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Abstract

Traumatic brain injury (TBI), ranging from mild concussion to severe penetrating wounds, can 

involve brain regions that contain damaged or lost synapses in the absence of neuronal death. 

These affected regions significantly contribute to sensory, motor and/or cognitive deficits. Thus, 

studying the mechanisms responsible for synaptic instability and dysfunction is important for 

protecting the nervous system from the consequences of progressive TBI. Our controlled cortical 

impact (CCI) injury produces ~20% loss of synapses and mild changes in synaptic protein levels 

in the CA3-CA1 hippocampus without neuronal losses. These synaptic changes are associated 

with functional deficits, indicated by > 50% loss in synaptic plasticity and impaired learning 

behavior. We show that the receptor tyrosine kinase EphB3 participates in CCI injury-induced 

synaptic damage, where EphB3−/− mice show preserved long-term potentiation and hippocampal-

dependent learning behavior as compared with wild type (WT) injured mice. Improved synaptic 

function in the absence of EphB3 results from attenuation in CCI injury-induced synaptic losses 

and reduced D-serine levels compared with WT injured mice. Together, these findings suggest that 

EphB3 signaling plays a deleterious role in synaptic stability and plasticity after TBI.

Keywords

EphB3 receptors; D-serine; Synapse damage; Synaptic plasticity; Traumatic brain injury

1. Introduction

Every year millions of people suffer the devastating consequences of a traumatic brain injury 

(TBI) (Centers for Disease Control and Prevention (CDC), 2013; Hyder et al., 2007). TBI is 
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a complex disorder that leads to profound deficits in neurological function as a result of 

progressive pathological events. TBI can be categorized as an open or closed head injury 

ranging from mild to severe pathology. At the site of impact, moderate to severe brain 

injuries usually include vascular damage, cell loss, axonal and synaptic damage; however, 

synaptic dysfunction in the absence of cell loss has also been observed in more distal regions 

(Kotapka et al., 1991; Lowenstein et al., 1992). Moreover, synaptic damage is thought to be 

a major contributor to chronic neurological symptoms following mild concussive injuries 

(Harish et al., 2015; Merlo et al., 2014). For this reason, it is important to understand the 

mechanisms that regulate synaptic stability and plasticity in the traumatic injured brain.

Learning and memory deficits are commonly observed impairments following TBI (Lyeth et 

al., 1990; Schwarzbach et al., 2006; Witgen et al., 2005). Consolidation of short- and long-

term memory is attributed to activity-dependent changes in synaptic strength (i.e. synaptic 

plasticity) in the hippocampus. NMDAR activation is critical for synaptic plasticity, as its 

activation is known to regulate glutamatergic receptor density in the post-synaptic 

membrane, bouton size, and synaptic strength (Adams et al., 2001; Hardingham and Bading, 

2010; Hunt and Castillo, 2012). Recently, D-serine has been shown to function as the 

endogenous co-agonist for NMDARs, and together with glutamate is essential for synaptic 

plasticity, learning and memory (Balu et al., 2014; Han et al., 2015; Mothet et al., 2000; 

Wolosker et al., 1999a). D-serine is synthesized through the racemization of L-serine by the 

enzyme serine racemase (Wolosker et al., 1999b), though the mechanisms that regulate D-

serine conversion and release after TBI have yet to be explored. What is known is that 

excessive activation of NMDARs is thought to play a key role in TBI pathology, and 

underlies excitotoxic cell death (Faden et al., 1989; Hardingham et al., 2002). It is less clear 

whether sub-excitotoxic activation of NMDAR by D-serine after TBI can lead to synaptic 

damage.

Receptor tyrosine kinases are also associated with synaptic membranes and play important 

roles in regulating synaptic formation and function. In particular, Eph receptors (Ephs) have 

been shown to stabilize post-synaptic densities, regulate excitatory synaptic numbers, 

glutamate receptor transport, and synaptic plasticity (Antion et al., 2010; Grunwald et al., 

2004; Henkemeyer et al., 2003; Hruska et al., 2015; Rodenas-Ruano et al., 2006). Both Ephs 

and their ligands (i.e. ephrins) are membrane bound and can elicit bidirectional signals upon 

interactions of pre- and post-synaptic membranes (Aoto and Chen, 2007; Klein, 2009; 

Pasquale, 2008). Astrocytes can also interact with neuronal components of the synapse in 

what is known as the tripartite synapse to regulate synapse formation and plasticity (Halassa 

et al., 2007; Perea et al., 2009). Astroglial release of glutamate and D-serine can alter 

synaptic function, where gliotransmitter levels in the synapse can fine-tune excitatory 

postsynaptic potentials (Araque et al., 2014; Gundersen et al., 2015; Halassa et al., 2007). 

Moreover, ephrinB3 interaction with EphB3 and EphA4 in astrocytes is known to influence 

hippocampal synaptic plasticity through regulation of D-serine synthesis and release (Zhuang 

et al., 2010). It is therefore important to understand the role of Eph-mediated signaling 

events following TBI, specifically the contribution to D-serine release and synaptic function.

Our findings suggest that elevated levels of D-serine after TBI may contribute to progressive 

CNS pathology. We also show that EphB3 negatively regulates excitatory glutamatergic 
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synaptic stability and plasticity after moderate TBI, as observed by decreased D-serine 

levels, improved synaptic stability and enhanced long-term potentiation in the absence of 

EphB3.

2. Materials & methods

2.1. Animals

EphB3 knockout (EphB3−/−) mutant mice were bred on a C57Bl/6 background as previously 

described (Henkemeyer et al., 1996; Orioli et al., 1996). All procedures were performed on 

both wild type (WT) and EphB3−/− male mice 2–4 months of age and approved by the 

University of Miami Institutional Animal Care and Use Committee.

2.2. Controlled cortical impact (CCI) injury

Mice were initially anesthetized with a ketamine/xylazine cocktail and placed on a heating 

pad. Mice were placed in a stereotaxic frame, where they remained until the end of the 

procedure. The head was shaved and the skull was exposed through a skin incision. A 5 mm 

craniotomy was made over the right parieto-temporal cortex without disturbing the dura, 

with the epicenter coordinates at bregma: −2.0 mm; lateral: −2.5 mm. Mice were then 

subjected to a moderate CCI at a velocity of 4 m/s, 0.50 mm depth and 150 ms duration 

using an eCCI-6.0 device (Custom Design & Fabrication, Richmond, VA). The CCI consists 

of a pressurized metal piston delivering a blow at the aforementioned parameters directly 

onto the dura of the brain producing mechanical strain forces similar to those observed in 

human TBI (Osier et al., 2015). Following the impact, the skin was closed using 5-0 Vicryl 

synthetic absorbent sutures, and animals were placed into a clean cage on a heating pad until 

recovery from anesthesia. Mice received 0.9% saline and analgesic (Buprenorphine) 

injections and monitored bi-daily for one week.

