ptþ1ðDðc; �Þjo;c; �Þ ptðDðc; �Þjo;c; �Þ (3)

where denotes the cth row of D. With the Dirichlet distribution, there are no updates on beliefs

about the rows of D of the unchosen arm or arm not offered. Let us assume the observer has the

same prior as the agent (Dirichlet with same �), and that she knows this. (It is possible to allow the

agent to have a different prior – different value of � – but this would introduce additional

complications).

The observer does not see outcomes; she only observes choices. Outcomes therefore constitute

a sequence of hidden variables, like the ’state vector’ in the Kalman filter. A prior distribution of out-

come sequences can be computed however, and with the likelihood of choices given outcomes, the

Collette et al. eLife 2017;6:e29718. DOI: https://doi.org/10.7554/eLife.29718 13 of 20

Research article Neuroscience

https://doi.org/10.7554/eLife.29718


observer can compute a posterior distribution of outcomes, as follows: The likelihood of any choice

sequence given an outcome sequence can be obtained by fixing the outcome sequence, then com-

bining the posterior given the outcome (Equation 3) and the value given the posterior (Equation 1)

with the choice given the value (Equation 2). The prior of an outcome sequence can be obtained in

the same way, but instead of taken outcomes as given, one draws outcomes trial-by-trial using the

(trial) posterior belief of D. The problem is, of course, that these computations effectively mean that

one is estimating hyper-dimensional integrals (over time, and over values of D). Once the observer

has formed posterior beliefs of outcomes given choices, she can use those to determine posterior

beliefs of D given the choice sequence. This way, she forms expectations of the evolution of agent

beliefs over time, and because hers and the agent’s are the same, of own beliefs (of D) as well.

Because the complexity of these integrals renders this complete inverse RL model to be computa-

tionally intractable in practice, we implemented a reduced form of inverse RL that is capable of per-

forming approximate inverse RL inferences with the advantage of being much more tractable and

hence plausible as a model of human inverse RL inference, described below.

Approximate inverse RL
A reduced-form version of the updating can be formulated, as follows: To determine choices, the

agent (and observer) only uses posterior mean values of D (see Equation 1). So, the observer is only

concerned about tracking the update of the posterior mean. This posterior mean is the same for the

observer and agent, since they have the same priors. The observer knows that the agent is solving

an exploration/exploitation problem, whereby the agent tends to choose more frequently the arms

that he believes provide a higher chance of a more favorable outcome for him (Equation 2). Hence,

if an arm is chosen, it is more likely that it generates the – for him – better outcome. If we list the

outcomes in order of agent preferences so that elements of va are decreasing, then it is reasonable

for the agent to assume that the posterior mean probabilities of the chosen arm are updated as

follows:

Dðc; iÞ �cðiÞDðc; iÞ

where i (=1, 2, 3) indexes outcomes, and 0 > �1, �2, �3 > 1 denotes matrix element (c,i).

By the same token, the unchosen arm is likely to have less favorable chances of generating the

good outcomes (from the point of view of the agent) and hence,

Dðc; iÞ �uðiÞDðu; iÞ

where u identifies the unchosen option in the pair of arms offered to the agent, and the vector [�1,

�2, �3 ] is flipped. The outcome probabilities of the arm that was not offered in the trial is not

updated.

Does it make sense to update beliefs of the row of D corresponding to the unchosen option?

Notice that the Bayesian does not do so (see discussion below Equation 3). However, it is not always

the case that the agent chooses the most preferred option; he sometimes explores and chooses a

lesser-valued arm. This arm tends to produce the outcome with lower value (to him), and his beliefs

will evolve accordingly: he will increase the chance of the low-value option. How can we capture

this? The lesser-valued arm can be identified by the frequency with which he chooses this arm across

trials: more often, it is the unchosen arm. Hence, to capture updates in beliefs about this lesser-val-

ued arm, we increase the probability of lesser-valued outcomes of the unchosen arm in each trial.

The updating constants �cðiÞ and �uðiÞ depend on the observer’s (and agent’s) prior beliefs of Dð�Þ as

well as the agent’s exploitation intensity b. Since we don’t know either, we estimate the updating

constants from the data (observer and agent choices). On account of its tractability, this approximate

inverse RL scheme (as opposed to the complete inverse RL described earlier) was implemented in

the analyses reported in the current manuscript.

