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ABSTRACT
Neutrophils are professional phagocytes that conduct effectors functions in the innate 
immune systems. They are differentiated in the bone marrow (BM) and terminally 
differentiated neutrophils are then released into systemic circulation. Neutrophils migrate 
into inflammatory foci through extravasation, reverse transmigration, and chemotaxis. As 
neutrophils arrive at a target site, they actively participate in eliminating pathogens. They 
phagocytose bacteria, and eliminate them through the generation of reactive oxygen species 
(ROS), release of protease-enriched granules, and formation of neutrophil extracellular traps 
(NETs). Since neutrophils are equipped with toxic arsenals, the activation of neutrophils is 
tightly controlled. Priming is the process of unlocking safety mechanisms before complete 
activation of neutrophils. Since the first discovery of neutrophils, they were considered 
as a homogeneous population with an inflammatory phenotype. However, heterogenous 
populations of neutrophils were discovered under physiological and pathological conditions. 
This review outlines the normal differentiation of neutrophils in the BM, and discusses the 
current understandings of neutrophil heterogeneity.
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INTRODUCTION

Neutrophils are most abundant leukocytes in humans and play key roles in innate immune 
system. They are professional phagocytes involved in host defense against invading 
pathogens. They extravasate from circulation and migrate toward inflammatory foci. As 
neutrophils arrive at inflammatory foci, they actively phagocytose pathogens and eliminate 
them via oxidative and non-oxidative mechanisms. Invading pathogens are recognized 
by resident macrophages, and endothelial cells are stimulated by macrophage-derived 
cytokines. Circulating neutrophils are captured by the adhesion molecules expressed on 
the endothelial cells, extravasate from blood vessels into the tissue, and finally transmigrate 
into inflammatory foci (1). Then, they phagocytose and eliminate pathogens. Neutrophils 
eliminate phagocytosed pathogens through oxidative and non-oxidative mechanisms 
(2,3). Neutrophils assemble NADPH oxidase complexes on the phagosomal membrane, 
and produce reactive oxygen species (ROS). This process of is called ‘respiratory burst’ 
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and comprise one arm of neutrophil's main arsenal against pathogens. Another important 
arsenals of neutrophils are granules (4). Neutrophils induce the fusion of granules 
with phagosomes, and protease-enriched granules degrade pathogens. The granules of 
neutrophils are classified into four major types based on their contents; azurophil granule, 
specific granule, tertiary granule, and secretory vesicle. Neutrophils also entrap and kill 
bacteria extracellularly (5). Neutrophils generate the web-like structure composed of DNA, 
histones, and granules. The highly sticky character of this neutrophil extracellular traps 
(NETs) entrap pathogens and eliminate them with entangled granules.

Since the first discovery by Elie Metchnikoff (6), neutrophils are traditionally thought to 
have one phenotype; a phenotype which can kill bacteria. However, recent advances suggest 
the heterogenous populations of neutrophils in various physiological and pathological 
conditions (7-12). This review will address normal differentiation of neutrophils in the bone 
marrow (BM) and further discuss the heterogeneity of neutrophils.

DIFFERENTIATION AND TRAFFICKING OF NEUTROPHILS 
IN BM
Neutrophils are produced in the BM during granulopoiesis (Fig. 1). They have been long 
considered to be derived from common myeloid progenitors (CMPs). However, a recent study 
reported that neutrophils are differentiated from lymphoid-primed multipotent progenitors 
(LMPPs) (13), which are derived from hematopoietic stem cells (HSCs) (14). LMPPs 
differentiate into granulocyte-monocyte progenitor cells (GMPs), a myeloid committed 
progenitor cell. Neutrophils are differentiated from GMPs through subsequent differentiation 
stages: myeloblasts, promyelocytes, myelocytes, metamyelocytes, and band neutrophils (14).

