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Abstract Ag nanoparticles (AgNPs), a widely used non-an-
tibiotic, antibacterial material, have shown toxic and other
potentially harmful effects in mammals. However, the delete-
rious effects of AgNPs on insects are still unknown. Here, we
studied the effects of AgNPs on the model invertebrate organ-
ism Bombyx mori. After feeding silkworm larvae different
concentrations of AgNPs, we evaluated the changes of
B. mori body weights, survival rates, and proteomic differ-
ences. The results showed that low concentrations
(<400 mg/L) of AgNPs promoted the growth and cocoon
weights of B. mori. Although high concentrations (≥800 mg/
L) of AgNPs also improved B. mori growth, they resulted in
silkworm death. An analysis of fat body proteomic differences
revealed 13 significant differences in fat body protein spots,
nine of which exhibited significantly downregulated expres-
sion, while four showed significantly upregulated expression.
Reverse transcription–polymerase chain reaction results
showed that at an AgNP concentration of 1600 mg/L, the
expression levels of seven proteins were similar to the tran-
scription levels of their corresponding genes. Our results sug-
gest that AgNPs lowered the resistance to oxidative stress,
affected cell apoptosis, and induced cell necrosis by regulating
related protein metabolism and metabolic pathways in
B. mori.
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Introduction

Nanomaterials have very small sizes (1–100 nm) and some spe-
cial physical and chemical properties. Ag nanoparticles (AgNPs)
are some of the most novel and commercialized nanomaterials,
and they have strong antibacterial activity. They are widely used
in many fields, such as food packaging, medical devices, and
cosmetics [1, 2]. However, several studies have implied that they
are potentially hazardous [3, 4]. Currently, studies have demon-
strated the potential impact of AgNPs on human health and the
environment [3, 4]. Artificial nanomaterials have strong binding
affinities for biopolymer molecules because of their lipophilic
properties, coordination properties, and polarity effects both
Bin vivo^ and in the environment, which have potentially ad-
verse effects on human health and the environment [5–7].
Morones indicated that AgNPs not only exist on the cell mem-
brane surface but can enter the cell interior [8]. The use of
AgNPs in food storage may interfere with DNA replication
and cause DNA mutations, which may potentially induce
DNA denaturation [9]. Moreover, many nanomaterials can also
enter the water, atmosphere, and soil, which is a huge potential
risk to humans [10]. Studying the toxic effects of AgNPs on the
model silkworm Bombyx mori can provide a useful reference for
environmental monitoring.

In mammalian studies, nanomaterials entered different tis-
sues and organs through the circulatory system, thereby endan-
gering the safety of the host [11–14]. It was demonstrated that
nanomaterials have adverse effects on tissues and organs, such
as the brain, midgut, and reproductive organs [12, 13].
Nano-ZnO NPs, AgNPs, and nano-Ti2O NPs all had toxic ef-
fects on algae, zooplankton, and fish [15]. Furthermore, AgNPs
showed potential toxicological and neurotoxicological effects
in Bvivo^ and in Bvitro^ [11, 16, 17]. AgNPs induced slight
liver injuries at doses of 125 mg/kg/day in rats in an oral expo-
sure study [18]. These studies suggest that AgNPs have potent
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cytotoxic effects and may cause oxidative damage, inflamma-
tion, DNA damage, and cell apoptosis/necrosis [16, 17, 19].

Nanomaterials have potential risks to the environment, and
their hazards are closely related to their concentration, mor-
phology, migration, and transformation processes, as well as
environmental conditions [20]. The toxicity of nanomaterials
and their environmental risks have become a hot research
topic. At present, studies of the toxic effects of AgNPs have
mainly been conducted in mammals, while few studies have
been conducted in invertebrates. Previous studies have report-
ed that AgNPs can induce Heliothis virescens (tobacco bud-
worm) and Trichoplusia ni (cabbage looper) developmental
delay, reductions in adult weight and fecundity, and increased
mortality in the predator [21]. B. mori, an important inverte-
brate model organism, exhibits relatively weak resistance to
stress and disease, and it is especially sensitive to chemical
pesticides, heavy metals, and other harmful substances [22].
The fat body plays an important physiological role in nutrient
storage, metabolic detoxification, and immune regulation
[23], and its function is similar to that of the mammalian liver
[24, 25]. As such, it is a more sensitive model organism for
monitoring environmental toxins. Studies found that AgNPs
at the concentration of 100 ppm were able to produce lethal
effects on pupation and adult development, with accumulative
hazard in silkworm [26]. Here, we examined the effects of
different concentrations of AgNPs on the growth of B. mori,
and we also investigated the toxic effects of AgNPs by ana-
lyzing fat body proteomics in B. mori.