2.3. Stereological cell and neuronal counts

Mice were anesthetized and perfused with 0.1 M phosphate buffer and 4% 

paraformaldehyde (PFA). Brains were dissected and serially cryo-sectioned (Leica CM 

1900, Leica Biosystems Inc., Buffalo Grove, IL) at 15 µm/section from bregma −1.4 to −2.2 

for a total tissue thickness ~1500 µm. For total hippocampal cell counts and regional 

volumetric analysis, hematoxylin and eosin staining was performed on serial sections. Micro 

Bright Field StereoInvestigator software package (MBF Bioscience, Williston, VT) was used 

to contour the dentate gyrus, hilus, CA3 and CA1 areas at 10× magnification. After 

contouring, a grid of 100 × 100 µm2 was placed over each region of interest and 

hematoxylin-stained nuclei within a random sampling box of 50 × 50 µm2 was counted 

using the optical fractionator at 63 × magnification for unbiased determination of cell 

number. Investigators were blind to experimental group. For neuronal counts, neuronal 

labeling with NeuN antibody (Cell Signaling, Beverly, MA) and DAPI was performed on 

serial sections. Randomized images of each hippocampal region were acquired at 40 × 

magnification using an Olympus BX50 microscope. ImageJ software was utilized to 

quantify DAPI-positive and NeuN-positive cells within the dentate granule cell, CA1 and 

CA3 pyramidal cell layers. Investigators were blind to experimental group.

Perez et al. Page 3

Neurobiol Dis. Author manuscript; available in PMC 2017 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4. Transmission electron microscopy (TEM)

Mice were anesthetized and perfused with 2% PFA/2% glutaraldehyde in 0.1 M phosphate 

buffer. Brains were dissected, embedded in chicken albumin agar and cut into 500 µm 

sections using a motorized vibrating-blade microtome (Leica VT1000s, Leica Biosystems 

Inc., Buffalo Grove, IL). CA1 hippocampal regions were dissected, cut into 1 mm2 pieces, 

and further post-fixed with 3% EM grade glutaraldehyde. Ultrathin tissue sections were 

stained with conventional osmium-uranium-lead method containing 1% ethanolic 

phosphotungstic acid (EPTA). The CA1 hippocampus was visualized using a Philips CM-10 

TEM operating at 80 kV. Sections were placed on a grid and non-overlapping randomized 

photographs (>20/section) were taken throughout the entirety of CA1 stratum radiatum. 

Photographs were digitized, and an investigator blinded to experimental group quantified 

synapses manually. The inclusion criteria for excitatory synapses included the presence of 

pre- and post-synaptic membranes with a discernible synaptic cleft, presence of asymmetric 

pre- and post-synaptic densities, and presence of synaptic vesicles at the presynaptic 

terminal as described previously (DeFelipe et al., 1999; Mayhew, 1996). Pre- and post-

synaptic densities from quantified synapses were measured for synaptic area and length 

using ImageJ.

2.5. Western blot analyses

Ipsilateral hippocampal tissues from sham and CCI injured mice were homogenized in RIPA 

buffer with protease and phosphatase inhibitor cocktail (Sigma-Aldrich, St. Louis, MO) and 

benzonase nuclease (Millipore Corporation, Billerica, MA) and mixed by rocking at 4 °C for 

at least 15 min. Tissues were centrifuged, supernatant was recovered, samples were diluted 

and standardized to protein concentrations. Protein samples were separated on 8–10% SDS-

PAGE gel and transferred to a nitrocellulose membrane. Membranes were then blocked with 

5% milk or 5% BSA in 0.1 M phosphate buffer with 0.1% Tween-20 for 1 h at room 

temperature (RT) and incubated overnight at 4 °C with primary antibodies. Membranes were 

incubated for 1 h at RT with HRP-conjugated secondary antibodies (Jackson 

Immunoresearch Laboratories, West Grove, PA). Bands were visualized using SuperSignal 

substrate (ThermoScientific, Pittsburg, PA). The following primary antibodies were used: 

anti-GluR1, anti-NR1, anti-NR2B (EMD Millipore, Billerica, MA), anti-GFAP (BD 

Biosciences, San Jose, CA), anti-SNAP25, anti-SNAP23 (ABCAM, Cambridge, MA) and 

anti-β-tubulin (Sigma-Aldrich, St. Louis, MO) antibodies. ImageJ was used to perform 

density analysis. Protein measurements were standardized to β-tubulin and normalized to 

average WT sham signals.

2.6. Intra-hippocampal infusion of ephrinB3

Alzet pumps (1003D, Alzet, Cupertino, CA) were preloaded with 112 µg/kg/day pre-

clustered ephrinB3-Fc or Fc-only, while other experiments used 840 µg/kg/day D-serine or 

vehicle. Briefly, loaded pumps were connected to a brain infusion catheter and placed in 0.1 

M phosphate buffer at 37 °C overnight (Theus et al., 2014). After the CCI injury, the 

infusion device was attached to the stereotactic holder and the tip of the cannula was 

lowered 1.7 or 2.0 mm into the hippocampus or lateral ventricle, respectively. The infusion 

device was secured to the skull using Loctite 454 prism gel (Henkel Corp. Rocky Hill, CT). 
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The pump was then placed under the skin in the back of the neck and the incision was closed 

with suture. Mice were placed in clean heated cages to recover.

2.7. Chemiluminescent assay

Mice were anesthetized and the ipsilateral hippocampi were immediately dissected and 

homogenized in RIPA buffer with protease and phosphatase inhibitor cocktail and benzonase 

nuclease and incubated by rocking at 4 °C for at least 15 min. Tissues were centrifuged, 

supernatants were recovered, and samples were diluted and standardized to protein 

concentrations. D-serine was measured by a chemiluminescent assay as previously described 

(Wolosker et al., 1999b; Zhuang et al., 2010). A 10 µl sample was mixed with 100 µl of 

medium containing 100 mM Tris-HCl, pH 8.8, 20 units/ml peroxidase, and 8 µM luminol. 

To decrease background signal of luminal, 10 µl of D-amino acid oxidase (DAAO) (75 

units/ml) were added after a 15 min delay. Chemiluminescence kinetics was recorded for 4 

min at RT with a FLUOstar Omega microplate reader (BMG Labtech, Ortenberg, Germany). 

The concentration of D-serine in each sample was compared to a standard curve. The linear 

range was 50–1000 pmol of D-serine in the sample and the detection limit was 30 pmol. 