Imitation RL model
A simpler alternative approach is an imitation learning scheme update using a prediction error rule

as follows. The imitation value V of each of the three slot machines A,B,C are initialized at

VA = VB = VC=0.5. On trials in which (for instance) the slot machine A is chosen, when the agent’s

choice is revealed, the update of the chosen slot machine uses a prediction error thus:
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Vobs Aðtþ 1Þ ¼ Vobs AðtÞþh � ðOA�Vobs AðtÞÞ

h is the learning rate, scaling the impact of the prediction error information. OA is the executed

choice of slot A on trial t, which takes the value 1. To allow imitation learning more flexibility, we

add an inversion parameter � on self-choice trials, which describes the degree to which the observer

inverts the expected values of slot machines before making a choice, based on their belief about the

degree of similarity between the agent’s preferences and themselves. Specifically,

Vself A ¼ ð1� �Þ �Vobs Aþ � � ð1�Vobs AÞ. For example, in the case of an observer learning from an agent

with identical preferences the inversion parameter � would be close to zero, and hence the observer

relies on the same value function as learned from the agent, whereas if the agent is judged to have

opposite preferences to the observer, then � would be close to 1, and the observer will have an

inverted value function for the slots compared to the observee. The observer’s choice is then

expressed as a soft-max function between the values for the slots, with a free parameter b character-

izing the stochasticity of the choices as a function of the value difference between the slots.

Imitation learning with counterfactuals
For our counterfactual imitation learner (cf-Imitation RL) in addition to the update of the chosen slot

machine, the value of the unchosen (but available) slot machine is updated too, following the same

rule, with its own separate learning rate h unchosen and setting Outcome unchosen = 0. Just as with

the Imitation RL model, we added an inversion parameter � on self-choice trials, which describes the

degree to which the participants invert the action probabilities of slot machines before making a

choice.

Fitting procedure
We assumed that the likelihood of participants’ self-choices is given by a softmax function over the

value space of the two displayed slot machines. Parameters were fit using Matlab (RRID:SCR_

001622) optimization under the constraint function fmincon to minimize the log-likelihood of the

model fit with regards to the participants’ own choices. This procedure was iterated with three ran-

domly chosen starting points within the constraints to increase the likelihood of finding a global

rather than local optimum. Note that the similarity is taken into account implicitly by the likelihoods

of the inverse RL model; in our main imitation RL model we included a parameter to weigh the

degree to which the observer intents to invert the expected values of slot machines before making a

choice. For models including a decay factor, the fmincon fitting was additionally performed itera-

tively (because of the integer numbers of this parameter). Decay factor was fit with constraints [1

100] (i.e. denoting integer trial numbers), inverting parameter � with [0 1], choice temperature b (sto-

chasticity) with [2 22].

Why does inverse RL and imitation RL make different predictions about
participants’ choice behavior and why are those predictions especially
distinct for choices of the middle preferred slot?
The agents that we constructed that the observer sees, are artificial agents and those agents have a

linear preference function for the most, middle and least preferred foods. As a consequence (assum-

ing a reasonable choice temperature), their behavior will be approximately linear – they will try to

choose the best machine most often and the machine associated with the greatest probability of the

lowest valued option least often. The middle machine will be approximately in the middle in terms

of choice frequency on average. This of course depends on the objective probability distributions

over the outcomes available on the given slots, that is, in a case where the middle ranking machine

has probabilities much closer to the top ranking machine, the choice probabilities of the agent

would end up such that the agent would choose the middle machine with a frequency closer to that

of the best machine. But in the case of the present task design and parameters, it is the case that

choice probabilities will be approximately linearly ordered over the machines. Now, the imitation RL

will essentially learn to mirror those choice probabilities – as it learns solely through observing the

choice tendencies of the agent. Let’s consider instead inverse RL. This model is not concerned with

learning directly from the choice behavior of the agent, instead it is concerned with inferring the out-

come probabilities over the slots. As an observer, assuming I have learned sensibly about those
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outcome distributions, I can then use my own preference function to guide my choices over the slots.

For instance I might really like food A (my most preferred outcome), but I also might be quite partial

to food B (my middle preferred outcome), and I might really hate food C (the least preferred out-

come). The point is I don’t need to have a linear preference function over the outcomes. My choice

proportions over the slots can therefore more flexibly reflect my underlying preferences for the

goods – I don’t simply have to mirror the agent’s preference function (or invert it). The free parame-

ters in the inverse RL model can flexibly capture those differences in preferences. Although ostensi-

bly they are used to update beliefs (i.e. as a likelihood function), these parameters can capture

individual participants’ flexible preferences over the goods.

Now why does this difference in model predictions between inverse and imitation RL show up

especially for the middle preferred outcome and not the best and worst preferred? The reason is

that the best slot is always going to be strongly dominated by the worst, unless people are truly

indifferent between the best and worst foods which is not likely. Thus, both imitation and inverse RL

should capture that well. However, the middle food might vary a lot more in its relative preference

for participants and hence its likely that there is going to be more variance in choices for this across

subjects. This is why inverse RL does better in this situation.

Note that inverse RL will be better equipped to generalize too across different kinds of agents —

if the agents were not to have a linear preference function, inverse RL ought to more robust to this

— and still enable the observer to learn about the slots in a way that allows the observer to flexibly

make their own choices based on their own preference functions.

Furthermore, inverse RL will also be better able to generalize under situations where new slot

machines are introduced — if for example I see the same (or even a different) agent make choices

over other unique slot machines in a completely new context — inverse RL will be able to guide

choices under situations where those other slots are now presented in pairs with the original slot

machines — because the observer can use knowledge of the outcome distributions to compute

expected values on the fly for those slots in the novel pairings. Imitation RL would be hopelessly lost

here because it’s value signals are relative to the other options available during the learning phase

i.e. they are cached values analogous to model-free RL in the experiential domain (Daw et al.,

2005).