Material and Methods

Insect Strains

The larvae of B. mori (strain: Jingsong × Haoyue) were main-
tained in our laboratory and reared on mulberry (Morus)
leaves under a 12-h light/12-h dark cycle. The larvae were
fed three times per day.

Chemicals

Silver nanoparticle (AgNP) powder was purchased from
Suzhou Nord Derivatives Pharm-tech Co. Ltd. (Suzhou,
China). Characterization of AgNPs (diameter 30 nm) and
AgNP stock solution was synthesized as previously described
[27]. The AgNPs were powdered using an ultrasonic tech-
nique for 20 min and mixed by mechanical vibration. To ob-
tain the UV–vis spectrum of silver nanoparticles, powdered
silver nanoparticles were dispersed in deionized water at 50
and 25 mg/L and scanned from 300 to 800 nm using a

spectrophotometer (Synergy H4, Bio-Tek, USA). The size,
shape, and dispersion of AgNPs were further confirmed by
transmission electron microscopy (TEM, JEM-2100, JEOL,
Japan).

Treatments

Mulberry leaves were soaked in different concentrations of
AgNPs. The soaked leaves were dried naturally at room temper-
ature, and they were fed continuously three times per day to
newly exuviated fourth- and fifth-instar larvae until molting.
Control larvae were fed mulberry leaves soaked in water. All
the larvae weremaintained at 25 ± 0.5 °C and a relative humidity
of 70–75%. Each treatment was replicated three times with 30
larvae. Furthermore, the fourth-instar silkworms were divided
into two classes or seven groups. Class 1 received low concen-
trations of AgNPs, and it contained four treatment groups
(double-distilled (dd)H2O and 100, 200, and 400 mg/L
AgNPs). Class 2 received high concentrations of AgNPs, and
it contained three treatment groups (800, 1600, and 3200 mg/L
AgNPs). An analytical balance was used to measure the weights
of the silkworms, and each value is the mean of three replicates.

Protein Sample Preparation

Twenty silkworms were selected randomly for fat body
extraction, and proteins were extracted with phenol. The
silkworm fat body from the control (ddH2O) and treat-
ment (AgNPs) groups was ground in liquid nitrogen
with homogenization buffer (20 mM Tris–HCl, pH 7.5,
250 mM sucrose, 10 mM ethylenediaminetetraacetic ac-
id, 1 mM phenylmethylsulfonyl fluoride, 1 mM
beta-mercaptoethanol, and 1% (v/v) Triton X-100), as
described by Cilia et al. [28]. Then, the mixture was
vortexed for 30 min and centrifuged at 21000×g for
20 min. The supernatant was added to an equal volume
of Tris-saturated phenol to precipitate the proteins. The
phenol layer containing the proteins was collected, in-
cubated with a methanol solution (containing 100 mM
ammonium acetate), and centrifuged at 21000×g for
20 min to pellet the proteins. The pellet was washed
with cold acetone (containing 1 mM dithiothreitol
(DTT)); lyophilized, dissolved in a solution containing
7 M urea, 2 M thiourea, 4% (w/v) CHAPS, and 1% (w/
v) DTT; and centrifuged at 21000×g for 20 min. The
supernatant, as the sample of total fat body proteins,
was pooled and stored at −80 °C for later use. The
protein concentration was determined using the RC
DC™ Kit (Bio-Rad, Hercules, CA, USA).
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Two-Dimensional Electrophoresis

Two-dimensional electrophoresis was performed with a 17-cm
(linear, pH 4–7) immobilized pH gradient (IPG gel) strip
(Bio-Rad), as described by Liang et al. [29]. Total fat body
proteins (3 mg) were loaded onto the IPG strip for 12 h, and
isoelectric focusing was performed at 20 °C with a voltage
gradient of 100 V for 1 h, 300 V for 1 h, 1000 V for 1 h,
8000 V for 1 h, and 10,000 V for 40,000 Vh, and then, it was
continued at 500 V. The IPG gel strip was equilibrated for
15 min with equilibration buffer (6 M urea, 0.375 M Tris–
HCI, 20% (v/v) glycerol, 2% (w/v) sodium dodecyl sulfate
(SDS), and 2% (w/v) DTT), and then, it was equilibrated for
another 15 min in the same equilibration buffer without DTT,
but containing 2.5% (w/v) iodoacetamide. The equilibrated
strip was sealed on the top of a 12% SDS–polyacrylamide gel
and subjected to electrophoresis. Proteins were visualized by
staining with 0.1% Coomassie brilliant blue R-250, and they
were scanned with a high-precision scanner (ImageScanner III,
GE Healthcare Life Sciences, Pittsburgh, PA, USA) at a reso-
lution of 300 dpi. Spot analysis was performed using
ImageMaster (version 7.0, GE Healthcare Life Sciences).
Triplicate experiments were conducted for each sample. The
intensity ratio of the corresponding spots in different gels was
calculated, and spots with ratio ≥2 and ANOVA ≤0.05 were
defined as quantitatively different spots.

