
386	 J Psychiatry Neurosci 2017;42(6)

© 2017 Joule Inc. or its licensors

Research Paper

Refinement by integration: aggregated effects of 
multimodal imaging markers on adult ADHD

Thomas Wolfers, MSc*; Alberto Llera Arenas, PhD*; A. Marten H. Onnink, PhD;  
Janneke Dammers, MSc; Martine Hoogman, PhD; Marcel P. Zwiers, PhD;  

Jan K. Buitelaar, MD, PhD†; Barbara Franke, PhD†; Andre F. Marquand, PhD†;  
Christian F. Beckmann, PhD†

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is often 
perceived as a childhood disorder; however, it affects adults 
as well.1,2 The prevalence of ADHD in the adult population is 
about 2.5%.1 It is biologically heterogeneous,3 suggesting that 
different biological predispositions — mediated through de-
velopmental processes — converge upon a common clinical 
phenotype.4–9 The different mechanisms that have been pro-
posed for ADHD3 may be reflected to varying degrees across 
neuroimaging modalities.10–16 Imaging modalities are sensi-
tive to different properties of the underlying biological tissue. 
Although structural imaging captures basic tissues, such as 
grey and white matter volumes, diffusion imaging allows for 
the estimation of white matter microstructural integrity. 
Therefore, it is beneficial to integrate effects across a range of 

imaging modalities using a principled approach to refine our 
understanding of the biology underlying adult ADHD.

Recent methodological developments allow for this integra-
tion17–19 and have presented novel imaging markers under
lying age-dependent brain changes17,20 or childhood and ado-
lescent ADHD.21 In those studies, linked independent 
component analysis (ICA) was used, which, in contrast to 
other methods, combines information already at an early 
stage in the analysis pipeline. This allows for a principled in-
tegration of information rather than a post hoc combination of 
unimodal results at the stage of final interpretation. Linked 
ICA searches for hidden sources of spatial variation across 
multiple brain imaging modalities, yielding independent 
components or imaging markers. Given the presumed hetero-
geneity of adult ADHD in terms of its biology and patho
physiological mechanisms,3 integrating information across 
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Background: Attention-deficit/hyperactivity disorder (ADHD) is biologically heterogeneous, with different biological predispositions — 
mediated through developmental processes — converging upon a common clinical phenotype. Brain imaging studies have variably shown 
altered brain structure, activity and connectivity in children and adults with ADHD. Recent methodological developments allow for the inte-
gration of information across imaging modalities, potentially yielding a more coherent view regarding the biology underlying the disorder. 
Methods: We analyzed a sample of adults with persistent ADHD and healthy controls using an advanced multimodal linked independent 
component analysis approach. Diffusion and structural MRI data were fused to form imaging markers reflecting independent components 
that explain variation across modalities. We included these markers as predictors into logistic regression models on adult ADHD and put 
those into context with predictions of estimated intelligence, age and sex. Results: We included 87 adults with ADHD and 93 controls in our 
analysis. Participants’ courses associated with all imaging markers explained 27.86% of the variance in adult ADHD. No single imaging 
modality dominated this result. Instead, it was explained by aggregation of relatively small effects across several modalities and markers. 
One of the top markers for adult ADHD was multimodal and linked to morphological and microstructural effects within anterior temporal 
brain regions; another was linked to cortical thickness. Several markers were also influenced by estimated intelligence, age and/or sex. 
Limitations: Although complex analytical approaches, such as the one applied here, provide insight into otherwise hidden mechanisms, 
they also increase the complexity of interpretations. Conclusion: No dominant imaging modality or marker characterizes structural brain 
phenotypes in adults with ADHD, but we can refine our characterization of the disorder by the integration of small effects across modalities.
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imaging modalities may yield a more complete picture of 
each underlying mechanism and allow for multiple mech
anisms to be taken into account simultaneously.