Glutamate was measured using Amplex Red Glutamic Acid/Glutamate Oxidase Assay kit 

(Molecular Probes, Eugene, OR) following the manufacturer’s protocol. Fluorescence was 

measured in a FLUOstar Omega microplate reader using excitation in the range of 530–560 

nm and emission detection at 590 nm. To correct for background fluorescence, the values 

were subtracted from control well values (i.e. no glutamic acid).

2.8. Electrophysiology

2.8.1. In vivo electrophysiology—Mice were anesthetized with urethane (1.5 g/kg) and 

placed on a stereotaxic frame. A 25 µm concentric platinum-iridium bipolar stimulation 

electrode and platinum-iridium recording electrode were inserted through a craniotomy site 

at bregma: −2.0 mm; lateral: −2.0 mm; depth: 1.4 mm (stimulation electrode) and bregma: 

−1.8 mm; lateral: −1.4 mm; depth: −1 to −1.5 mm (recording electrode). Concentric 

platinum-iridium bipolar stimulation electrodes (tip diameter 25 µm, FHC, Bowdoin, ME) 

were placed in the Schaffer Collaterals and a recording glass micropipette filled with 150 

mM sodium chloride (1–3 MΩ) was placed in the CA1 stratum radiatum. Field potentials 

were recorded and converted to digital using an Axoclamp 2B amplifier, Axon Instruments 

Digidata 1322A analog-to-digital converter, and Clampex (Axon Instruments) software for 

data acquisition and analysis. Input-output (I/O) curves were generated by delivering 

electrical monophasic pulses to the CA3 Schaffer Collaterals from a Grass S88 stimulator 

and S1U5 stimulus isolation unit, and measuring the field-excitatory post-synaptic potential 

(fEPSP) at increasing stimulus intensities. Stimulus intensities were then adjusted to give 

fEPSP amplitude at 45–55% of the maximum. A stable baseline fEPSP slope was recorded 

at a rate of 1/60 s for at least 30 min. A paired-pulse facilitation protocol was run using 

inter-pulse intervals of 20 ms, 40 ms, and 80 ms. Long term potentiation (LTP) was induced 

with high-frequency stimulation (HFS, 2 × 100 Hz, 1 s trains, 20 s inter-train interval). Post-

HFS fEPSPs were recorded for at least 60 min. Post-tetanus fEPSP slopes were expressed as 

a percentage of the average fEPSP slope from the baseline recordings.
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2.8.2. In vitro electrophysiology—Mice were anesthetized using isoflurane and 

decapitated. Brains rapidly removed, and to reduce tissue damage, were quickly immersed in 

oxygenated ice-cold fresh high sucrose containing artificial cerebrospinal fluid (high 

sucrose-aCSF): 100 mM sucrose, 60 mM NaCl, 3 mM KCl, 1.25 mM NaH2PO4, 28 mM 

NaHCO3, 0.5 mM CaCl2, 7 mM MgCl2, 0.6 mM ascorbic acid, and 5 mM glucose 

equilibrated with 95% O2:5% CO2. Brains received a mid-sagittal hemisection and the 

ipsilateral hippocampi were carefully dissected from the overlying cortex. The hippocampi 

were mounted on agarose blocks, and cross-sectioned into 300 µm slices with a motorized 

vibrating-blade microtome (Leica VT1000s, Leica Biosystems Inc., Buffalo Grove, IL). 

Slices were gradually transferred from high sucrose-aCSF to a holding chamber containing 

50% high sucrose-aCSF/50% aCSF. aCSF contained: 125 mM NaCl, 2.5 mM KCl, 1.25 mM 

NaH2PO4, 25 mM NaHCO3, 2 mM CaCl2, 1 mM MgCl2, and 25 mM glucose, oxygenated 

with 95% O2:5% CO2 at RT. Slices were allowed to recover for at least 1 h in aCSF at RT 

before transfer to a submersion-type recording chamber perfused with aCSF oxygenated 

with 95% O2:5% CO2 at 32 °C. Field potentials were recorded using an Axoclamp 2B 

amplifier, Axon Instruments Digidata 1400 analog-to-digital converter, and Clampex 

software for data acquisition and analysis. The recording protocol was the same as used 

during in vivo electrophysiological recordings.

2.9. Fear conditioning test

The fear conditioning apparatus consists of a box (30 × 24 × 21 cm, Coulbourn Instruments, 

Whitehall, PA) with an electric grid floor (0.8 cm spacing, 4.8 mm diameter rods). Mice 

were placed in the box for habituation for 600 s. On the second day of the paradigm, mice 

were placed back in the box for 120 s followed by a 30 s tone (85 dB, 2 kHz) with a 0.7 mA 

foot shock delivered through the grid floor during the last 2 s of the tone. The animals 

remained in the box for an additional 60 s after the shock for a total duration of 210 s of 

training. At 24 h after training, mice were placed in the same box and freezing behavior was 

measured for 300 s to assess contextual fear conditioning. At 1 h after contextual fear 

assessment, cue fear conditioning was assessed by placing mice in a chamber with different 

wall coloration, lighting and scent and measuring freezing behavior for 360 s during which 

the tone (85 dB, 2 kHz) was delivered for the last 180 s. The box was cleaned with 70% 

EtOH and an enzymatic cleaner between animals. Freezing behavior was quantified using 

video-based analysis software (FreezeFrame, Coulbourn Instruments, Whitehall, PA).

2.10. Statistical analyses

Data were graphed using GraphPad Prism (GraphPad Inc., SanDiego, CA). Comparisons 

between WT sham and EphB3−/− sham, WT sham and WT CCI, or EphB3−/− sham and 

EphB3−/− CCI injured mice were measured. Student’s two-tailed t-test was used for 

comparison of two experimental groups. One-way ANOVA or two-way ANOVA was used 

for comparison of more than two groups, followed by Bonferroni post-hoc correction. 

Kolmogorov-Smirnov (K-S) test was used to analyze the distribution of synaptic density 

areas and width in combination with Kruskal-Wallis test in the TEM studies. For 

hippocampal electrophysiological recordings two-way ANOVA and repeated measures 

ANOVA with Bonferroni post-hoc correction were used. Data is represented as mean value 

± standard error of the mean (SEM).
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3. Results

3.1. A CCI injury model to examine synaptic dysfunction without hippocampal neuronal 
loss

To examine the effects of traumatic brain injury (TBI) on synaptic stability and function, we 

took advantage of a well-described controlled cortical impact (CCI) injury model (Edward 

Dixon et al., 1991; Osier et al., 2015; Smith et al., 1995; Theus et al., 2014). While other 

TBI models exist, CCI injury allows for accurate replication of biomechanics similar to 

human TBI (Peña et al., 2005; Xiong et al., 2013; Zhang et al., 2014), and can be adapted to 

different injury severities depending on the experimental paradigm (BRODY et al., 2007; 

Chen et al., 2014; Saatman et al., 2006; Assis-Nascimento et al., 2016). To examine synaptic 

dysfunction in the TBI environment, we established a moderate mouse controlled cortical 

impact (CCI) injury model where hippocampal synaptic damage is independent of neuronal 

loss. Hematoxylin and eosin (H&E) stained CCI injured wild type (WT) tissues showed 

substantial cortical damage at 7 days post-CCI injury (dpi) as compared with sham controls 

(Fig. 1A, B); however, no overt hippocampal damage was observed (Fig. 1B) nor at 30 dpi 

(not shown). High magnification of CA1 pyramidal neurons (CA1) of the hippocampus in 

Thy-1-YFP reporter mice also showed no visible neuronal damage at 7 dpi (Fig. 1A’, B’). 