RNA Extraction and Transcriptional Analysis

The fat bodies of the fifth-instar larvae in each group were
dissected, immediately frozen in liquid N2, and stored at
−80 °C for later use. Total RNA was extracted using TRIzol

reagent (Invitrogen, Carlsbad, CA, USA). RNA was reverse
transcribed from 3 μg of total RNA using Moloney Murine
Leukemia Virus Reverse Transcriptase (Vazyme, Nanjing,
China) according to the manufacturer’s instructions. NCBI
Primer-BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) was
used to design quantitative real-time polymerase chain reac-
tion (qPCR) primers for important differentially expressed
genes (Table 1); α-tubulin was used as the reference gene.
qPCR was performed using a 7300 Fast System (Applied
Biosystems, Foster City, CA, USA) with a SYBR Green
Master Mix kit (Vazyme, Nanjing), according to the manufac-
turer’s instructions. The data were analyzed with the SDSS
software package (Version 16.0, SPSS Inc., Chicago, IL,
USA). All samples were measured independently three times.

Data Analysis

Statistical analyses were conducted using SPSS for Windows,
Version 16.0. Data were expressed as the mean ± standard
deviation (SD). One-way analysis of variance was conducted
to compare the differences of the means among multi-group
data. Dunnett’s test was performed when each dataset was
compared with the control data. Statistical significance for
all tests was judged at a probability level of 0.05 (P < 0.05).

Results

Characterization of AgNPs

The AgNPs employed in our study exhibited spherical char-
acteristics with absorbance spectra at λmax 400 nm (Fig. 1a).

Table 1 Primer sequences used in the qPCR

Gene name Primer sequence (5′–3′) Length of
product (bp)

P1 F: GTCCATCGACAGCGAGGAAT R: GGGCGTTCACATCCTCAGAA 167

P4 F: GCTCCACTCACTGAAACCGA R: GGAACCACCGTTTTTGCTCC 203

P5 F: ACGGTTGTTCAAGTGCCAGA R: AGGAGGGTGGATCCGAATGA 181

P6 F: CCGGAGGCTCATCAGAAATCA R: TTCACATCACCCCCTTCTGC 164

P7 F: GAGAGCGATCGGAAAAGGCT R: TAGAAGGGCTCATGCTGTCC 117

P8 F: CCCCCGTGTTGGAAAACAAC R: ACGAAGAACATGACGTCGCT 190

P9 F: ATGTGGGCATCAAATGTGCG R: AGCATGAGCATGACGTCCAA 206

P12 F: GGAAAGCTGACATGGGGTGA R: AAGCCTTCACTTTGGGCTGT 106

P13 F: CAATGCCTTAGCAGTGCGAC R: TCGGCTTTCGTCTTCAGGAG 239

α-Tubulin F: CTCCCTCCTCCATACCCT R: ATCAACTACCAGCCACCC 186
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TEM images also substantiated the spherical silver nanoparti-
cles with an approximate size of 30 nm (Fig. 1b). These data
clearly indicated that experimental AgNPs exhibited a homo-
geneous dispersion in aqueous solutions.

Effects of Feeding Different Concentrations of AgNPs
on Silkworm Growth

Silkworms were fed AgNPs from the fourth instar, and then,
their body weights were measured. The results showed an
increasing trend of the body weights with different concentra-
tions of AgNPs (Fig. 2a and Table 2). The growth of B. mori
that were fed <400 mg/L AgNPs did not change significantly
during the fourth instar after 48 h, while their body weights
increased slightly when fed >800 mg/L AgNPs. The body
weights increased most significantly after the silkworms were

fed 400 mg/L AgNPs for 144 h (Fig. 2b). The body weights of
B. mori increased slowly at AgNP concentrations ≤200 mg/L,
but the growth-promoting effect was diminished at higher
(≥800 mg/L) AgNP concentrations (Table 2).