In the present study, we took an integrative perspective on 
adult ADHD, combining imaging modalities into markers 
using a multimodal linked ICA of diffusion and structural 
MRI data. We integrated the resulting imaging markers using 
multiple logistic and linear regressions. Hypothesizing that a 
biologically heterogeneous phenotype, such as adult ADHD, 
affects different modalities at once, we expected that through 
such integration, a sizable and robust effect would be detect-
able. We contrasted the analyses with effects of estimated in-
telligence, age and sex to increase our understanding of the 
known roles of these factors on brain structure as well as 
ADHD and to quantify the overall magnitude of ADHD-
related effects in association with these factors.

Methods

Participants

We selected adults with ADHD and healthy controls from 
the Dutch cohort of the International Multicentre persistent 
ADHD CollaboraTion1,22 based on data availability across 
imaging modalities. Adults with ADHD were recruited from 
the Department of Psychiatry of the Radboud University 
Medical Centre and through advertisements. In this recruit-
ment process, the adults with ADHD were matched for sex, 
age and estimated intelligence to a healthy control popula-
tion. All participants underwent psychiatric assessments, 
neuropsychological testing, and neuroimaging. The Diag-
nostic Interview for Adult ADHD (DIVA)23 was conducted 
to confirm the diagnosis of adult ADHD. This interview fo-
cuses on the 18 DSM-IV symptoms of ADHD and uses con-
crete and realistic examples to thoroughly investigate 
whether a symptom is currently present and whether it was 
already present in childhood.24 In all cases, a childhood his-
tory of ADHD symptoms was established, and persistent 
ADHD was diagnosed. The ADHD Rating Scale-IV was 
filled in by each participant to report current symptoms of 
attention and hyperactivity/impulsivity. To assess comor-
bidities, the Structured Clinical Interviews for DSM-IV 
(SCID-I and SCID-II) were administered.25–27 The inclusion 
criteria for participants with ADHD were DSM-IV-TR cri
teria for ADHD in childhood as well as in adulthood, no 
psychosis, no alcohol or substance addiction in the last 
6 months, full-scale intelligence estimate above 70 (prorated 
from the Block Design and Vocabulary subtests of the 
Wechsler Adult Intelligence Scale-III), no neurologic disor-
ders, no obvious sensorimotor disabilities, and no medica-
tion use other than psychostimulants or atomoxetine. Addi-
tional criteria for healthy controls were no current 
neurologic or psychiatric disorder according to DIVA, SCID-I, 
or SCID-II, and no first-degree relatives with ADHD or an-
other major psychiatric disorder. All participants were 
Dutch and of European Caucasian ancestry. The regional 
ethics committee (Centrale Commissie Mensgebonden 
Onderzoek: CMO Regio Arnhem – Nijmegen) approved our 

study protocol. We obtained written informed consent from 
all participants. An overlapping sample was used earlier in 
unimodal analyses.28–30

MRI acquisition

Whole brain imaging was performed using a 1.5 T scanner 
(Magnetom Avanto, Siemens Medical Systems) with a stan-
dard 8-channel head coil. A high-resolution T1-weighted 
magnetization-prepared rapid-acquisition gradient echo 
(MPRAGE) anatomic scan was obtained from each partici-
pant, in which the inversion time (TI) was chosen to pro-
vide optimal grey matter–white matter T1 contrast (repeti-
tion time [TR] 2730 ms, echo time [TE] 2.95 ms, TI 1000 ms, 
flip angle  7°, field of view [FOV] 256 × 256 × 176 mm3, voxel 
size 1.0 × 1.0 × 1.0 mm3). The T1 images served as a basis for 
the extraction of grey matter volumes, pial surface area and 
cortical thickness. Further, they served as high-resolution 
reference images for diffusion imaging data. Transversely 
oriented diffusion-weighted images were acquired using a 
twice-refocused spin echo planar imaging sequence that 
minimized imaging distortions from eddy currents.31 The 
diffusion imaging data were acquired using 2 different pro-
tocols. Forty participants were scanned with the following 
protocol: TR 10 200 ms, TE 95 ms, FOV 320 × 320 × 160 mm3, 
voxel size 2.5 × 2.5 × 2.5 mm3, 6/8 partial Fourier acquisi-
tion. Four images without diffusion weighting (b = 0 s/mm2) 
and 30 images with diffusion weighting (b = 900 s/mm2) ap-
plied along evenly distributed directions were acquired. 
The remaining 140 participants were scanned with an 
adapted second protocol, which was implemented to re-
duce motion artifacts during scanning. Parameters that dif-
fered from the first protocol were TR (6700 ms), TE (85 ms), 
FOV (220 × 220 × 140 mm3), and full Fourier acquisition; 
other parameters were unchanged. Imaging markers that 
were significantly affected by a difference in scan protocol 
were excluded from statistical analyses.