SI index
We computed a social information integration index (SI index) to get a general measure of the simi-

larities between the agent’s and the participants’ choice behavior during phase 2. We therefore nor-

malized the distribution of choice ratios for the three slot machines and calculated the entropy

between both distributions. For easier understanding we inverted the magnitudes, and hence an SI

closer to one indicates very similar choice ratio behavior; for example in the dissimilar condition an

SI close to one suggests a good performance of the participant, whereas an SI of 0 would mean that

in the dissimilar case the participant mimics the agent, and hence his/her performance would be

bad. Note that when correlating the SI post-hoc against slot machine choice ratios, we find a strong

correlation between the SI and the mid versus worst ratio, i.e. how often the participant chose mid

over worst when these two slot machines were presented.

Neuroimaging data acquisition
The fMRI images were collected using a 3T Siemens Trio scanner located at the Caltech Brain Imag-

ing Center (Pasadena, CA) with a 32-channel radio frequency coil. The BOLD signal was measured

using a one-shot T2*-weighted echo planar imaging sequence. Forty-four axial slices were acquired

in oblique orientation of 30 degrees to the anterior commissure–posterior commissure line, with a

repetition time (TR) of 2780 ms, TE of 30 ms, 80˚ flip angle, 3 mm isotropic resolution, 192 mm �

192 mm field of view. A high-resolution T1-weighted anatomical image (magnetization-prepared

rapid-acquisition gradient echo sequence, 1 � 1 � 1 mm voxels) was acquired at the end of the

session.

fMRI data analysis
All image analyses were performed using SPM12 (rev. 6906; http://www.fil.ion.ucl.ac.uk/spm, RRID:

SCR_007037), following a standard preprocessing pipeline. EPI images were realigned and
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realignment parameters were included in subsequent GLMs. Each subject’s T1 image was seg-

mented into gray matter, white matter, and cerebrospinal fluid, and the segmentation parameters

were used to warp the T1 image to the SPM Montreal Neurological Institute (MNI) template using

SPM’s DARTEL procedure. The resulting normalization parameters were then applied to the func-

tional data in 2 mm isotropic resolution. Finally, the normalized images were spatially smoothed

using an isotropic 6 mm full-width half-maximum Gaussian kernel. Whole brain analyses where per-

formed by defining a general linear model (GLM) for each participant, which contained parametric

regressors representing the computational variables at the slot machine onset (outcome prediction

in agent-referential space for both options, confidence), at the time the agent’s choice was revealed

(update entropy), and at the time of participant choice (outcome prediction for chosen and

unchosen slot machine, reaction time). The fMRI results depicted in the main figures are based on an

uncorrected threshold of p=0.001 (which is illustrated as z>3.3 in the figures) combined with an

FWE-corrected cluster threshold of p=0.05 (here, k = 114). All regression estimates from Figure 3

and Figure 4 were conducted based on a leave-one-out procedure (Kriegeskorte et al., 2009) to

avoid non-independence bias. Specifically we ran a leave-one-subject-out GLM analysis on the group

level (Esterman et al., 2010), and each GLM defined the cluster for the subject left out. For the

Bayesian Model Selection (BMS) analyses during action feedback, we defined a dmPFC region of

interest in the Harvard/Oxford atlas (label 103 restricting the ROI to cover only medial areas, i.

e. +12 > X > �12). The definition of this ROI was motivated by two recent reviews (Dunne and

O’Doherty, 2013; Apps et al., 2016) which each identified the key dmPFC region involved in social

inference. For this analysis we used the first-level Bayesian estimation procedure in SPM12 to com-

pute a voxelwise whole-brain log-model evidence map for every subject and each model

(Penny et al., 2007; Rosa et al., 2010). Both GLMs differed only in one single regressor: the

parametric modulator for the prior expectations. Then, to model inference at the group level, we

applied a random effects approach at every voxel of the log evidence data falling within the same

masks previously used for beta extractions, constructing an exceedance posterior probability (EPP)

maps for each model. The imaging results are displayed on a pool-specific structural template cre-

ated by DARTEL procedure on the anatomical images of all the participants, transformed to MNI

space.

Data availability
The full anonymized dataset from this study is available in the NDAR data repository https://ndar.

nih.gov/ under the collection ID 2417. Summary information on the data (e.g. additional details

about the experiment such as picture files or exact timings of stimuli) is available on the NDA home-

page without the need for an NDA account. To request access to detailed human subjects data, you

must be sponsored by an NIH recognized institution with a Federalwide Assurance and have a

research related need to access NDA data. Further information as to how to request access can be

found here https://ndar.nih.gov/access.html. The fMRI activation maps are available at neurovault

(http://neurovault.org/collections/ZZHNHAJU/).
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