Effects of AgNPs on Silkworm Survival Rates and Cocoon
Shell Weights

AgNPs have no lethal effects on silkworm larvae at low con-
centrations (≤400 mg/L). The survival rates and cocoon shell
weights of the silkworms were analyzed at ≥800 mg/L AgNP
concentrations (Table 3 and Fig. 3). The results indicated that
the larvae began to die when treated with 800 mg/L AgNPs,
and they exhibited increased weight of the cocoon shells and
significantly decreased moth rate. At ≥800 mg/L AgNP con-
centrations, the larval survival rates, cocoon shell weights, and

Fig. 1 Characterization of AgNPs. aUV–visible absorption spectra of AgNPs powder dissolved in deionized water at 50 mg/L (sample 1) and 25 mg/L
(sample 2). Narrow peak confirms the small size of the particles. b TEM image shows that the AgNPs exhibit the homogeneous distribution in size

Fig. 2 Effects of different concentrations of AgNPs on the body weights
of silkworms. a Average weights of fourth- and fifth-instar silkworms
from 0 to 48 and 24 to 144 h, respectively. b Morphological

abnormalities of silkworms after feeding AgNPs. The body weights of
the control (ddH2O) group differed from that of the treatment groups
(400 mg/L AgNPs) during the fifth instar at 144 h
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the moth rates decreased remarkably, but the weights of the
cocoon shells increased. At 3200 mg/L AgNP concentrations,
the weight of the cocoon shells increased, but the moth rate
was only 50 ± 10%. The results showed that high concentra-
tion (≥800 mg/L) of AgNPs increased weight of the cocoon
shells of silkworms, which resulted in larval death.

Effects of AgNPs on the Fat Body Proteome in Silkworms

As shown in Fig. 4, the software analysis showed that there
were 13 significant differences between the fat body protein
spots of the control group and the treatment group (1600mg/L
AgNPs). Eleven proteins were expressed in both groups, and
two proteins were only expressed in the control group
(Table 4).

qPCR for Differentially Expressed Protein Validation

cDNAwas isolated from fifth-instar larvae and used as template
after the larvae were fed AgNPs for 144 h. qPCRwas performed
to examine the expression of genes encoding the fat body pro-
teins that were differentially expressed between the control group
and the AgNP groups (800 and 1600 mg/L) (Fig. 5). Compared
with the control group, the calexcitin-2-like (A) and cytosolic
non-specific dipeptidase (C) genes were downregulated signifi-
cantly, and glutathione S-transferase s1 (GSTs1) (D) genes and
AK (E) were upregulated significantly in the treatment groups,
which is consistent with the corresponding protein expression
levels. The expression of the LP-C6 (B) did not differ signifi-
cantly between the 800 and 1600 mg/L AgNP groups. The ex-
pression of the S-formylglutathione hydrolase gene (G) was
downregulated significantly in the 800 mg/L AgNP group, and
it was downregulated slightly in the 1600 mg/L AgNP group.
The expression of the genes encoding juvenile hormone binding
protein (JHBP) (F) and isocitrate dehydrogenase (H) was not
significantly changed in the 800 mg/L AgNP group, but it was
upregulated significantly in the 1600 mg/L AgNP group. The
expression of the gene encoding LP-C12 (I) did not differ signif-
icantly between the control and treatment groups. The expression
levels of seven genes were consistent with those of their corre-
sponding protein spots following treatment with 1600 mg/L
AgNPs. There were no differences in the expression levels of
the genes encoding the other six protein spots (Fig. 5).

Discussion

In the present study, we observed that AgNPs promoted the
growth of silkworms and induced their death. To determine
the action mechanism of AgNPs, we identified seven protein
spots that were differentially expressed following treatment
with 1600 mg/L AgNPs. Furthermore, a functional analysis
of the significantly differentially expressed proteins indicatedT
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that AK is a phosphokinase that plays critical roles in the
metabolism, storage, and utilization of energy in invertebrates
[30]. In addition, AK may play an important role in the insect
immune response and environmental adaptation. Kang
showed that the expression of AK in the midgut of NB and
BC8 larvae, which are resistant to B. mori nuclear polyhedro-
sis virus, is higher than that of 306 larvae, indicating that AK
protects silkworm larvae against viral infection [31]. GSTs1 is
a multifunctional enzyme in vivo, and it plays major roles in
protecting against oxidative damage, as well as in antioxidant
processes, detoxification, and metabolism, including
GSH-independent peroxidase activity [32, 33]. A study found
that the mercapto group of biological systems may be in-
volved in the transport of AgNPs [34]. GST plays an impor-
tant role in the detoxification of insecticides [35]. The

expressions of AK and GSTs1 were upregulated after silk-
worms being fed AgNPs. In the present study, this may be
related to an emergency response that induced toxic effects
and immune responses in the presence of high concentrations
of AgNPs in silkworms.