MRI processing

Diffusion parameters
Preprocessing of diffusion MRI scans entailed denoising,32 
realignment, residual eddy-current correction (SPM8), artifact 
removal from head and/or cardiac motion (PATCH) and cor-
rection for magnetic susceptibility-induced distortions.34 The 
preprocessed diffusion data were fed into FSL version 4.1.7,35 
and diffusion tensor model fit was used to derive fractional 
anisotropy (FA), mean diffusivity (MD), and tensor mode 
(MO) at each voxel.36 These measures in principle quantify the 
shape of the diffusion tensor37 (i.e., FA measures the anisot-
ropy of diffusion, MD measures the overall magnitude of dif-
fusion, and MO reflects the shape of the diffusion tensor). 
These measures were fed into the tract-based spatial statistics 
(FSL-TBSS) pipeline for skeletonization38 and nonlinearly 
registered to the FMRIB-58_FA template (Montreal Neuro
logical Institute [MNI] 152 space). The skeleton was thresh-
olded at FA ≥ 0.2, and its resolution was reduced from 1 mm 
to 2 mm isotropic voxel size for computational reasons.
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Cortical thickness and areal expansion

Structural MRI images were fed into FreeSurfer software ver-
sion 5.3 to extract measures for cortical thickness and areal ex-
pansion (http://surfer.nmr.mgh.harvard.edu/).39,40 The stan-
dard FreeSurfer preprocessing pipeline (recon-all) was applied 
to these images, in which a reconstruction of the cortical sheet 
was estimated using intensity and continuity information. 
Cortical thickness was determined as the closest distance from 
the grey matter/white matter boundary to the grey matter/
cerebrospinal fluid (CSF) boundary at each vertex.41 Surface 
area in FreeSurfer is estimated as the relative amount of expan-
sion or compression at each vertex when registering each par-
ticipant’s surface to a common atlas. Surface maps were re
sampled and mapped to a common coordinate system.42 
During preprocessing, the data were registered onto the high-
resolution average participant surface space (fsaverage), and a 
10 mm full-width at half-maximum (FWHM) surface-based 
smoothing kernel was applied.

Grey matter volume

Prior to grey matter volume estimation, all participants’ T1 im-
ages were rigidly aligned using statistical parametric map-
ping version 12 (SPM-12). Subsequently, images were seg-
mented, normalized, and bias field–corrected using “new 
segment” from VBM-SPM12 (www.fil.ion.ucl.ac.uk/spm),43,44 
yielding images containing grey and white matter segments 
plus CSF. We then used DARTEL45 to create a study-specific 
grey matter template to which all segmented images were 
normalized. Subsequently, all grey matter volumes were 
smoothed with a 9.4 mm FWHM Gaussian smoothing kernel 
(corresponding to σ = 4 mm). Data were downsampled from 
2 mm to 4 mm isotropic resolution for computational reasons.

