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Abstract

Purpose: The tau tracer ['®F]JAV1451, also known as flortaucipir, is a promising ligand for
imaging tau accumulation in Alzheimer's disease (AD). Most of the previous studies have
quantified tau load using standardized uptake value ratios (SUVr) derived from a static
['®F]AV1451 scan. SUVr may, however, be flow dependent and, especially for longitudinal
studies, should be validated against a fully quantitative approach. The objective of this study
was to identify the optimal tracer kinetic model for measuring tau load using ['®F]AV1451.
Procedures: Following intravenous injection of 225 + 16 MBq ['®F]AV1451, 130 min dynamic
PET scans were performed in five biomarker confirmed AD patients and five controls. Arterial
blood sampling was performed to obtain a metabolite-corrected plasma input function. Next,
regional time—activity curves were generated using PVElab software. These curves were
analysed using several pharmacokinetic models.

Results: The reversible single tissue compartment model (1T2k_Vg) was the preferred model for
all but one control. For AD patients, however, model preference shifted towards a reversible two
tissue compartmental model (2T4k_Vg). The simplified reference tissue model (SRTM) derived
binding potential (BPnp) showed good correlation (AD: 2 = 0.87, slope = 1.06; controls:
# = 0.87, slope = 0.86) with indirect plasma input binding (distribution volume ratio-1).
Standardized uptake value ratios (80—100 min) correlated well with DVR ( = 0.93, slope = 1.07)
and SRTM-derived BPyp (7 = 0.84, slope = 0.95). In addition, regional differences in tracer
binding between subject groups in different tau-specific regions were observed.
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Conclusions: Model preference of ['®F]AV1451 appears to depend on subject status and, in
particular, V1. The relationship between model preference and V suggests that (higher) tau load
may be reflected by a second tissue compartment. Nevertheless, consistent results can be
obtained using a 2T4k_Vg model. In addition, SRTM can be used to derive BPyp.

Keywords: [18F]AV1451, PET Pharmacokinetic Modeling, Flortaucipir, Alzheimer’'s Disease,

Tau Imaging

Introduction

A core neuropathological hallmark of Alzheimer’s disease (AD) is
the aggregation of hyperphosphorylated tau proteins, assembling
into neurofibrillary tangles [1]. Neuropathologically, animal and
cerebrospinal fluid studies have shown that increased tau load is
strongly related to more synaptic loss [2] and poorer cognitive
performance [3]. The novel positron emission tomography (PET)
tracer ['®*FJAV1451, also known as flortaucipir, has been
developed to visualize tau pathology in the living human brain.
In vitro ['"*F]JAV1451 binds with high affinity to paired helical
filaments of tau [4-7]. In addition, it has been demonstrated
in vivo that the degree of ['*FJAV 1451 uptake corresponds with
discase severity [8—10] and that its distribution follows the
prototypical spatial pattern described by Braak and Braak [1, 11].

In most of the previous studies, [*F]JAV1451 uptake has
typically been measured using semi-quantitative methods, such as
the standard uptake value ratio (SUVr) [5, 8, 9]. SUVTr has several
advantages, such as shorter scan duration, reduced likelihood of
patient movement and computational simplicity [12]. On the other
hand, SUVTr is also based on two important assumptions. Firstly, it
is assumed that the tracer is in equilibrium, i.e., the ratio of specific
to non-specific uptake is constant. Secondly, it is assumed that
there is no specific tracer binding in the reference region. Before
simplified models can be used, these underlying assumptions need
to be validated, especially in AD with its progressive decrease in
cerebral blood flow (CBF). This decrease in CBF is not the same
for all brain regions, as the cerebral cortex is more affected than
the cerebellum [13]. Consequently, differences in tracer delivery
between target (cortex) and reference (cerebellum) brain areas will
change over time due to progression of disease. Indeed, it has been
shown that SUVr may provide biased information in longitudinal
amyloid studies [14].