LP-c is a low-molecular-weight (30 kDa) protein that is
synthesized in the fat body. It is an important storage protein
during silkworm growth and development. It was shown that
LP-c could bind to the ecdysone receptor-B1 (EcR-B1) and
thus inhibit the binding of EcR-B1 to ultraspiracle (USP),
leading to the failure of EcR-B1 in activating the expression
of downstream genes, thereby inhibiting apoptosis [36]. This
30 kDa protein can prolong life and inhibit programmed cell
death in insects [37]. Heat shock protein 19.9 (HSP 19.9) is a
member of the small HSP family, which plays an important
role in protecting cells from heat-induced damage [38]. It is
also involved in the protection against heat stress-induced ap-
optosis and other phenomena [39]. These results are similar to
those obtained inDrosophila melanogaster [40]. HSPs induce
cell growth and differentiation in the presence of oxidative
stress in mammalian cells [41]. The expressions of LP-c and
HSP 19.9 were downregulated after silkworms being treated
with AgNPs. The results showed that when the concentration
of AgNPs reached 1600 mg/L, the expression of the LP-c
protein was altered, and the apoptosis and death of silkworm
cells appeared. Cytosolic non-specific dipeptidase 2 (CNDP2)
is a dipeptide metalloproteinase that catalyzes the cleavage of
dipeptide B-alanyl-L-histidine [42]. The CNDP2 gene en-
codes a non-specific carnosinase that has a high affinity for
Cys-Gly in the γ-glutamyl cycle, and it is involved in the
biosynthesis of GSH [43]. GSH acts as a detoxification agent
in the body. Thus, the downregulated expression of the

Table 3 Effects of different
concentrations of AgNPs on
silkworm survival rate and
cocoon shell weights

AgNPs (mg/L) Silkworma Diaa Cocoona Cocoon shells
weight (g)a

Dead cocoona Motha Moth
ratea (%)

0 30 0 30 0.3347 ± 0.001 a 1 29 96.67

0 30 0 30 0.3355 ± 0.001 a 0 30 100.00

0 30 0 30 0.3339 ± 0.001 a 1 29 96.67

800 30 1 29 0.349 ± 0.001 b 5 24 80.00

800 30 0 30 0.3486 ± 0.001 b 4 26 86.67

800 30 1 29 0.3494 ± 0.001 b 4 25 83.33

1600 30 6 24 0.3513 ± 0.001 b 6 18 60.00

1600 30 7 23 0.3519 ± 0.001 b 7 18 60.00

1600 30 5 25 0.3507 ± 0.001 b 5 20 66.67

3200 30 9 21 0.3836 ± 0.001 b 6 15 50.00

3200 30 11 19 0.3842 ± 0.001 b 7 12 40.00

3200 30 7 23 0.3829 ± 0.001 b 6 17 56.67

a Results are expressed as mean ± SD

Fig. 3 Effects of high concentrations of AgNPs on the cocoon shell
weights and moth rates. With increasing concentrations of AgNPs, the
cocoon shell weights of the silkworms showed an increase tendency,
while moth rates gradually decreased. Statistical significance for all
tests was judged at a probability level of 0.05 (P < 0.05)
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CNDP2 protein will decrease GSH synthesis, and detoxifica-
tion, and result in the death of silkworms.

Calexcitin, a signaling protein that binds calcium and GTP,
inhibits potassium channels. Calexcitin, which contains an
EF-hand domain pair, is involved in binding to metal ions

and increasing the diversity of the regulation of
calcium-binding proteins [44]. After silkworms were fed
AgNPs, the expression of calexcitin was downregulated,
which affects the cell membrane potential, nerve conduction,
and the signal pathways of silkworms.