Furthermore, significant upregulation in GFAP immunoreactivity was observed in the CA1 

hippocampus after CCI injury but not in sham injured mice (Fig. 1C – D), which is 

consistent with activating hippocampal injury cascades that lead to hypertrophic astrocytes 

but no neuronal loss after brain injury (Burda et al., 2016; Chen et al., 2014; Laird et al., 

2008).

To determine whether CCI injury affects synaptic function at 7 dpi, we measured CA3-CA1 

hippocampal field excitatory post-synaptic potentials (fEPSPs) and long-term potentiation 

(LTP) in vivo. CCI injury led to a significant deficit in synaptic recruitment at higher 

stimulus intensities, as observed by a significant difference in the input/output (I/ O) curve at 

stimulus intensities of 20 and 30 µA between sham and CCI injured mice (p = 0.0313 and p 

= 0.0162, respectively; Fig. 1E). In addition, examination of LTP showed a significant 

reduction in the CA3-CA1 fEPSP slope in CCI injured mice (p = 0.0132) when compared 

with sham controls (Fig. 1F; n = 4–5/group). We next examined hippocampal-dependent 

learning and memory using a fear-conditioning paradigm known to detect deficits after TBI 

(Titus et al., 2013). No difference was observed in habituation and baseline training; 

however, WT sham mice displayed significant contextual and cued freezing behavior that 

was not observed in CCI injured mice (p < 0.001 and p = 0.0287, respectively; Fig. 1G; n = 

7/group). Together, these findings demonstrate that CCI injury results in significant synaptic 

dysfunction and learning deficits even in the absence of gross hippocampal tissue damage.

To evaluate whether synaptic deficits are independent of hippocampal cell loss or atrophy, 

we quantified the number of CA1 pyramidal cells, CA3 pyramidal cells and dentate granule 

cells (DGC) at 7 dpi using non-biased stereology on hematoxylin stained (Fig. 1H; n = 5/ 

group) and anti-NeuN immunolabeled (Fig. 1I; n = 3/group) hippo-campal tissues in regions 

directly ventral to the injury epicenter. We also performed tissue volume analysis at 7 dpi 

between groups using non-biased stereology (SFig. 1A–D; n = 5/group). For all analyses, we 
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observed no significant difference in the number or volume of CA1 or CA3 pyramidal cells 

between sham and CCI injury. We did observe a modest increase in DGC numbers after CCI 

injury as compared with sham counterparts (p = 0.0324; Fig. 1H), but significant difference 

was not observed in the NeuN-positive cells (Fig. 1I), DGC or hilus volumes (SFig. 1C, D). 

Quantitative differences between hematoxylin and anti-NeuN counts likely reflect 

differences in cell identification as previously reported (Zhu et al., 2015), where 

hematoxylin counts where based on morphological criteria while anti-NeuN counts were 

based on nucleated anti-NeuN cell bodies. Together, these findings support a CCI injury 

model where the mechanisms of synaptic damage can be examined independent of neuronal 

death.

3.2. EphB3 levels are increased after CCI injury

EphB3 signaling is known to have a deleterious effect in tissue recovery (Theus et al., 2010, 

2014); however, its effects on synaptic stability and function after CCI injury are still poorly 

defined. To evaluate the role of EphB3 in the injured hippocampus, we first examined 

EphB3 levels in the sham and CCI injured hippocampus at 3 and 7 dpi. Western blot analysis 

showed a significant increase in EphB3 levels at 3 and 7 dpi as compared with sham controls 

(Fig. 2A; n = 4/group), which correspond to the peak periods of synaptic dysfunction. In the 

absence of EphB3 (i.e. EphB3−/− mice)we observed reduced gross cortical damage at 7 dpi 

(Fig. 2C) as compared with WT CCI injury (Fig. 1B) and EphB3−/− sham (Fig. 2B) mice, 

which supports previous findings (Theus et al., 2014). In addition, no overt gross 

hippocampal damage was observed and stereological quantification of cell numbers showed 

no differences in CA1 and CA3 pyramidal cell layers (Fig. 2D) or regional hippocampal 

volumes between sham and CCI injured EphB3−/− mice (SFig. 1A–D; n = 5/group). In the 

injured EphB3−/− hippocampal dentate gyrus (Fig. 2D), we did observe an increase in DGC 

numbers (p = 0.0324) similar to that observed in WT mice after injury (Fig. 1H).

3.3. CCI injury leads to EphB3-dependent synaptic loss in the hippocampus

To begin evaluating hippocampal synaptic damage following CCI injury, we used 

transmission electron microscopy (TEM) to quantify synaptic numbers as well as measured 

pre- and post-synaptic densities in the ipsilateral CA1 stratum radiatum of WT and 

EphB3−/− mice at 7 dpi (Fig. 3; n = 4/group). Tissues were cut into ultrathin sections (Fig. 

3A), the CA1 was dissected and a placed on a grid (Fig. 3B), and non-overlapping 

photographs of EPTA-stained CA1 stratum radiatum were taken (Fig. 3C). We then 

quantified asymmetric (i.e. excitatory) synapses (Mayhew, 1996; Sheng and Kim, 2011) if 

they met the following criteria: apposed pre- and post-synaptic densities, the presence of 

pre-synaptic vesicles and a visually discrete synaptic cleft (Fig. 3D, E). WT CCI injured 

mice showed a significant ~20% reduction (p < 0.001) in synaptic numbers compared with 

sham controls (Fig. 3F). We observed fewer synapses in EphB3−/− sham mice than WT 

sham mice (p < 0.001; Fig. 3F), suggesting that EphB3 may regulate synaptic formation or 

maintenance during development. For this reason, CCI injury values were only compared to 

sham controls of their respective genotype. Interestingly, we did not observe injury-induced 

synaptic losses in CCI injured EphB3−/− mice as compared to EphB3−/− sham controls (Fig. 