Linked ICA

Linked ICA18 is a Bayesian spatial multimodal extension of 
the common ICA model.46,47 Whereas most ICA algorithms 
perform factorization of time-series, the linked ICA algo-
rithm provides a factorization over participants. This model 
can simultaneously decompose data modalities, with differ-
ent numbers of features, while ensuring balance of informa-
tion across modalities. Each of the linked ICA components is 
linked to a participant course (1 scalar value per participant) 
and each modality’s corresponding spatial map.48 The partici-
pant courses can be analyzed in association with behavioural 
measures, explaining, for example, development, behaviour, 
or pathologies. Here, linked ICA was used to combine 6 data 
modalities: FA, MD, MO, cortical thickness, areal expansion 
estimates and grey matter volume. We decided to estimate 
50 independent components, following recommendations de-
scribed in earlier papers.17,18,21 It would have been justifiable 
to use 40–50 imaging markers based on these recommenda-
tions. Therefore, we repeated the ICA model estimations 
using 40 and 45 imaging markers. We used the code available 
on the FSL homepage,2 and for further discussions of the 
method, we referred to the original papers.17,18 For visualiza-

tion, the spatial maps were converted to pseudo-Z-statistics 
and thresholded at |Z| > 2.3. Throughout the text, we refer 
to the independent components derived from linked ICA 
analysis as imaging markers or simply markers. If a marker 
was associated with multiple data modalities, we called it a 
multimodal marker. Statistical inferences were performed on 
the associated participants’ courses.

Statistical analysis

Prior to statistical inference, 13 imaging markers were ex-
cluded from further analyses, as they were either dominated 
by a single participant (i.e., more than 10% of the variance 
was explained by a single participant) or they were associ-
ated with the diffusion acquisition protocol (Appendix 1, 
Table S1, available at jpn.ca/160240-a1). Thus, we analyzed a 
total of 37 imaging markers in our main analyses.

Complex and heterogeneous phenotypes, such as adult 
ADHD, are unlikely to be affected by a single imaging 
marker in isolation. Therefore, we performed a descriptive 
logistic regression analysis on adult ADHD with the partici-
pants’ loadings associated with the 37 imaging markers as re-
gressors. We compared this descriptive logistic regression 
model to 3 other models containing the same regressors but 
different criteria, namely, sex, age and estimated intelligence. 
We report only the results that remained significant after 
multiple comparison corrections using the Bonferroni–Holm 
method49 (significance level of p < 0.05/4) and interpreted 
only individual regressors (imaging markers) that remained 
significant after correcting for the total number of regressors 
in an overall significant regression model using the 
Bonferroni–Holm method (significance level of p < 0.05/37). 
The 2 thresholds were determined based on the number of 
independent regressions (adult ADHD, estimated intelli-
gence, age and sex) or the number of predictors in each indi-
vidual model (37 imaging markers).

We performed a number of sensitivity analyses to deter-
mine the specificity, robustness and generalizability of our 
main results. To increase the confidence in the specificity of 
our findings, we controlled for sex, age and estimated intel
ligence in a separate model of adult ADHD. Further, we 
correlated self-reported symptoms of inattention and 
hyperactivity/impulsivity with the top imaging markers as-
sociated with adult ADHD across and within each group. We 
tested the robustness of our results by repeating the main 
analyses using 40 and 45 imaging markers that were the re-
sult of a re-estimated linked ICA decomposition. We cor
related the top markers associated with adult ADHD across 
these ICA decompositions to show their similarity. To deter-
mine if the results were linked to the selection of participants, 
we split each group in our sample into 2 parts based on odd 
and even participant numbers. We repeated the analyses in 
each of these splits and compared the outcomes. We esti-
mated the generalizability of the results by determining the 
out-of-sample performance of the logistic regression model 
on adult ADHD using a “leave 1 participant out” cross-
validation procedure. Here, we estimated significance using 
permutation testing with 1000 permutations.
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In independent analyses, we performed 4 logistic regres-
sions on adult ADHD. In those analyses, we included the top 
10% of the markers, which were associated with adult 
ADHD, estimated intelligence, age and sex as regressors. In 
this way, we tested the exploratory value of imaging markers 
primarily associated with age, sex and estimated intelligence, 
for adult ADHD. All analyses were performed using Stats-
Models in Python.3

Results

Participants

We included 87 adults with ADHD and 93 healthy controls 
in our analyses. The demographic and clinical characteristics 
of the sample are shown in Table 1.