The main objective of the present study was to identify the
optimal tracer kinetic model for quantifying tau load using
["®FJAV1451. A second objective was to assess the validity of
the simplified reference tissue model. Finally, as data were
acquired in both controls and AD patients, a preliminary
comparison between subject groups was performed.

Methods

Participants

Five cognitively normal controls and five patients with
probable AD from the Amsterdam Dementia Cohort of the

VU University Medical Center were included. All subjects
underwent standardized dementia screening, including med-
ical history, neurological examination, neuropsychological
testing, laboratory tests, brain magnetic resonance imaging
(MRI) and a lumbar puncture to quantify AB-42, total tau
and phosphorylated tau in cerebrospinal fluid (CSF) [15]. A
consensus diagnosis was obtained during a multidisciplinary
meeting using established diagnostic criteria [16]. AD
patients met diagnostic criteria for probable AD with at
least intermediate likelihood due to a positive
["®F]florbetaben amyloid PET scan (visual read) and/or
CSF profile (ABgy; < 550 pg/ml, tau >375 pg/ml, p-tau
>52 pg/ml) [16, 17]. Controls tested within normal limits at
neuropsychological examination and clinical examination.
Exclusion criteria for all subjects were clinically significant
cardiovascular disease or abnormalities on screening ECG,
structural abnormalities on MRI that were likely to interfere
with interpretation of PET and haemoglobin levels <8 in
males and <7 in females. All subjects signed an informed
consent, and the study was approved by the Medical Ethics
Review Committee of the VU University Medical Center.

Radiochemical Synthesis

['®F]AV1451 was produced on a NEPTIS radiosynthesizer
(Ora, Philippeville, Belgium) according to Supplementary Fig. 1
starting from AV1622 (supplied by AVID, Philadelphia, PA,
USA). Cyclotron (IBA Cyclone 18/9, IBA, Louvain-la-Neuve,
Belgium) produced ['*F]fluoride was trapped from the enriched
water by solid-phase extraction on a Sep-Pak® Light Accell™
Plus (QMA) (Waters, Milford, MA, USA) and eluted from the
QMA with 0.8 ml of a mixture of 50:50 water for injection
(Braun, Oss, The Netherlands)/acetonitrile containing
Kryptofix[2.2.2] (7 mg, 19 pumol) and potassium carbonate
(0.75 mg, 5 pmol). After drying of the ['®F]fluoride and
Kryptofix/potassium carbonate, AV-1622 (1.5 mg, 2.6 umol)
in 2.0 ml of dimethyl sulphoxide was added and the reaction
mixture was heated for 5 min at 110 °C followed by deprotection
using 1 ml of 3 M hydrochloric acid at 100 °C for 5 min. The
reaction mixture was then cooled to 50 °C and neutralized with
7 ml of 0.5 M NaOH in water for injection. The resulting
solution was passed through an Oasis HLB Light cartridge
(Waters), and the cartridge was washed with 5 ml of water for
injection and the ['"®F]AV1451 was subsequently eluted with
1.5 ml of acetonitrile. The acetonitrile solution, containing
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the product ['®F]JAV1451, was subjected to HPLC purification
(Zorbax Eclipse XDB-C18, 9.4 x 250 mm, 5 um; eluent: 60:40
10 mM ammonium acetate in water/acetonitrile at a flowrate of
4 ml/min). The product was eluted at 8.5 min and was collected
in 30 ml of water for injection, and the total solution was passed
over a Sep-Pak® Light C18 cartridge (Waters). The cartridge
was washed with 5 ml of water for injection, and the product was
eluted with 1 ml of sterile ethanol followed by 2 ml of sterile
saline into a sterile vial containing 7 ml of sterile saline and
filtered over a sterile Millex GV PVDF 0.22 um filter.