3F).
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In addition to overt synaptic loss in WT mice, CCI injury could also lead to disorganization 

of subsisting synapses, interruption of glutamatergic signaling scaffolds and impaired 

excitatory signaling (Carlson et al., 2015; Luo et al., 2011, 2014). Thus, we next quantified 

the average area of both pre- and post-synaptic density (SD) at 7 dpi in sham and CCI 

injured WT and EphB3−/− mice. We observed no significant difference in the area of pre-SD 

and post-SD between WT sham and CCI injured mice (Fig. 3G, H), suggesting that 

remaining synapses are possibly stabilized within the first week. We did observe a 

significant increase (p < 0.001) in the post-SD area in EphB3−/− sham mice compared with 

WT sham mice (Fig. 3G). However, in the hippocampus of EphB3−/− mice, CCI injury lead 

to significantly less (p = 0.0023) area covered by the post-SD protein network in the absence 

of synaptic loss (Fig. 3G), suggesting that EphB3 may play deleterious roles in synaptic 

maintenance after CCI injury.

To further evaluate synaptic densities, we examined the distribution of synaptic density size 

between groups (Fig. 3I, J). Post-SD areas showed a left-modal distribution that ranged from 

0 to 11,000 nm2 for sham-and CCI-injured WT and EphB3−/− synapses (Fig. 3I). The overall 

distribution of synaptic densities was evaluated using a Kolmogorov– Smirnov (KS) test, 

which showed significant variance between the distribution of WT versus EphB3−/− sham (p 

< 0.001) and between EphB3−/− sham versus EphB3−/− CCI injured post-SD areas (p < 

0.001). However, no significant differences were observed between groups at any specific 

area using two-way repeated measures ANOVA. Pre-SD areas also showed a left-modal 

distribution ranging from 0 to 5400 nm2 for sham- and CCI-injured WT and EphB3−/− 

synapses (Fig. 3J). KS tests did not show significant difference between sham groups or 

sham versus CCI injury within genotypes. These findings confirm that changes observed in 

pre- and post-SD areas (Fig. 3G – H) were due to a shift in the overall sizes of the synaptic 

densities.

We also evaluated the variability in spine size based on average post-SD diameters, which 

may differ from increased protein aggregation area (Martone et al., 1999). Examination of 

post-SD diameters showed no difference in average diameter between groups (Fig. 3K); 

however, analysis of cumulative distributions did show significant difference between groups 

using KS test. Specifically, we observed a significant difference between EphB3−/− sham 

versus EphB3−/− CCI injury (p = 0.0053). Two-way repeated measures ANOVA showed 

significant interactions between diameter and group, where the Bonferroni post-hoc test 

showed significant difference (p < 0.01) between EphB3−/− sham and EphB3−/− CCI injury 

at diameters ranging between 0.21 and 0.25 µm (SFig. 2A).

To better evaluate the synaptic unit, we next examined the relationship between post-SD and 

pre-SD areas (i.e. post-SD:pre-SD ratio), since a synchronous change in spine size is 

necessary for enhancements in synaptic strength (Meyer et al., 2014). We observed reversed 

trends between WT and EphB3−/− ratios after CCI injury, where WT ratios increased 

significantly (p = 0.0084) while EphB3−/− ratios reduced significantly (p < 0.001) (Fig. 3L – 

P). Examination of cumulative distributions showed group differences between WT sham 

versus EphB3−/− sham (p = 0.0105), WT sham versus WT CCI injury (p = 0.0024), and 

EphB3−/− sham versus EphB3−/− CCI injury (p < 0.001). Two-way repeated measures 

ANOVA of frequency distributions by ratio size showed no significant interaction between 

Perez et al. Page 9

Neurobiol Dis. Author manuscript; available in PMC 2017 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ratio and group (SFig. 2B). These findings suggest that reduced synaptic function and 

behavioral deficits inWT CCI injured mice may be associated with overall synaptic loss as 

well as dysregulation of the synaptic unit within the remaining synapses.

3.4. Absence of EphB3 signaling improves synaptic plasticity after CCI injury

To determine whether synaptic function is affected by the EphB3-dependent ultrastructural 

changes after CCI injury, we examined CA3-CA1 hippocampal field excitatory postsynaptic 

potentials (fEPSPs) in vivo in the presence and absence of EphB3 (Fig. 4; n = 4–6/group). 

To assess basal synaptic transmission we recorded input-output (I/O) curves at increasing 

stimulus intensities, and observed no significant interaction among animal groups and 

stimulus intensities (Fig. 4A); however, we did observe significant differences in fEPSP 

slope at different stimulus intensities (p < 0.0001) and between animal groups (p = 0.0132). 

As we observed in our initial characterization of our CCI injury model, WT mice subjected 

to CCI injury exhibit a significant downward shift in the I/O curve at higher stimulus 

intensities. Conversely, when we measured the I/O curves in EphB3−/− mice, we observed no 

significant difference in synaptic recruitment after CCI injury compared to sham (Fig. 4A). 

Examination of paired pulse facilitation (PPF), a measure of presynaptic function, revealed 

no significant differences between animal groups (Fig. 4B). These findings are consistent 

with our in vitro hippocampal slice recordings (SFig. 3A) and corroborate our ultrastructural 

data that the effects observed after CCI injury are mainly post-synaptic in nature. Finally, 

examination of long-term potentiation (LTP) in vivo at the CA1 hippocampal synapse 

showed a significant interaction between animal group and time (p < 0.0001) and main 

effect for animal groups (p = 0.0131) and time (p < 0.0001) (Fig. 4C). Analysis of fEPSP 

slope post-HFS (high frequency stimulation) revealed significant reductions in both early 

and late LTP in WT CCI injured mice (p = 0.0075 and p = 0.0064, respectively) that were 

not observed in EphB3−/− CCI injured mice when compared to genotype-matched shams 

(Fig. 4C – E). Similarly, recordings from hippocampal slices harvested at 7 dpi from CCI 

injured WT mice showed reductions in fEPSP slope, but not in slices from CCI injured 

EphB3−/− mice (SFig. 3B – D). These findings support a deleterious role of EphB3 in 

synaptic function after CCI injury.

3.5. Absence of EphB3 signaling results in improved hippocampal learning after CCI injury

We next examined hippocampal-dependent learning and memory using a fear-conditioning 

paradigm. Following injury, WT and EphB3−/− mice were habituated at 5 dpi, trained at 6 

dpi and tested for freezing behavior at 7 dpi. No significant differences were observed 

between sham and CCI or between genotypes during training periods (Fig. 5; n = 8–15/

group). During the contextual testing period, we observed a main effect for animal groups (p 

< 0.0001). CCI injury led to a significant (p < 0.0001)~50% reduction in contextual and 

cued freezing behavior in WT CCI injured mice when compared with WT sham mice. 