Table 4 Identification of differentially regulated proteins in the control (ddH2O) and treatment (1600 mg/L AgNPs) groups

Spot no.a Protein ID Name Gene name Theoretical
MWb (kDa)/pIc

ANOVA P value Fold changed Expresse

1 gi|512908327 Calexcitin-2-like / 23.56 5.09 2.09E−04 2.03 ↓

2 gi|13195043 Fibroin light chain, partial Fib-l 24.83 4.53 0.00108697 2.28 ↓

3 gi|512931543 Ubiquitin carboxyl-terminal hydrolase / 25.1 5.02 2.82E−04 2.01 ↓

4 gi|512915932 Cytosolic non-specific dipeptidase / 58.83 6.15 6.94E−05 2.27 ↓

5 gi|112983926 Arginine kinase AK 32.50 7.23 1.36E−05 0.43 ↑

6 gi|512915980 S-formylglutathione hydrolase / 32.13 5.65 0.00128389 5.25 ↓

7 gi|827538302 Low molecular 30 kDa lipoproteinPBMHP-12 Lp-c12 21.83 8.61 0.0338263 6.38 ↓

8 gi|225905552 Low molecular lipoprotein 30K pBmHPC-6 Lp-c6 29.82 5.92 0.0464862 2.73 ↓

9 gi|87248167 Isocitrate dehydrogenase, partial / 46.55 6.24 0.00947802 11.25 ↓

10 gi|112983420 Heat shock protein hsp 19.9 Hsp19.9 19.94 6.53 2.40E−04 2.67 ↓

11 gi|827541166 Arginine kinase AK 40.31 5.87 3.57E−04 0.27 ↑

12 gi|112983028 Glutathione S-transferase sigma 1 GSTs1 23.60 5.98 0.00239861 0.48 ↑

13 gi|6016405 Juvenile hormone-binding protein JHBP 2.15 6.02 2.89E−05 0.44 ↑

a Numbers indicate regions that were excised from the SDS-polyacrylamide gels for the mass spectrometry analysis
bMolecular weight
c Isoelectric point
d Fold change = control/treatment
e Upregulated expression B↑^; downregulated expressionB↓^

Fig. 4 Two-dimensional electrophoresis results of fat body proteins. a The control group treated with ddH2O. b The group treated with 1600 mg/L
AgNPs. Numbered spots represent differentially expressed proteins
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Low-molecular-weight JHBPs are specific vectors for ju-
venile hormone (JH) in the hemolymph of butterflies and
moths. As hormone signal transporter, JHBPs have a profound
impact on the growth and development of insects [45].

Previous reports suggested that JH binds to three types of
JHBPs , inc lud ing l ipop ro t e in s , hexamer s , and
low-molecular-weight proteins of approximately 30 kDa
[46–48]. Adding JH to larvae can extend the period of eating

Fig. 5 Differential expressed proteins and the expression of their
corresponding genes as measured by qPCR. Arrows indicate
significantly differentially expressed proteins. The results of the qPCR
for genes in the control group are shown in black, while those of the 800

and 1600 mg/L AgNP groups are shown in light gray and dark gray,
respectively. The experiments were repeated three times, and
statistically significant differences (mean ± SD, P < 0.05) are indicated
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mulberry leaves, the synthesis of fibroin, and the weights of
the cocoon shells [49]. In our study, the period of eating mul-
berry leaves was extended. Therefore, we speculate that the
increase weights of the cocoon shells may be related to the
upregulation of expression of JHBPs after treatment with
AgNPs. It may also be associated with the upregulation of
cytosolic non-specific dipeptidase and AK protein expression,
which results in the increased storage and utilization of carbo-
hydrates in silkworms. Previous research also showed that
AgNPs exhibit the presence of certain growth stimulant activ-
ity and can increase the silk yield [50]. Moreover, the results of
a Kyoto Encyclopedia of Genes andGenomes analysis showed
that isocitrate dehydrogenase and S-formylglutathione hydro-
lase, the key rate-limiting enzymes in the carbon cycling path-
way, were both downregulated after the addition of AgNPs,
which results in the slower use of carbohydrates by fat bodies,
as well as associated metabolic changes.

In the present study, growth-inhibiting and toxic effects of
AgNPs on silkworms were observed at the individual level. We
found that AgNPs influenced the functions of the metabolic cy-
cle, as well as signal transduction, apoptosis, and ion transport
(Fig. 6). AgNPs could influence carbon regulatory proteins dur-
ing metabolism, thereby weakening their metabolic function and
increasing energy storage and utilization. AgNPs also can reduce
the ability of silkworms to withstand oxidative stress, interfere
with programmed cell death, and attenuate the expression of
detoxification proteins.Overall, AgNPs have large potential toxic
effects on human health and the environment; therefore, they
should be used with caution.
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