Metabolite Analysis

Blood was collected in a heparin tube and centrifuged for
5 min at 5000 rpm. Plasma was separated from blood cells,
and about 1 ml was diluted with 2 ml of 0.1 M hydrochoric
acid and loaded onto a tC18 Sep-Pak cartridge, which was
pre-activated by elution with 6 ml of methanol and 12 ml
of water, respectively. The cartridge was washed with 3 ml
water to collect the polar radioactive fraction. Thereafter,
the tC18 Sep-Pak cartridge was eluted with 1 ml of
methanol and 2 ml of water to collect the mixture of non-
polar metabolites. This fraction was further analysed by
HPLC on a Dionex Ultimate 3000 system (Dionex,
Sunnyvale, CA, USA) and equipped with a 1-ml loop. As
a stationary phase, a Phenonenex Gemini C18,
250 x 10 mm, 5 pum (Phenomenex, Torrance, CA, USA)
was used. The mobile phase consisted of 75 % 0.1 %
trifluoroacetic acid in water in acetonitrile. The eluent was
collected with a fraction collector (Teledyne ISCO Foxy
Jr., Lincoln, NE, USA), and the fractions were counted for
radioactivity with a Wallac 1470 gamma counter (Perkin
Elmer, Waltham, MA, USA).

PET

PET scans were performed using a Gemini TF-64 PET/CT
scanner (Philips Medical Systems, Best, The Netherlands).
All subjects received a venous cannula for tracer injection
and a radial artery cannula for arterial sampling. Head
movements were restricted by a head holder with band and
regularly checked during scanning. The scan protocol started
with a low-dose CT for attenuation correction, followed by a
225 + 16 MBq ['®F]AV1451 injection. Simultaneously with
tracer injection, a 60-min dynamic emission scan was
initiated. After a 20-min break and following a second
low-dose CT, an additional dynamic emission scan was
performed during the interval 80—130 min post-injection.
PET scans were reconstructed using 3D RAMLA with a
matrix size of 128 x 128 x 90 and a final voxel size of
2 x 2 x 2 mm’. All standard corrections for dead time,
decay, attenuation, randoms and scatter were performed.
Both scan sessions were co-registered into a single dataset of
29 frames (1 x 15,3 x 5,3 x 10, 4 x 60, 2 x 150, 2 x 300,
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4 x 600 and 10 x 300 s), in which the last 10 frames
belonged to the second PET session.

During the first 60 min post-injection (p.i.), arterial blood
was sampled continuously using an online detection system
at a rate of 5 ml/min for the first 5 min and a rate of 2.5 ml/
min thereafter [18]. In additional, manual arterial samples
(8 ml) were withdrawn at set time points (5, 10, 15, 20, 40,
60, 80, 105 and 130 min p.i.). These samples were used to
correct the whole blood TAC for plasma-to-whole blood
ratios and for radiolabelled metabolites using established
procedures. In addition, a correction for time delay was
performed to obtain a metabolite-corrected arterial plasma
input function.

Image Analysis

All subjects underwent structural 3D-T1 weighted MRI on a
3.0 Tesla camera (Ingenuity TF PET/MR, Philips Medical
Systems, Best, The Netherlands), including sagittal T1
weighted sequences. These T1 weighted MR images were
co-registered to PET. MR images were segmented automat-
ically into grey matter, white matter and CSF using SPM§
(Wellcome Trust Centre for Neuroimaging) incorporated in
the PVElab software [19]. In addition, regions of interests
(ROIs), as defined by the Hammers template [20], were
delineated on the co-registered MRI scans. By projecting
those ROIs onto the dynamic PET frames, regional time-
activity curves (TACs) were generated.

Kinetic Analyses

The ROI TACs (grey matter) were fitted using various
models [21], and the metabolite corrected plasma input
function. The compartmental models evaluated were stan-
dard reversible single tissue (1T2k), and reversible (2T4k)
and irreversible (2T3k) two tissue compartmental models, all
with and without blood volume fraction (V) as an
additional fit parameter. Standard non-linear regression
fitting to these models was performed for each ROI. The
optimal kinetic model for describing in vivo kinetics of
['®F]AV1451 was selected based on the Akaike criterion
(AIC) [22]. Macroparameters, such as binding potential
(BPnp), volume of distribution (V) and distribution volume
ratio (DVR = ratio of target to cerebellar grey matter Vr),
were calculated for the model(s) of interest.