Contrarily, EphB3−/− CCI injured mice performed statistically similar to sham controls in 

both contextual and cued learning paradigms, although a trend towards reduced performance 

after injury was observed, possibly due to extra-hippocampal damage following CCI injury. 

These findings support our electrophysiological recordings that suggest activation of EphB3 

may exacerbate injury-induced deficits in hippocampal function.
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3.6. EphB3 does not affect injury-induced changes in hippocampal synaptic proteins

To investigate the molecular basis of the changes in synaptic plasticity observed in CCI-

injured hippocampal neurons in the presence and absence of EphB3, we examined the 

expression of key synaptic proteins essential for excitatory synaptic transmission. 

Specifically, we quantified protein levels for post-synaptic glutamatergic receptor subunits 

(i.e. GluR1, NR1 and NR2B) and synaptosomal-associated protein-23 (SNAP23) and −25 

(SNAP25) in sham and CCI injured whole hippocampal tissues at 7 dpi using Western blot 

analysis (Fig. 6; n = 4/group). We observed stable levels of the AMPAR subunit GluR1 

regardless of genotype or injury state (Fig. 6A). The NMDAR subunits NR1 and NR2B 

contribute to hippocampal learning and memory as well as injury-induced excitotoxicity 

(Gambrill and Barria, 2011; Paoletti et al., 2013). NR1 subunits, the site for D-serine 

binding, showed no significant differences from sham controls for either genotype (Fig. 6B). 

In WT mice we observed a significant increase in NR2B levels after CCI injury (p = 0.0293) 

that was also observed in EphB3−/− mice as compared with their respective sham controls (p 

= 0.0159) (Fig. 6C). We also examined SNARE complex proteins, SNAP-25 and SNAP-23, 

involved in neuronal and astrocytic vesicular release, respectively. We did not observe 

significant differences in SNAP-25 nor SNAP-23 levels after CCI injury for either WT or 

EphB3−/− mice (Fig. 6D, E). Finally, since increased glial fibrillary acidic protein (GFAP) 

levels are a hallmark of reactive astroctyes after brain injury, we examined whether WT and 

EphB3−/− mice showed differences in GFAP expression at 7 dpi. Similar increases in GFAP 

immunoreactivity were observed between WT (p = 0.0003) and EphB3−/− (p = 0.0002) mice 

(Fig. 6F). Together, these findings suggest that significant variances in core synaptic proteins 

do not underlie the functional differences observed between WT and EphB3−/− mice after 

CCI injury.

3.7. EphB3 regulates D-serine but not glutamate levels after CCI injury

We had previously shown that EphB3 can regulate D-serine levels in the naïve brain (Zhuang 

et al., 2010), while others have shown D-serine can exacerbate excitotoxic effects of NMDA 

hyper-activation after injury (Katsuki et al., 2004; Shleper et al., 2005). Therefore, we 

analyzed transmitter levels in sham and CCI injured whole hippocampi in the presence and 

absence of EphB3 using a chemiluminescent assay (Fig. 7; n = 6–7/group). In the WT 

hippocampus during the acute CCI injury period, the D-serine levels increased at 4 and 24 h 

post-CCI injury (hpi) as compared with sham controls (p = 0.0032 and p = 0.034, 

respectively; Fig. 7A), but returned to baseline by 3 dpi and were maintained for at least 7 

dpi (not shown). Examination of glutamate levels at the same time points showed no 

significant difference in WT CCI injured tissues compared to WT sham controls (Fig. 7B), 

and these basal levels were also maintained for at least 7 dpi (not shown). When we 

compared the level of D-serine in EphB3−/− shams, we observed no significant difference 

from WT shams. Strikingly, in the CCI injured EphB3−/− hippocampus, D-serine levels were 

not increased at 4 and 24 hpi (Fig. 7A).

Next, we examined whether ephrinB3 stimulation of Eph signaling would augment D-serine 

or glutamate levels in WT mice at 3 dpi, a time when transmitter levels have returned to 

baseline. Infusion of clustered ephrinB3-Fc (112 µg/kg/day) for 3 days into the ipsilateral 

hippocampus resulted in a significant increase in D-serine levels in hippocampi from WT 
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mice but not EphB3−/−/EphA4−/− double knockout mice (Fig. 7C). EphB3−/−/EphA4−/− 

mice where used to eliminate potential off target interactions with ephrinB3. Control anti-

human-Fc molecules showed no effect on D-serine levels as compared to non-infused naïve 

or sham mice. Furthermore, application of clustered ephrinB3-Fc did not alter glutamate 

levels in either WT or EphB3−/−/ EphA4−/− mice (Fig. 7D).

3.8. Increased D-serine can reverse the enhanced synaptic plasticity observed in EphB3−/− 

mice after CCI injury

To validate our conclusion that CCI injury-induced synaptic dysfunction is aggravated by 

EphB3 regulation of D-serine levels, we examined CA3-CA1 hippocampal fEPSPs in vivo in 

CCI injured EphB3−/− mice after vehicle or D-serine (840 µg/kg/day) infusion (Fig. 8; n = 6/ 

group). We infused D-serine or vehicle into the contralateral ventricle for 3 days after CCI 

injury. EphB3−/− mice that received D-serine infusion demonstrated reduced basal synaptic 

transmission revealed by a downward shifted I/O curve at stimulation intensities of 20 µA or 

higher compared with vehicle-infused controls (Fig. 8A). Two-way repeated measures 

ANOVA showed significant interaction between groups and stimulus intensity (p < 0.0001), 

where the Bonferroni post-hoc test showed significant difference between CCI injured 

EphB3−/− vehicle-and D-serine-treated mice (p < 0.001). No significant differences were 

observed in PPF between groups (Fig. 8B); however, significant differences were observed 

in LTP. Specifically, we observed a significant interaction between groups and time(p < 

0.0001) and main effect for animal groups (EphB3−/− CCI-injured vehicle- vs. D-serine-

infused; p = 0.0087) and time (p < 0.0001) (Fig. 8C). Analysis of fEPSP slope post-HFS 

revealed that D-serine infusion resulted in significant reductions in both early and late LTP in 

EphB3−/− CCI injured mice when compared with vehicle-infused mice (p < 0.0001; Fig. 8C 

– E). These findings support our observations that increased D-serine levels in the 

hippocampus are detrimental to synaptic function, and that EphB3 signaling may regulate 

synaptic dysfunction after CCI injury through enhanced D-serine synthesis and release.

4. Discussion

Synaptic dysfunction and impaired plasticity can have a significant impact on motor, sensory 

and cognitive functions in TBI patients. Neuronal cell death is a predominant underlying 

cause for synaptic loss in regions of tissue damage; however, synaptic dysfunction is also 

present in more distal brain regions where neuronal loss is not observed (Lyeth et al., 1990). 