Imaging markers primarily linked to adult ADHD

Figure 1 depicts all imaging makers that were included into 
the descriptive regression analysis on adult ADHD. The mark-
ers were ranked based on their contribution to the model. Par-
ticipants’ courses associated with all imaging markers ex-
plained 27.86% of the variance in adult ADHD (Table 2). Note 
that this measure reflects the within-sample explained vari-
ance. Using the “leave 1 participant out” cross-validation pro-
cedure in a predictive regression analysis, we could signifi-

cantly predict adult ADHD with an accuracy of 60% (p = 
0.006). For a full overview of the model, refer to Appendix 1, 
Table S2. The sensitivity analysis including estimated intelli-
gence, age and sex on top of the imaging markers supported 
the specificity of our findings for adult ADHD (Appendix 1, 

Table 1: Demographics and clinical characteristics of study 
participants (n = 180)

Group; % or mean ± SD

Characteristic
Adult ADHD* 

(n = 87)
Control  
(n = 93) p value

Male sex 31.0 29.0 —

Diffusion protocol 1 71.3 83.8 —

Age, yr 32.9 ± 9.5 35.1 ± 11.7 0.18

Estimated intelligence† 109.4 ± 15.9 107.8 ± 14.9 0.47

Hyp/imp symptoms‡ 5.54 ± 2.4 0.95 ± 1.4 < 0.001

Inattention symptoms§ 6.5 ± 2.0 0.6 ± 1.1 < 0.001

Comorbid disorders¶ 1.31 ± 1.3 0.28 ± 0.6 < 0.001

ADHD = attention-deficit/hyperactivity disorder; hyp/imp = hyperactivity/impulsivity; 
SD = standard deviation.
*Diagnosis was based on the structured Diagnostic Interview for ADHD in Adults.
†Estimated intelligence was based on the Block-design and Vocabulary subtests of 
the Wechsler Adult Intelligence Scale.
‡Self-reported number of hyperactivity/impulsivity symptoms, as measured with the 
ADHD-DSM-IV rating scale.
§Self-reported number of inattention symptoms, as measured with the ADHD-DSM-IV 
rating scale.
¶Number of comorbid disorders, such as major depressive disorder, based on the 
Structured Clinical Interview.

Fig. 1: All imaging markers associated with adult attention-deficit/hyperactivity disorder (ADHD) are depicted. These markers are ranked 
based on their contributions to the descriptive logistic regression model. Toward the left of each figure the pseudo R2 across all imaging mark-
ers is depicted. The spatial patterns are depicted for the top 2 imaging markers associated with adult ADHD, as they remained significant after 
within-model correction for multiple comparisons. AR = pial surface area; FA = fractional anisotropy; GM = grey matter volume; MD = mean 
diffusivity; MO = tensor mode; TH = cortical thickness. **Effects that remained significant after multiple comparison correction (p < 0.05/4).
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Table S3). To further increase the confidence in our results, we 
repeated the analysis on adult ADHD using the 50 original 
markers as well as models based on 40 and 45 imaging mark-
ers. In all cases the main results remained robust (Appendix 1, 
Table S4 and Table S5). We correlated the top markers of these 
different ICA models and showed that they correlated almost 
perfectly, thus our results remain robust regardless of the 
number of prespecified ICA decompositions (Appendix 1, 
Table S5). Additionally, we split our sample in 2 subgroups 
(odd- and even-number participants) and estimated logistic re-
gressions in each of these subgroups separately, using only 
markers that were at least nominally significant in the original 
model. We could show that the regressions remained signifi-
cant in both groups (Appendix 1, Table S6). 