Performance of the simplified reference tissue model
(SRTM) [23] with grey matter cerebellum as reference
region was evaluated. Validation of SRTM was performed
by comparing DVR derived from the optimal tracer kinetic
plasma input model with SRTM-derived BPyp.

In addition, data were analysed using SUVr for the time
interval 80-100 min after injection. Again, grey matter
cerebellum was used as reference region. Resulting SUVr
values were compared with DVR derived from the optimal
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tracer kinetic plasma input model and BPyp derived from
SRTM.

Finally, as a preliminary and exploratory assessment of
disease-specific kinetics, Vi and BPnp were compared
between controls and AD patients. Based on previous
["®F]AV1451 studies [9, 11], the following grey matter
ROIs were selected for this comparison: (1) AD-specific
regions (i.e., bilateral hippocampus, inferior and middle
temporal lobe and posterior cingulate gyrus), (2) areas that
are susceptible to off-target binding (basal ganglia), (3) a
region that is often used as reference region (cerebellum) and
(4) whole brain grey matter.

Results

Participants

Five controls with an average age of 67.8 + 5.5 years and an
MMSE score of 29.0 + 0.7 were included. In addition, 5 AD
patients with an average age of 64.6 = 8.9 years, an MMSE
score of 23.4 + 4.3 and a disease duration of 2.3 = 1.1 years
were included. There was no significant difference in age
between AD patients and controls. All AD subjects were
amyloid positive (on Florbetaben PET and/or CSF markers).
Three controls were amyloid negative, whereas two subject
had a positive Florbetaben PET scan.

['F]AV1451 Production

["®F]AV1451 was obtained in 16-30 % uncorrected yield
(9-13 GBq) as a sterile, isotonic and pyrogen-free solution
with a specific activity of 93-272 GBg/umol at end of
synthesis in >99 % radiochemical purity.

Blood Analysis

Considerable metabolism was seen with 23 + 9 % parent
tracer left at 130 min p.i. Nevertheless, robust estimation of
parent fractions was possible for all time points, and no
significant difference between these fractions was seen
between subject groups. For all subjects, the measured
plasma-to-whole blood ratio was rather constant throughout
the entire scan duration. Fig. 1 illustrates the mean plasma-
to-whole blood ratio and parent fraction as function of time
for all individuals.

Tracer Kinetics

Model fits for all ROIs (grey matter) were assessed
according to the AIC criterion. Fig. 2 illustrates model fits
through a whole brain TACs of a typical AD patient and a
control. All data from the AD patients were best fitted using
a 2T4k Vp model, but tracer kinetics in all but one controls
were best described by a 1T2k Vi model. Macroparameters
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Fig. 1 Mean (+SD) of the plasma-to-whole blood ratio and
the parent [18F]JAV1451 fraction in plasma for all 10 subjects.

(Vr, DVR) derived from the two preferred models
(2T4k Vg and 1T2k Vg) were compared with each other
to assess the impact of model preference on parameter
estimation. Scatter plots of Vr estimated from the two
models are shown in Fig. 3. Scatter plots of DVR obtained
from the two models for both subject groups are presented in
Fig. 4. In AD patients, directly derived BPnp (=ks/k,) values
estimated using the 2T4k Vy model did not correlate with
DVR-1 (2 = 0.02, slope = —0.03), indicating that direct
estimation of BPyp suffers from a high degree of impreci-
sion. This was even more pronounced for controls, where
direct estimation of BPnp was not possible due to very high
standard errors.

SRTM

For SRTM, grey matter cerebellum was used as reference
region. Fig. 5 shows the comparison of regional SRTM-
derived BPyp with DVR-1 obtained using the 2T4k Vj
model across all grey matter ROIs investigated.

SUVr

Comparisons of SUVr (80-100 min) with DVR derived
from the 2T4K Vi model and BPyp derived from SRTM
are shown in Fig. 6. High correlations between SUVr and
DVR (+* = 0.93, slope = 1.07) and between SUVr-1 and
BPxp (7 = 0.84, slope = 0.95) were obtained.