The granulopoietic compartments of neutrophils within the BM are divided into 3 different 
pools: stem cell pool, mitotic pool, and post-mitotic pool (15-17). The stem cell pool consists 
of undifferentiated progenitor cells, including CD34+ HSCs, LMPPs, and GMPs. The mitotic 
pool refers to committed granulocyte progenitor cells such as myeloblasts, promyelocytes, 
metamyelocytes, and myelocytes. The post-mitotic pool consists of metamyelocytes and 
band neutrophils. Finally, completely mature neutrophils are fully differentiated neutrophils 
that are ready for release into systemic circulation. Detailed descriptions of neutrophil 
differentiation have been extensively reviewed elsewhere (14,18).

The stroma of the BM is comprised of osteoblasts, osteoclasts, macrophages, fibroblasts, and 
endothelial cells (19). The sinusoid of the BM is mainly comprised of endothelial cells, and is 
further wrapped by mesenchymal stromal cells (17,19). These structural characteristics of the 
BM separate the hematopoietic compartment from the circulation (17).

Neutrophil trafficking within the BM is dependent on 2 major factors, namely, retention 
signals, and egress signals. The CXCR4/CXCL12 (stromal derived factor-1 [SDF-1]) and 
VLA-4/VCAM-1 pathways are important regulators of neutrophil retention within the BM 
(20,21). Neutrophils within the BM adhere to the marrow endothelial cells and stromal cells 
via VLA-4/VCAM-1 signaling, and the CXCR4/CXCL12 pathway augments this binding (20). 
Since the expression of both VLA-4 and CXCR4 on neutrophils decreases during maturation 
(20,22), downregulation of these signaling pathways ensures neutrophil egress from the 
BM. Egress of neutrophils from the BM is mediated by CXCR2, the ligands of which include 
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CXCL1 (growth-regulated protein α [GROα]), CXCL2 (macrophage inflammatory protein-2α 
[MIP-2α]), CXCL5 (epithelial-derived neutrophil-activating peptide 78 [ENA78]), and CXCL6 
(granulocyte chemotactic protein-2 [GCP-2]) (1,23). CXCL1 and CXCL2 are constitutively 
expressed on endothelial cells of the BM (21,23), whereas osteoblasts are the major source of 
CXCL12 in this tissue (24,25). Reciprocal interactions between CXCR2/CXCR2-ligands and 
CXCR4/CXCL12 signaling are considered to play a major role in the trafficking of neutrophils 
from the BM to the systemic circulation (21,23).

Granulocyte colony stimulating factor (G-CSF) is not only a primary regulator of 
granulopoiesis but also a disruptor of neutrophil retention (14). Under physiologic 
conditions, G-CSF induces the proliferation and differentiation of CD34+ granulocytic 
progenitors and reduces the transmit time through each differentiation stage (17). It also 
enhances the egress of mature neutrophils from the BM (15,17,26). The effect of G-CSF on the 
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Figure 1. Trafficking of neutrophils in the BM. The granulopoietic compartments of neutrophils are divided into 3 different pools. Neutrophils express and shed 
various receptors according to their different developmental stages. CXCR2 is upregulated whereas CXCR4 and VLA-4 are downregulated. CXCR1 is constitutively 
expressed during neutrophil maturation. Retention of neutrophils is mediated by CXCR4/CXCL12 and VLA-4/VCAM-1 pathways. Immature neutrophils adhere to 
the marrow endothelial cells and stromal cells via the CXCR4/CXCL12 and VLA-4/VCAM-1 axes. The CXCR2/CXCL2-ligands induces neutrophil egress from the BM. 
Mature CXCR2hi CXCR4low neutrophils preferentially egress from the BM depending on CXCR2-ligands. G-CSF orchestrate s the trafficking of neutrophils in the BM. 
G-CSF induces the proliferation of granulocytic progenitors and enhances the egress of neutrophils by inhibiting CXCR4/CXCL12. DCs regulate G-CSF production 
in the BM. Aged neutrophils are cleared by the BM. Senescent neutrophils show decreased expressions of CXCR2 and CD62L with increased expressions of CXCR4 
and CCR5. This surface marker profile of aged neutrophils ensures homing back to the BM where BM macrophages destroy the aged neutrophils.
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egress of neutrophils from the BM is mediated by its inhibitory effect on the CXCR4/CXCL12 
axis (17). G-CSF inhibits CXCL12 generation from BM stromal cells (27), and decreases the 
surface expression of CXCR4 on myeloid cells (28) resulting in the egress of neutrophils from 
the BM.