Imaging markers 6 and 19 contributed significantly to the 
logistic regression model on adult ADHD (Table 1) and re-
mained at least nominally significant during various sensitiv-
ity analyses. Marker 6 was unimodal, showing contributions 
of cortical thickness across the whole cortex. Marker 19 was 
multimodal, with strong contributions from the temporal 
pole, parahippocampal gyrus, occipitotemporal gyrus, in
ferior temporal gyrus and hippocampal complex (Fig. 1). 
Both markers associated positively with adult ADHD. In a 
sensitivity analysis, we could show that neither of these 
markers was associated with self-reported symptoms of 
hyperactivity/impulsivity nor with symptoms of inattention 
in the individual groups; however, when combining the 
adult ADHD and healthy control groups to perform the same 
correlation analysis, inattention was associated with both 
markers, whereas hyperactivity/impulsivity was associated 
only with marker 19 (Appendix 1, Fig. S2).

Estimated intelligence, age and sex in the context of adult 
ADHD

Figure 2 depicts imaging markers associated with adult 
ADHD, estimated intelligence, age and sex. Comparable to 
adult ADHD, all imaging markers explained 32.21% of the 

variance in estimated intelligence (Appendix 1, Table S7), 
78.82% of the variance in age (Appendix 1, Table S8) and 
57.51% of the variance in sex (Appendix 1, Table S9). The 
logistic regression analyses on adult ADHD using the 10% 
most predictive imaging markers for estimated intelligence, 
age and sex explained 5.11%, 3.87% and 0.86% of the variance 
in adult ADHD, respectively (Table 3). In contrast, the top 
10% of the imaging markers associated with adult ADHD ex-
plained 8.94% of the variance in adult ADHD. Whereas 
markers primarily linked to estimated intelligence and age 
were associated with adult ADHD, markers primarily linked 
to sex were not.

Discussion

In the present study, we took an integrative perspective on 
adult ADHD, combining different neuroimaging modalities 
into imaging markers using a data-driven multivariate analysis 
method. Imaging markers explained 27.86% of the within-
sample variance in adult ADHD, which was comparable to 
estimated intelligence. This translated to a cross-validated ac
curacy of 60.00%. Both adult ADHD and estimated intelligence 
were associated with multiple markers across different modal
ities, with relatively small contributions to the descriptive re-
gression models. Among the top 2 markers with the strongest 
predictive value for adult ADHD, one was unimodal, predom
inantly affected by cortical thickness, and widespread, and the 
other was bilateral and multimodal, with focal effects localized 
predominantly to temporal brain regions. In general, adult 
ADHD was associated with heterogeneous effects across mark-
ers. The markers with the strongest association with estimated 
intelligence and age showed a link to adult ADHD. Markers 
prominently linked to sex did not.

Individual imaging markers showed a weaker association 
with adult ADHD, but their combination was predictive. This 
result may speak to the heterogeneity of ADHD and supports 
the model that divergent brain mechanisms — evident to vary-
ing degrees in different neuroimaging modalities — converge 

Table 2: Logistic regression analysis of adult ADHD (n = 180)