To begin to examine synaptic dysfunction within the complex and evolving TBI 

environment, we have developed a moderate CCI injury model that leads to hippocampal 

synaptic damage without neuronal losses. We then examined the role of ephrins and Eph 

receptors in synaptic stability and function after TBI. In the CCI injured hippocampus, we 

found that EphB3−/− mice showed stable numbers of synapses compared to sham controls, 

and improved synaptic plasticity and learning behavior as compared with WT CCI injured 

mice. Comparison of key synaptic proteins essential for excitatory synaptic transmission 

showed no differences between WT and EphB3−/− mice; however, increases in the NMDAR 

co-agonist D-serine following CCI injury were significantly reduced in the absence of 

EphB3. Furthermore, rescuing D-serine levels in EphB3−/− mice could recapitulate the 

synaptic deficits observed in WT CCI injured mice. These findings suggest that elevated D-
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serine levels in the hippocampus may play deleterious roles by destabilizing synapses after 

TBI, and are in part regulated by ephrin-EphB3 signaling.

Our observation that CCI injury results in approximately 20% synaptic losses, and >50% 

reduction in LTP and learning in the first week suggests that synaptic loss and dysfunction 

together may underlie the observed functional deficits. Our observed losses in excitatory 

synapses in the mouse hippocampus are less pronounced than the ~50% reduction in CA1 

synapses in rats after CCI injury (Scheff et al., 2005). This discrepancy could be attributed to 

species-specific effects but also a higher injury severity, which also lead to CA3 pyramidal 

cell death. Alternatively, changes in synaptic size and morphology may also contribute to 

functional deficits (Carlson et al., 2015; Gao et al., 2011; Marrone et al., 2004). After injury 

the main difference observed was an increase in the ratio between post-SD to pre-SD area in 

WT mice. This could be due to spine enlargement, a reduction of presynaptic bouton size, or 

a combination of both. However, the opposite effect was observed in the synaptic unit of 

EphB3−/− mice after injury. When taken together with the deficits in hippocampal function 

observed, these findings suggest that synchronous changes in both elements of synapse 

morphology are important for structural stabilization and plasticity (Meyer et al., 2014). 

Furthermore, excess activation by increased levels of D-serine could be participating in 

destabilizing the synapse and causing synaptic damage (Shleper et al., 2005).

Alterations in the levels of different synaptic proteins have also been associated with deficits 

in synaptic plasticity after TBI (Osteen et al., 2004; Spaethling et al., 2012; Titus et al., 

2013). The co-agonist binding site for D-serine is located on NR1 subunits (Johnson and 

Ascher, 1987; Mothet et al., 2000). Interestingly, NR1 protein levels did not change after 

CCI injury for either group, suggesting that increase in D-serine after injury leads to increase 

binding probability (Furukawa and Gouaux, 2003) and could enhance NMDA-dependent 

glutamatergic signaling. In the CCI injured hippocampus, we observed increased levels of 

the NR2B subunit of the NMDAR in bothWT and EphB3−/− mice, which has been shown to 

be associated with extra-synaptic NMDARs and the detrimental effects of NMDAR over-

activation (Bading et al., 1993; Hardingham and Bading, 2010; Hardingham et al., 2002). 

Regulation of NMDARs after injury seems to be temporally dependent and differs between 

injury models (Giza et al., 2006; Hsu et al., 1998; Kumar et al., 2002; Osteen et al., 2004; 

Schumann et al., 2008; Small et al., 1997). In more severe models, an acute transient 

reduction in NR2B levels is followed by protein up-regulation at later periods (Brown et al., 

2004; Kumar et al., 2002), while no difference is observed in less severe models (Giza et al., 

2006; Osteen et al., 2004). Despite these discrepancies, a shift in the relative amounts of 

synaptic NR2A to extra-synaptic NR2B receptors has been well established to mediate 

damage caused by initial injury (Giza et al., 2006; Osteen et al., 2004; Small et al., 1997), 

and likely contributes to the CCI injury-induced deficits observed in WT mice. However, 

increased NR2B receptors in EphB3−/− mice did not result in synaptic damage or loss, 

suggesting that reductions in the NMDAR co-agonist D-serine likely underlie the reduced 

synaptic damage observed in these mice. EphB receptors have been shown to play roles in 

glutamate receptor activation, trafficking and localization (Antion et al., 2010; Grunwald et 

al., 2004; Henderson et al., 2001; Irie et al., 2005). We cannot rule out that in EphB3 

deficient mice NR2B receptors may remain in the cytoplasm, are unable to become 
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incorporated into the extra-synaptic membranes and do not contribute to detrimental effects 

of over-activation.

Since our model of CCI injury did not involve hippocampal neuron loss, it suggests that 

neuronal excitotoxicity may be below the apoptotic threshold in the hippocampus. It is well 

accepted that glutamate excitotoxicity results from an acute release of glutamate from 

neurons within the first minutes after trauma, and leads to excessive calcium influx through 

over-activation of NMDARs, initiation of pro-apoptotic signaling cascades, and ultimately 

neuronal damage (Faden et al., 1989; Obrenovitch and Urenjak, 1997). While this likely 

occurs in the cortex in our model, we did not observe neuronal loss in the hippocampus even 

at regions directly ventral to the injury epicenter. Furthermore, there was no significant 

difference in total hippocampal glutamate levels at 4 h post-injury (hpi), a time-point where 

glutamate levels have returned to baseline (Obrenovitch and Urenjak, 1997) and the earliest 

time-point we tested. Conversely, the NMDAR co-agonist D-serine is up-regulated hours to 

days after CCI injury and contributes to synaptic damage but not cell death. Enhanced D-

serine levels have also been observed in other peripheral and CNS injury models (Lin et al., 

2015; Moon et al., 2015). Moreover, pharmacological reductions in D-serine levels have been 

shown to protect neurons from excitotoxic insult (Hama et al., 2006; Shleper et al., 2005). In 

the absence of EphB3, increased D-serine levels were not observed after CCI injury. This 

provides support to our previous gain-of-function studies showing that ephrinB3 stimulation 

of EphB3 could increase D-serine levels in hippocampal slices and cultured astrocytes 

(Zhuang et al., 2010). Excessive D-serine levels can induce synaptic damage and reverse the 

rescue effects associated with the absence of EphB3 after CCI injury; however, the addition 

of D-serine by itself was not sufficient to induce NMDA-mediated synaptic damage in 

hippocampal slices (Katsuki et al., 2004). Together, these findings support a role for EphB3 

signaling in regulating D-serine levels as a novel mechanism by which EphB3 receptors can 

potentiate damage in the traumatic injured brain. Additional studies are needed to determine 

how these effects are mediated by EphB3 signaling and establish if D-serine release is from 

neurons and/or astrocytes.

