
287https://immunenetwork.org

ABSTRACT
Zika virus (ZIKV) is a member of Flaviviridae family that has emerged as a pathogen of 
significant public health importance. The rapid expansion of ZIKV in the South and Central 
America has recently gained medical attention emphasizing the capacity of ZIKV to spread 
to non-endemic regions. ZIKV infection during pregnancy has been demonstrated to 
cause microcephaly and other fetal developmental abnormalities. An increased incidence 
of Guillain-Barre syndrome, an immune mediated neuropathy of the peripheral nervous 
system, has also been reported in ZIKV-infected patients in French Polynesia and Brazil. 
No effective therapies currently exist for treating patients infected with ZIKV. Despite the 
relatively short time interval, an intensive effort by the global scientific community has 
resulted in development of animal models to study multiple aspects of ZIKV biology. Several 
animal models have been established to investigate pathogenesis of ZIKV in adults, pregnant 
mothers, and developing fetuses. Here we review the remarkable progress of newly developed 
small and large animal models for understanding ZIKV pathogenesis.
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INTRODUCTION

Zika virus (ZIKV) is an emerging mosquito-borne pathogen that is part of the Spondweni 
serocomplex of the genus Flavivirus, family Flaviviridae. ZIKV is closely related to other 
pathogens of public health importance including yellow fever virus (YFV), dengue virus 
(DENV), Japanese encephalitis virus (JEV), and West Nile virus (WNV). The ZIKV genome is 
comprised of a single-stranded, positive-sense 11-kb RNA that contains three structural genes 
(capsid [C], precursor of membrane [M], and envelope [E]) and seven nonstructural genes 
(NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) (1).

Little is known about ZIKV pathogenesis, however it is thought that after an infected 
mosquito bite, viral replication occurs in local dendritic cells with subsequent spread to 
lymph nodes and the bloodstream. Viremia is generally seen within 3 to 4 days after onset 
of symptoms, and approximately 80% of individuals infected with ZIKV have no symptoms. 
Patients with symptomatic ZIKV infection usually present with a mild febrile illness 
characterized by fever, rash, arthralgia, myalgia, headache, and conjunctivitis (1,2). During 
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the first week after onset of symptoms, ZIKV infection can often be diagnosed by performing 
quantitative RT-PCR (qRT-PCR) on serum specimens. ZIKV-specific IgM and neutralizing 
antibodies typically develop toward the end of the first week of illness (1).

ZIKV was isolated in 1947 from the blood of a sentinel rhesus monkey in the Zika forest of 
Uganda. ZIKV caused only sporadic cases of infection in Africa and Southeast Asia until 
2007, when the first large outbreak occurred on the island of Yap in the Federated States of 
Micronesia. Another outbreak in French Polynesia in 2013 was notable for being associated 
with an increase in cases of Guillain-Barré syndrome (1,2). In 2015, the virus was first 
reported in Brazil and since then has spread through several additional countries in South 
and Central America and the Caribbean. ZIKV outbreaks have also been recorded in the 
United States (3-7). Simultaneously, several of these countries have seen a dramatic increase 
in the incidence of infants born with microcephaly (1,2,8-10).

During the recent epidemic in Latin America, ZIKV infection has been linked to the 
development of severe fetal abnormalities that include spontaneous abortion, stillbirth, 
hydranencephaly, microcephaly, and placental insufficiency that may cause intrauterine 
growth restriction (1,8,11). Unlike most other flaviviruses, ZIKV has the potential for 
significant human-to-human transmission through sexual and vertical routes (9,10,12). 
Phylogenetic analysis of ZIKV genomes reveals African and Asian strains of ZIKV as two 
distinct lineages (1,13). The African lineage viruses have caused sporadic human infections 
in the last century, resulting in mild, febrile disease symptoms (1,14-17). The Asian lineage 
has however emerged at a larger scale displaying vector-borne as well as human-to-human 
transmission, causing fetal abnormalities and neuronal disease in humans (1,8,18-20). 
Comparison of isolates from Brazil and French Polynesia show 87% to 90% sequence 
similarity to the original MR 766 strain from Uganda (13).