Analysis Regression coefficient Statistical test Accuracy p value

Descriptive logistic regression* — R2
36 = 27.86% 75.50% 0.004‡

Predictive logistic regression† 60.00% < 0.001‡§

Individual markers

M6 0.76 z = 3.24 0.001‡

M19 0.70 z = 3.26 0.001‡

M32 0.51 z = 2.26 0.024

M1 –0.54 z = –2.2 0.028

M38 –0.45 z = –2.17 0.030

M47 –0.50 z = –1.96 0.049

ADHD = attention-deficit/hyperactivity disorder; Permutation p = p value using permutation testing.
*Degrees of freedom residuals = 143.
†Leave 1 participant out cross-validation method. 
‡Overall regression model that remained significant after multiple comparisons using the Bonferroni–Holm method (p < 0.05/4) or an 
individual regressor that remained significant after multiple comparison correction (p < 0.05/37). The thresholds were determined based 
on the number of independent regressions (adult ADHD, estimated intelligence, age and sex) or the number of predictors in each 
individual model (37 imaging markers).
§Derived using permutation testing.
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toward the same clinical phenotype in different adults with 
ADHD. Alternatively, the present results may be interpreted 
in such a way that multiple imaging markers may in combin
ation be less prone to noise or capture different aspects of 
biology that better link to biological reality. Similar to the way 
that distance from downtown and square footage interac-
tively predict property values in city centres, different in
dependent imaging markers in combination may better ex-
plain complex phenotypes, such as adult ADHD. Our results 

are in line with this hypothesis and therefore support integra-
tion as a means to extend our understanding of adult ADHD.

The imaging markers that contributed most to the regres-
sion model on adult ADHD suggest that cortical thickness 
across the whole cortex as well as multimodal effects in an
terior temporal brain regions are most predictive of adult 
ADHD. Adult ADHD is associated with all imaging modal
ities13,21,50,51 both within and across markers (Fig. 1). One of the 
2 markers prominently linked to adult ADHD, imaging 

Fig. 2: Imaging markers associated with adult attention-deficit/hyperactivity disorder (ADHD), estimated intelligence, age and sex. All markers 
are ranked based on their contribution to the respective regression. To the left of each subfigure R2 in relation to adult ADHD, estimated intelli-
gence, age and sex are depicted. To the right of each figure, R2 in relation to adult ADHD for the top 10% of the markers associated with adult 
ADHD, estimated intelligence, age and sex are depicted. Note that the top markers for estimated intelligence and age are in this order predic-
tive for adult ADHD, but the top markers for sex are not. These findings suggest shared brain substrates for estimated intelligence and adult 
ADHD as well as age and adult ADHD. AR = pial surface area; FA = fractional anisotropy; GM = grey matter volume; MD = mean diffusivity; 
MO = tensor mode; TH = cortical thickness. **Effects that remained significant after multiple comparison correction (p < 0.05/4).
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Table 3: Top imaging marker logistic regressions

Analysis; top 10% imaging markers

Predictor
Adult ADHD

(M6, M19, M32)
Estimated intelligence*

(M35, M4, M19)
Age

(M1, M3, M8)
Sex

(M34, M3, M35)

Criterion Adult ADHD Adult ADHD Adult ADHD Adult ADHD

Pseudo R2 8.95% 5.11% 3.87% 0.86%

p value < 0.001† 0.001† 0.007† 0.65

ADHD = attention-deficit/hyperactivity disorder; M = imaging marker.
*Estimated intelligence was based on the Block-design and Vocabulary subtests of the Wechsler Adult Intelligence Scale.
†Overall regression model significant after Bonferroni–Holm correction (p < 0.05/4).
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marker 19, was multimodal. The marker showed a focal pat-
tern, with effects primarily in bilateral areas of the temporal 
pole, parahippocampal gyrus, occipitotemporal gyrus, inferior 
temporal gyrus and hippocampal complex. Differences in 
ADHD cohorts have been reported in the temporal pole.7,9,52,53 
However, findings have varied, and other brain regions were 
reported more frequently in the literature.3,7,11,12,50,54 In a recent 
large meta-analysis of functional MRI studies in adults with 
ADHD, the left temporal pole was among the regions showing 
greater activation in controls than in participants with ADHD.55 
The present results suggest a complex pattern with focal effects 
on grey matter volume, surface and thickness as well as white 
matter integrity in anterior temporal brain regions.