Recently, dendritic cells (DCs) have been suggested to have a role in neutrophil trafficking 
(1,29). DCs control the production of G-CSF and chemokines (e.g., CXCL1, CXCL2, and 
CXCL10), and both are important for the egress of neutrophils from the BM (1). Mice with 
defects in DC development show increased numbers of peripheral neutrophils, and the 
depletion of conventional DCs (cDCs) results in a systemic increase in neutrophil numbers 
(29). Since increased plasma G-CSF level was observed in cDC-depleted mice, the regulation 
of neutrophil trafficking via cDC-mediated G-CSF production was proposed as a possible 
mechanism (29).

BM is a site for not only neutrophil production but also the site for clearance of aged 
neutrophils. As neutrophils age in the systemic circulation, the aged neutrophils exhibit 
increased surface expression of CXCR4 and CCR5, with decreased expression of CXCR2 and 
CD62L (22). This surface marker profile of senescent neutrophils ensures homing back to the 
BM where aged neutrophils are destroyed by BM macrophages (22). Recently, an important 
function has been suggested for BM-homing neutrophils. After intradermal injection of 
a modified Ankara virus, neutrophils delivered the virus from the dermis to the BM, and 
induced the generation of virus-specific CD8+ T cells (30). Although the precise mechanism 
of BM-homing in virus-exposed neutrophils is not fully understood, increased expression of 
CXCR4 in virus-exposed neutrophils might be involved in this process (30).

HETEROGENOUS POPULATIONS OF NEUTROPHILS

Terminally differentiated neutrophils are released into circulation and exert their primary 
function in host innate defenses by transmigration, phagocytosis, and bactericidal activity. 
Neutrophils are traditionally thought to be a homogenous population with an inflammatory 
phenotype. However, recent studies suggest heterogenous populations of neutrophils (7-12). 
The concept of heterogenous neutrophil phenotypes has been proposed by Gallin (31), based 
on studies in the twentieth century. However, this idea has received little attention; hence, 
few studies investigated this phenomenon. Only recently, researchers have gained interest 
in the heterogeneity of neutrophils, and have characterized the heterogenous phenotypes 
of neutrophils (9,12,32). Neutrophils are usually obtained from blood by density gradient 
centrifugation. Cells heavier than Ficoll-Paque are collected from whole blood, red blood 
cells are removed, and the remaining cells are considered to be neutrophils. However, 
neutrophils might also be found in the peripheral blood mononuclear cells (PBMCs) 
fractions. These neutrophils are lighter than Ficoll-Paque, and are known as ‘low density 
neutrophils’ (LDNs) (33). Hence, the classical neutrophils that are heavier than Ficoll-Paque 
are named as ‘normal density neutrophils’ (NDNs) (9).

NDNs normally include both terminally differentiated and immature neutrophils (1). 
In steady-state conditions, terminally differentiated neutrophils are not stimulated by 
any external stimuli; hence, these cells are considered to be in the resting state (resting 
neutrophils). Immature neutrophils only comprise small percentages of peripheral 
neutrophils (34). However, systemic inflammation increases the de novo production of 
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neutrophils and also enhances the mobilization of immature neutrophils into circulation, 
a phenomenon known as ‘emergency granulopoiesis’ (34,35). Most of these mobilized 
immature cells are metamyelocytes and band cells. Since neutrophils acquire granules 
during differentiation, the density of these cells is considered to be similar to that of mature 
neutrophils. Therefore, most of the mobilized immature neutrophils during emergency 
granulopoiesis are usually found within the NDN fraction, but some of the immature 
neutrophils (myelocytes and metamyelocytes) can be found in the LDN fraction (12).