No effective therapies currently exist for treating patients infected with ZIKV. Recently several 
drugs and therapeutic candidates have been evaluated in cell culture and animal models. 
These anti-ZIKV drugs include drugs targeting virus entry into the cells and helicase protein, 
inhibitors of NS3 protein, methyltransferase inhibitors, and interferons (IFNs). The viral 
polymerase inhibitor 7-Deaza-2'-C-methyladenosine (7DMA) has been demonstrated to 
efficiently inhibit ZIKV replication, reduce viremia, and delay ZIKV-associated morbidity and 
mortality in a mouse model (21). Sofosbuvir, an RdRp inhibitor approved by the US Food 
and Drug Administration for the treatment of hepatitis C virus (HCV) infection, efficiently 
inhibits infection and replication of several ZIKV strains in human cells and isolated neuronal 
stem cells (22-24). Similarly, sofosbuvir treatment protects mice against ZIKV-associated 
morbidity and mortality. The small molecule drug candidate BCX4430, a broad-spectrum 
antiviral, has also been demonstrated to be protective against ZIKV-associated mortality in 
a mouse model (25). In addition, several reports demonstrated anti-ZIKV activities of T-705 
(21,26-29). T-705 (favipiravir) is a novel antiviral compound that selectively and potently 
inhibits the RdRp common to several RNA viruses, including influenza virus (30-32). 
Currently, there are no licensed vaccines for ZIKV prevention. World Health Organization 
has announced that ZIKV vaccine development is a top priority, and various approaches are 
being tried including inactivated virus, live attenuated virus, recombinant E protein, virus 
like particle, DNA vaccine, mRNA based vaccine and peptides (33). Purified inactivated 
ZIKV vaccine has been shown to be effective against ZIKV challenge in both mice and rhesus 
monkeys (34,35). Griffin et al. (36) has reported that a DNA vaccine coding ZIKV prM-E 
protects mice against ZIKV-associated tissue damage.
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ANIMAL MODELS OF ZIKV INFECTION

The factors that contributed to the emergence, global spread of ZIKV and change in the 
disease phenotype are not well understood. Animal models of ZIKV infection and disease 
are critical to study ZIKV pathogenesis, including pregnancy outcomes and evaluation of 
vaccines and therapeutics. Recently, ZIKV infection and disease have been evaluated in non-
pregnant and pregnant animals, as well as a large panel of immunodeficient transgenic mice. 
Here we summarize the animal models that have been used to study ZIKV pathogenesis and 
to develop vaccine and therapeutic strategies (Fig. 1).

SMALL ANIMAL MODELS OF ZIKV INFECTION

Immunocompetent mouse models
Prior to the recent ZIKV epidemics, few animal models of ZIKV infection existed. From 
the first isolation of ZIKV in 1947 until 2015, there were only three studies which tested 
the virus' pathogenic potential in animal models (37-39). In the first publication on ZIKV 
infection in a mouse model, inoculation of ZIKV via intracranial route caused neurological 
disease in suckling or adult mice (37). However, infection of adult immunocompetent 
mice with ZIKV via intraperitoneal route did not cause disease, indicating that intracranial 
route of inoculation is necessary to establish any successful infection. This study used the 
prototype MR 766 strain of ZIKV, which had undergone extensive passage in suckling mouse 
brains (40). Recently, ZIKV infection and disease have been evaluated in non-pregnant 
and pregnant immunocompetent mice using contemporary ZIKV strains. After peripheral 
(subcutaneous, intra-peritoneal, and intravenous) ZIKV inoculation, no clinical disease 
and little or no virus was detected in wild-type (WT) C57BL/6, Swiss Webster, BALB/c, 
and CD-1 mice (34,41,42). Many different strains of ZIKV have been examined in similar 
mouse studies and regardless of the strain of ZIKV, similar results have been reported 
(43). Similarly, no fetal defects were observed after peripheral inoculation of ZIKV into 
pregnant WT C57BL/6 mice (44). Intravenous inoculation of pregnant WT SJL mice with a 
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• Physiologically and immunologically 
more similar to humans than other 
small animals

• Long gestation period and pups are 
born with a mature CNS

Guinea pig

• Immunocompetent and 
immunocompromised mice

• Small size, easy to handle
• Rapid reproductive rate
• Genetically modified strains

Mouse

• Similar gestation and fetal 
development as humans

• ZIKV replicates even in 
immunocompetent primates

• Expensive to maintain

Non-human primates

Animal models
of ZIKV infection

Figure 1. Characteristics of animals models of ZIKV infection.
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Brazilian ZIKV strain caused intrauterine growth restriction of developing fetuses, cortical 
malformations, and ocular defects (45). However, SJL mice are not fully immunocompetent 
and express lower levels of IFN-stimulated genes than C57BL/6, and this difference may 
account for the varied susceptibility to the ZIKV (43). It has been demonstrated that the 
ZIKV NS5 protein inhibits type I IFN response in a species-specific fashion, which might 
explain why adult WT mice are more resistant to the infection (46,47). ZIKV infection has 
also been evaluated in immunocompetent neonatal mice (41,48,49). ZIKV inoculation in 
one-day old immunocompetent C57BL/6 or Swiss mice via subcutaneous or intracranial 
route resulted in neurological disease characterized by tremors, ataxia, and seizures with 
evidence of ZIKV infection in the brain (48,49). Since ZIKV is not naturally adapted to 
replicate in immunocompetent mice, their use in ZIKV research is limited. Nevertheless, 
immunocompetent mice have been used to assess the immunogenicity of vaccine candidates 
as well as their protective efficacy against viremia (34,43).