The top 10% of the markers that showed the strongest as-
sociation with estimated intelligence as well as age were also 
predictive of adult ADHD. Children and adults with ADHD 
have on average a lower intelligence than healthy individ
uals, and the disorder is linked to development.3,6,56–58 How-
ever, shared brain mechanisms of those phenotypes remain 
to be found. Although studies have shown a genetic overlap 
between ADHD and low intelligence,59 the corresponding 
brain substrates have not been reported. In the present study, 
we showed that the top markers linking to estimated intelli-
gence were also predictive of adult ADHD, particularly one 
dominated by anterior temporal brain regions (marker 19). 
Additionally, we showed that the top markers linked to age 
were also predictive of adult ADHD, highlighting the 
developmental character of the disorder5,6,8,30 also in adult-
hood. Further, in addition to studies using only structural 
modalities,17,20 our results suggest that aging manifested itself 
best in grey matter volume rather than in, for example, diffu-
sion measures. Therefore, grey matter volume may be a bet-
ter readout to identify developmental effects in adult partici-
pants with ADHD rather than other modalities. Surprisingly, 
the top imaging markers associated with sex were not predic-
tive of adult ADHD, indicating that a higher prevalence of 
men with ADHD is not explained by sex differences in brain 
morphology. Altogether, the present results point to a com-
mon substrate for intelligence and adult ADHD in multi-
modal imaging markers and for aging and adult ADHD in 
grey matter volume.

Although the present study is, to our knowledge, the first 
to use multimodal linked ICA in adult participants with 
ADHD, some studies in children and adolescents with the 
disorder already exist. One of these studies reported differ-
ences in multimodal imaging markers primarily in frontal re-
gions across participants with ADHD.21 That study included 
structural and diffusion imaging modalities. Another study, 
which included resting state as well as structural modal
ities,60 reported that reduced segregation of default mode and 
task positive network activity co-occurred with structural ab-
normalities in the dorsolateral and anterior cingulate cortex. 
This finding is in line with unimodal work on childhood and 
adolescent ADHD.3 As we included different modalities into 
our study, the present results are not directly comparable to 
those mentioned above. However, we did not find a strong 
frontal component in adult participants with ADHD. This 
may suggest that adults with ADHD, in comparison with 

healthy controls, have developed sufficient frontal control, 
which may result in a reduction of hyperactive/impulsive 
symptoms in adulthood. Further, multimodal investigation 
of this mechanism over development is an interesting topic 
for future research.

Limitations

The results presented in this article are robust, as exemplified 
in various sensitivity analyses; however, some limitations re-
quire attention. First, the analytical approach requires the 
model order or the number of imaging markers to be chosen 
before linked ICA decomposition. Our choice of 50 imaging 
markers was based on recommendations and earlier 
work.17,18,61 Forty or 45 markers would have been justifiable as 
well. To rule out any effect that this choice had on the results, 
we repeated the analyses using these specifications. We were 
able to show that the results remained robust (Appendix 1, 
Table S4). Second, although complex analytical approaches, 
such as the one applied here, allow for insights into other-
wise hidden mechanisms, they also increase the complexity 
of interpretations.17,62 In our opinion, however, such analy
tical integration is essential for a better understanding of 
complex brain disorders and behavioural traits. Third, al-
though we strictly quality-controlled our input imaging data 
and phenotypic data, only 37 imaging markers survived 
quality control. Repeating our analysis with all 50 imaging 
markers, however, had no significant effect on our results 
(Appendix 1, Table S4 and Table S5). Fourth, the “leave 1 
participant out” cross-validation yielded relatively low accu-
racy. However, the results were well in line with earlier work 
on ADHD.16,51 Importantly, our main purpose for the present 
study was to show that information predictive of adult 
ADHD is found across modalities and that a description of 
this disorder in terms of its biological heterogeneity63 requires 
the integration of information across biological read-outs.

Conclusion

Our findings strongly suggest that small effects across 
modalities and imaging markers require integration to refine 
the characterization of adult ADHD, as no dominant modal-
ity or marker exists.
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