AD Patients Versus Controls

A preliminary comparison was performed for a few tau-
specific regions to assess the presence of possible differ-
ences in ['*F]JAV1451 binding between AD and normal
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Fig. 2 1T2k_Vg and 2T4k_Vg model fits through whole brain grey matter TACs of a an AD patient and b a control.

subjects. Furthermore, possible group differences for grey
matter cerebellum and whole brain grey matter were also
assessed. Differences in tracer binding between subject
groups were observed using either Vy, DVR or SRTM-
derived BPyp. A clear illustration of these differences is
shown in Fig. 7.

Discussion

A reversible two tissue compartmental model with blood
volume parameter was able to properly describe tissue
kinetics of ['®F]JAV1451, independent of subject status
and underlying tau load. In this relatively small study
population, no significant difference in grey matter
cerebellum Vi was seen between controls and AD
patients, indicating that grey matter cerebellum might
be a viable reference region. Plasma input-derived BPnp
did not correlate with DVR-1 values, indicating limita-
tions in the robust estimation of ks/ky, especially in
controls where the second compartment was essentially
absent. ['®F]AV1451 binding appears to be different
between AD patients and controls, particularly in tau-
specific regions. Although further data are needed, this
suggest that ['®F]AV1451 may be useful for monitoring
of disease progression or treatment effects.
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Model preference seemed to be influenced by subject
status or rather by the underlying tau load. Tissue
kinetics in all AD subjects was best described using a
2T4k Vg model, but for controls, the simpler 1T2k Vg
model was better. As this would complicate group
comparisons, the effect of model choice on quantitative
results was evaluated. This comparison showed a strong
correlation between 2T4k Vg and 1T2k Vg derived Vr
in controls, indicating that the 2T4k Vg model still
provides reliable V1 estimates. Although a reasonable
correlation between Vp values from both models was
obtained in AD patients, there was increasing underesti-
mation in 1T2k Vg derived Vi with increasing Vr,
illustrating an increasing effect of the second (tau)
compartment. Based on the good correlation in controls,
however, it seems safe to use the 2T4k Vi model
independent of subject status or tau load.

As the model preferences seem to differ between AD
and C, the question arises whether it could differentiate
between amyloid positive and negative scans. In the
present study, two controls with an amyloid positive scan
were included, but their kinetics were best described by
the 1T2k Vg model. In addition, in one control, tracer
kinetics were best described using the 2T4k Vi model,
but this control had an amyloid-negative scan. Therefore,
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Fig. 3 Comparison of volumes of distribution (V1) estimated using 2T4k_Vg and 1T2k_Vg models for a AD patients and b

controls.
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Fig. 4 Comparison of distribution volume ratios (DVR) estimated using 2T4k_Vg and 1T2k_Vg models for a AD patients and b

controls.

at least for the healthy controls in this study, model
preference was not able to differentiate between amyloid
positive and negative scan. However, further studies with
a larger dataset will be needed to substantiate these
findings.

Recently, Barret et al. [24] performed kinetic model-
ling of ['®F]AV 1451 in AD patients, using a metabolite-
corrected plasma input function, and reported similar
model preferences as in this study. Another very recent
study [25], evaluating in vivo kinetics of ['*F]AV1451 in
subjects with mild cognitive impairment and a history of
traumatic brain injury, also found that model preference
was dependent on underlying Vry. Similarly, a study
[26] using a different tau tracer, ['*F]THK5117, reported
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a similar kinetic model preference for describing tracer
kinetics. In ['®F]JAV1451 studies published previously
[27, 28], grey matter cerebellum was used as reference
region. In the present study, no significant difference in
estimated Vr was observed between subject groups,
indicating that, at least in the present patient population,
there was no tau-specific tracer uptake in cerebellum,
thus supporting the use of grey matter cerebellum as
reference region.

Vr is a measure of both specific and non-specific
binding. Hence, BPyp is a better estimate as it only
incorporates specific binding. Since a robust estimation of
ks/k4 parameter was not possible, a reliable measure of tau
binding in the presence of a reference region is DVR-1.