Immunocompromised mouse models
In order to develop a mouse model that can support ZIKV replication and disease, several 
groups have evaluated the ZIKV infection in immunocompromised adult mice. Several of 
these models have altered IFN responses, which are an important component of antiviral 
defense. Type I IFNs, which include multiple forms of IFN-α and one IFN-β, signal through 
the same receptor, termed IFNAR1, and have been commonly associated with innate immune 
responses to viruses (50). Both the IFN-α/β receptor and downstream signaling molecules, 
including STAT-1, are critical for protection from viral infection as mice deficient in these 
factors do not mount effective anti-viral responses (50,51). IFN regulatory factor (IRF), in 
particular IRF3 and IRF7, are essential for regulating the type I IFN response following viral 
infections (51). Type II IFN, or IFN-γ, which signals through a distinct receptor, IFNGR1, is 
the canonical cytokine of adaptive Th1 immunity and is essential for immune responses to 
intracellular pathogens (52). Animals lacking the receptor for type I IFN including A129 mice 
(129S2 Ifnar1tm1Agt) and Ifnar1−/− C57BL/6 mice or mice deficient in transcription factors IRF-
3/5/7−/− are highly susceptible to both African and Asian-lineage ZIKV and sustain infection 
with high viral loads in the brain (41,42,53-55). These animals developed severe ZIKV 
disease including hind-limb weakness, paralysis and death after peripheral (subcutaneous, 
intra-peritoneal, and intravenous) inoculation of ZIKV. Severity of ZIKV infection in these 
immunocompromised mice is age dependent, as older mice (11 week-old) are less susceptible 
to infection than younger mice (3-5 week-old) (41,42). Mice lacking both the type I and type 
II IFN receptors (AG129, 129/Sv Ifnar1tm1Agt Ifngr1tm1Agt) demonstrated greater susceptibility and 
more severe disease following ZIKV infection than A129 mice (21,25,42,56). Analysis of the 
tissues from ZIKV-infected A129 and AG129 mice demonstrated that the highest viral loads 
were in testes and brain. The presence of virus in the testes is consistent with the reports 
of sexual transmission of ZIKV. In addition, Stat2−/− mice are also highly susceptible to ZIKV 
infection. After peripheral ZIKV inoculation, Stat2−/− mice display neurological symptoms and 
virus was detected in the central nervous system (CNS), gonads and other visceral organs 
(57). Stat2−/− mice lack both type I and type III IFN signaling. Subcutaneous inoculation 
of pregnant Ifnar1−/− C57BL/6 mice at gestation days 6.5 and 7.5 with an Asian ZIKV strain 
resulted in fetal death and reabsorption in most of the fetuses while those that survived 
the infection had intrauterine growth restriction and growth impairment (44). For these 
experiments, Ifnar1−/− female mice were mated with WT sires resulting in fetuses that were 
heterozygous for IFNAR1. Thus, despite the fetuses having the ability to respond to type I IFN, 
severe outcomes still were observed, suggesting that a type I IFN response in the fetus is not 
sufficient to protect from ZIKV-induced injury (44). Together, these immunocompromised 
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mouse models have been used to demonstrate ZIKV ability to cause fetal abnormalities, 
deterioration of gonadal tissue and infection through sexual route (43,44,58-61). Therefore, 
these susceptible mouse models also have been used extensively to evaluate candidate 
therapies and vaccines for efficacy against ZIKV replication (24,43,62-65). While these 
immunodeficient mice are useful, they are inherently biased toward producing disease based 
on their genetic background. Furthermore, lethality is the main endpoint without assessing 
actual clinical disease.