Other phenotypes of neutrophils include primed, activated, and exhausted phenotypes. 
Priming refers to a process of augmentation of neutrophils in response to an activating 
stimulation (2,36). As neutrophils migrate into inflammatory foci, priming agents such 
as various chemokines, cytokines, pathogen-associated molecular patterns (PAMPs), and 
damage-associated molecular patterns (DAMPs) primes the neutrophils (15,17). Primed 
neutrophils show enhanced ROS generation, granule release, and NETs formation in 
response to activating stimulations compared to unprimed resting neutrophils, whereas 
priming agents alone do not induce effector functions in neutrophils (2,37). Priming induces 
assembly of the NADPH oxidase complex, depolymerization of actin filaments, and enhanced 
phosphorylation of intracellular signaling molecules; hence, primed neutrophils show more 
enhanced responses to subsequent activating stimuli. When neutrophils are excessively 
stimulated, they undergo exhaustion. Because they have already secreted their stored 
granules and NETs, they show diminished granule and NETs release in response to activating 
stimuli. ROS generation is also greatly decreased by the desensitization of intracellular 
signaling molecules due to excessive stimulations. This phenomenon is previously known 
as immune paralysis of neutrophils (38-40). The resting, primed, and activated neutrophils 
are found in the NDN fraction. However, it is still unclear whether exhausted neutrophils 
are found in the NDN fraction or LDL fraction. Theoretically, exhausted neutrophils already 
empty their granules and DNA into external spaces and their densities might be decreased 
compared to that of resting neutrophils. However, the density changes in neutrophils after 
neutrophil activation have not been clearly studied.

Interestingly, a subset of LDNs shows immunosuppressive functions contrary to the 
normal effector functions of neutrophils. Increased numbers of LDNs are found in various 
diseases such as solid cancer, hematologic malignancies, human immunodeficiency virus 
(HIV)-1 infection, and sepsis (12,14,32,41,42). Since these LDNs suppress T cell responses 
such as proliferation and interferon-γ production, they are defined as immunosuppressive 
LDNs. These immunosuppressive LDNs are also regarded as granulocytic-myeloid derived 
suppressor cells (G-MDSCs) because of their immature phenotype (10). Moreover, recent 
study showed that immunosuppressive G-MDSCs from cancer patients have relatively 
lower density compared to NDNs isolated from the same cancer patients (43). They further 
identified distinct differences in gene profiles between low-density G-MDSCs and normal-
density NDNs (43). Although these studies suggest the possible link between LDNs and 
G-MDSCs, it is still unclear whether immunosuppressive LDNs are equal to G-MDSCs.

Another interesting subset of LDNs is the pro-inflammatory phenotype. Pro-inflammatory 
LDNs are found in several autoimmune diseases such as systemic lupus erythematosus 
(SLE) and rheumatoid arthritis (RA) (33,44-46). They share the patterns of surface marker 
of activated neutrophils and also show effector functions similar to activated neutrophils. 
Therefore, it is probable that pro-inflammatory LDNs are merely activated neutrophils before 
exhaustion rather than a distinct subset of LDNs.
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CONCLUSION

Based on recent advances in studies on neutrophil heterogeneity, a schematic summarization 
of neutrophil heterogeneity is illustrated in Fig. 2. However, the determination of neutrophil 
heterogeneity should be assessed carefully because these subsets might merely be a reflection 
of the physiological changes in neutrophils under pathological conditions rather than distinct 
subsets. Immature neutrophils can be found both in NDN and LDN fractions together with 
their maturation stages. Pro-inflammatory LDNs share the same functional and phenotypic 
characteristics of activated neutrophils. Because priming, activation, and exhaustion of 
neutrophils have been studied for a long time, these phenotypes are not classically defined 
as distinct subtypes of neutrophils. The phenotype characterization of immunosuppressive 
LDNs is not fully understood. Moreover, it is still unclear whether neutrophils actively change 
their phenotypes under pathological conditions. Therefore, the characterization of each 
phenotype of neutrophils, based on their surface marker expressions, gene expressions, and 
functional properties, is needed to develop this interim classification.
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