BPyp (SRTM)

DVR-1 (2T4k_Vg)

Bland-Altman of DVR-1 vs BPyp (SRTM)

Difference
.

-0.4-
Average

Fig. 5 a Scatter plots and b Bland-Altman plots for the relationship between SRTM-derived BPyp and DVR-1 derived from the

2T4k_Vg model for both AD patients and controls.
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Fig. 6 Scatter plots and Bland-Altman plots comparing SUVr derived from the 80—100 min scan interval to DVR derived from

2T4k_Vg (a, ¢) and SRTM-derived BPyp (b, d).

Therefore, the impact of model preference on DVR was also
investigated, and again, similar results were obtained for
2T4k Vg and 1T2k Vy models, confirming that that
2T4k Vg can be used for reliable estimation of DVR in
both AD patients and controls. Furthermore, SRTM-derived
BPyp for all grey matter ROIs correlated well with DVR,
irrespective of subject status. Therefore, although a larger
comparative data set is needed, the present preliminary
results indicate that ['®F]JAV1451 data can be analysed
without the need for arterial sampling.

To date, several ['®F]JAV1451 studies have used a
simplified method, i.e., SUVr obtained from a static scan
acquired from 80 to 100 min after tracer injection. As
both accuracy and precision of this simplified method
have not been validated yet, a comparison of SUVr
against DVR estimated from the 2T4K Vg model and
BPy\p derived from SRTM was performed in this study.
The high correlations obtained suggest that SUVr (80—
100 min) might be a simple alternative for DVR and
BPnp (SRTM). However, the present preliminary results
are based on a small patient cohort and should be
interpreted with caution. As SUVr values may be flow
dependent, the present results should be substantiated in
a larger study, preferably also in patients where a
reduction in cerebral perfusion may be expected.

From the neuropathological literature, it is known that in
AD, tau accumulates in (trans)entorhinal cortex and subse-
quently spreads towards the hippocampus and inferior
temporal lobe and eventually into the neocortex. This pattern
is known as the Braak staging [1]. Previous studies have
shown strong similarities between ['*F]JAV1451 uptake

patterns and Braak staging [9, 11]. Therefore, in the present
study, regions of interest were selected to assess the full
spectrum of Braak staging. In addition, basal ganglia was
included to assess tracer uptake in regions with ‘off-target’
binding [7, 10]. In these regions, estimated macroparameters
(Vr and DVR) were compared between subject groups.
Differences using the macroparameters can be observed,
however, it seems to be dependent on the region and subject
of interest. In controls, no inter subject differences were
observed for any of the regions, whereas in AD subjects a
higher and more variable values for Vr and DVR were
obtained, possibly representing a tau-specific signal.

In line with previous studies [24, 27, 28], kinetics in
the off-target binding regions were evaluated. Kinetics in
putamen, pallidum and thalamus were different from
those in other cortical regions. The model preference for
these regions was 1T2k Vp, irrespective of subject
status. In a recent study [24], a higher k,; was observed
for putamen, pallidum and thalamus. This could be a
possible explanation for the 1T2k Vg model preference
in these regions, as a higher k; would make the second
compartment less ‘visible’. Altered kinetics in these
regions may be due to binding to another binding site.
Further studies are needed to investigate this issue.

Conclusion

In vivo brain kinetics of ['®F]JAV1451 are best described
by a reversible two tissue compartmental model with
blood volume parameter. Although initial results are
promising, further studies are needed to completely
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Fig. 7 a V1, b DVR and ¢ SRTM-derived BPyp for several
regions of interest (grey matter) for both AD patients and
controls. Asterisk indicates a significant difference (p < 0.05)
between the subject groups obtained using simple unpaired t
test considering unequal variance.

define the limitations of using SRTM derived BPyp and/
or SUVr in clinical research and, thus, whether arterial
sampling can be omitted. As flow sensitivity of SUVr
was not evaluated, the impact of flow changes on the
SUVr use in therapeutic intervention studies also needs
further evaluation.
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