In an attempt to produce infection models that do not rely upon knockout mice, several 
groups have explored the temporal blockade of type 1 IFN in immune intact mice using 
polyclonal and monoclonal antibodies targeting either type 1 IFNs directly or the IFNAR1 
receptor. The major advantage of this approach is that it allows immune responses to be 
elicited in immunologically competent mice with type 1 IFN blockade only induced at the 
time of infection. It has been demonstrated that adult immunocompetent C57BL/6 mice 
treated with anti-IFNAR1 antibodies (that suppress expression of type 1 IFN) before infection 
are highly susceptible to mouse-adapted African ZIKV-Dakar strain (58,66). These mice 
develop severe ZIKV-mediated disease accompanied by significant neuroinflammation and 
mortality. Similarly, fetuses from mice with prior exposure to a blocking antibody against 
anti-IFNAR1 before ZIKV infection also resulted in intrauterine growth restriction (44).

Guinea pig model
Initial experiments conducted in 1950s showed that guinea pigs inoculated via intracranial 
route with the African ZIKV strain MR 766 developed no signs of infection (37). These 
studies used the prototype MR 766 strain of ZIKV, which had undergone extensive passage in 
suckling mouse brains. Recently, it has been demonstrated that guinea pigs are susceptible to 
infection by a contemporary Asian strain of ZIKV (67). Upon subcutaneous inoculation with 
PRVABC59 strain of ZIKV, guinea pigs demonstrated clinical signs of infection characterized 
by fever, lethargy, hunched back, ruffled fur, and decrease in mobility. ZIKV was detected in 
the serum using qRT-PCR and plaque assay. ZIKV infection resulted in a dramatic increase in 
protein levels of multiple cytokines, chemokines and growth factors in the serum. ZIKV RNA 
was detected in the spleen and brain, with the highest viral load in the brain (67). The guinea 
pig is more physiologically and immunologically similar to humans than other small animals. 
Specifically, the guinea pig's reproductive physiology and estrous cycle are similar to humans. 
Also, placentation in the guinea pig occurs in a manner similar to that of humans, and both 
guinea pig and human placentas are classified as hemomonochorial (68). Guinea pigs have 
a long gestation period and pups are born with a mature CNS, which makes this species a 
promising subject for studies of in utero transfer of ZIKV and neurological manifestations in 
infants (69).

LARGE ANIMAL MODELS OF ZIKV INFECTION

Non-human primate (NHP) models
NHPs also are being used to study ZIKV pathogenesis. In contrast to mice, 
immunocompetent macaque monkeys are ideal to study ZIKV because of the similarity in 
gestation and fetal development as compared to humans. Rhesus macaques are susceptible 
to infection by both African and Asian-lineage ZIKV (43,70-73). ZIKV-infected rhesus 
macaques developed viremia that peaked 2 to 6 days after infection and became undetectable 
by day 10. ZIKV was also detected in various organs, urine, saliva, and cerebrospinal fluid of 
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some animals (70,71). Similar to rhesus macaques, ZIKV infection was detected in several 
tissues of cynomolgus macaques including the male reproductive tract, intestines, and the 
brain and spinal cord (74,75). Pregnant rhesus macaques infected with ZIKV developed 
viremia lasting 30 to 55 days (70,72). Subcutaneous inoculation of a pregnant pigtail macaque 
with an Asian-lineage ZIKV resulted in reduced growth of the fetal brain (76,77). Autopsy 
analysis from fetal brain demonstrated ZIKV infection and substantial pathology to the CNS. 
ZIKV was detected in the placenta, fetal brain and liver, and maternal brain, eyes, spleen, 
and liver (77). ZIKV infection induced T-cell responses and protected NHPs from ZIKV 
re-infection and from heterologous ZIKV infection (70,74). Therefore, NHP models have 
been utilized for testing protective efficacy of novel vaccines and therapeutics against ZIKV 
(35,73,78). The NHPs reproductive cycle is similar to the human reproductive cycle, which has 
its clear benefits in the study of disease outcomes in pregnant mothers infected with ZIKV, 
but this comes with the caveat that the NHP models will produce data at a much slower rate. 
NHP models are very expensive to maintain and require a great amount of space and time 
when compared to other animal models.

CONCLUSION

Both small and large animal models have been established to investigate ZIKV pathogenesis 
and to develop vaccine and therapeutic strategies. ZIKV does not cause infection and clinical 
disease in weaned immunocompetent mice. Immunocompromised mice including IFN 
dysregulated mice have successfully reproduced clinical disease or demonstrated lethality 
after ZIKV infection. Immunocompetent guinea pigs are susceptible to infection by a 
contemporary strain of ZIKV. Similarly, NHPs have been demonstrated to be susceptible 
to infection by ZIKV. Together, these animal models of ZIKV pathogenesis can be utilized 
to evaluate candidate therapies and vaccines against ZIKV infection. However, each of 
these models has limitations that must be considered in the experimental design and 
interpretation of results.
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