TBI patients typically live with life-long cognitive impairment even in the absence of 

significant tissue pathology (Barth et al., 1983; Gualtieri and Cox, 1991; McAllister et al., 

1999). To date, most neuroprotective strategies have focused on preserving cell survival, 

preventing glutamate excitotoxicity, and inhibiting secondary inflammatory responses 

(Beauchamp et al., 2008; Corps et al., 2015). Our findings suggest that synaptic loss and 

dysfunction may be an important therapeutic target. Understanding the mechanisms 

regulating D-serine and NMDARs contributing to the balance of synaptic stability versus 

dysfunction will have important neuroprotective consequences. Our study suggests Eph 

receptor signaling plays a role in regulating this balance, whereby inhibiting Eph receptor 

signaling could lead to improved synaptic numbers and function after TBI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
CCI injury model of synaptic dysfunction without hippocampal neuronal losses. 

Hematoxylin and eosin stained tissues showing gross morphological damage 7 dpi after 

sham (A) and CCI (B) injury. Rectangles indicate region for images in A’–B’ and C–D. 

High magnification confocal images of CA1 pyramidal neurons in Thy-1-YFP mice show 

neuronal dendritic densities in sham (A’) and CCI injured (B’) mice. Increased astrocyte 

(GFAP) reactivity and hypertrophy, a hallmark of brain injury, is observed in the CA1 region 

of the after CCI injury (D) as compared with sham (C) mice. (E) Significant downward shift 

in I/O curve of fEPSPs recorded from CA1 stratum radiatum in vivo at increasing intensities 

of stimulation in CCI injured mice as compared with sham mice. Insets show sample fEPSP 

traces for I/O curve. (F) Tetanic high frequency stimulation (HFS) shows enhanced LTP in 

vivo in sham but not CCI injured mice, where fEPSP slopes were normalized to baseline. 

Inset depicts representative pre- and post-HFS traces per group. E and F, sham n = 5 and 

CCI injury n = 4. (G) Significant decrease in percent freezing behavior in CCI mice 

compared with sham mice in both contextual and cued testing (mean ± SEM; n = 7/group). 
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Quantitative cell counts from hematoxylin stained (H) and anti-NeuN immunoreactive (I) 

CA1, CA3, and DGC by non-biased stereology (n = 5/group). All data presented as mean ± 

SEM. *p < 0.05 and ***p < 0.001 compared with sham controls, ^^^p < 0.001 compared 

with habituation. Ctx, cortex; Hipp, hippocampus; CA1, CA1 pyramidal cells; CA3, CA3 

pyramidal cells; DGC, dentate granule cells.
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Fig. 2. 
Increased levels of EphB3 does not affect cell survival in the hippocampus after CCI injury. 

(A) Western blots show increased hippocampal EphB3 protein levels at 3 and 7 dpi in WT 

mice, which were standardized to β-tubulin and normalized to sham (mean ± SEM; n = 4/

group, repeated in triplicate). For full blots see SFig. 4. Hematoxylin and eosin stained 

EphB3−/− sham (B) and CCI (C) injured tissue showing gross morphological damage. (D) 

Number of hippocampal cells within each region in EphB3−/− sham and CCI injured mice 

(mean ± SEM; n = 5/group). *p < 0.05 and **p < 0.01.
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Fig. 3. 
CCI injury leads to EphB3-dependent synaptic loss and alterations in pre- and post-synaptic 

densities in the hippocampus. (A) Cresyl violet stain of hippocampal tissue, where box 

indicates region within CA1 stratum radiatum selected for sectioning and grid placement. 

(B) Grid numbers represent random sampling fields for image acquisition (scale bar = 500 

µM). (C) Representative 25,000× electron micrograph of CA1 stratum radiatum with EPTA-

stained excitatory synapses (scale bar = 50 µM). High magnification images of synapses 

with asymmetrical pre- and post-SDs (D) and clear, delineated synaptic cleft and pre-

synaptic vesicles (E). (F) CCI injury resulted in a reduction in synaptic numbers in WT, but 
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not EphB3−/− when compared with sham controls. (G) Quantification of mean post-SD area 

showed EphB3−/− shams had increased post-SD area when compared with both WT sham 

and EphB3−/− CCI group. (H) Quantification of mean pre-SD area showed no difference 

between groups. Frequency distribution plots show positively-skewed curve of post-SD area 

(I) and pre-SD area (J). (K) Quantification of mean post-SD diameter showed no significant 

differences between groups. (L) Comparison of the ratio between post-SD to pre-SD areas 

showed opposing CCI injury-induced effects in WT and EphB3−/− mice, where CCI lead to 

an increase in WT ratio and decrease in EphB3−/− ratio. (M–P) Representative synapses for 

each group reflect changes observed in synaptic quantifications. All data presented as mean 

± SEM with n = 4/group with at least 20 micrographs per animal. *p < 0.05, **p < 0.01, 

***p < 0.001 compared with WT sham, and ##p < 0.01; ###p < 0.001 compared with 

EphB3−/− sham.
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Fig. 4. 
Synaptic plasticity is significantly reduced in the hippocampus at 7 dpi in WT but not 

EphB3−/− mice. (A) I/O curve plotting the in vivo hippocampal fEPSP at increasing stimulus 

intensities shows CCI injury in WT mice resulted in a significant downward shift at higher 

stimulus intensities, while no significant difference was observed in the EphB3−/− CCI group 

when compared to EphB3−/− sham group. Inset, superimposed representative traces of 

evoked fEPSPs at increasing current intensities. (B) Examination of PPF, the ratio of second 

fEPSP to the first fEPSP slope, revealed no significant differences between animal groups. 

(C) Examination of LTP, normalized to baseline fEPSP slope, in vivo at the CA1 

hippocampal synapse showed significant CCI injury-induced deficit in WT but not EphB3−/− 

mice. Analysis of fEPSP slope post-HFS revealed that injury resulted in significant 

reductions in both early (D) and late (E) phase LTP in WT CCI mice when compared with 

WT sham mice. No differences were observed between EphB3−/− sham and EphB3−/− CCI-

injured mice for either early or late LTP responses. All data presented as mean ± SEM. WT 

sham, n = 5; WT CCI, n = 4; EphB3−/− sham, n = 6; EphB3−/− CCI, n = 5. *p < 0.05, **p < 

0.01 compared with WT sham.
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Fig. 5. 
Hippocampal learning is significantly reduced at 7 dpi in WT but not EphB3−/− mice. 

Hippocampal-dependent fear-conditioning behavior quantified as percent freezing showed 

no significant differences between sham and CCI and between genotypes at baseline; 

however, a significant decrease in freezing behavior in both contextual and cued learning 

was observed in WT CCI mice when compared with WT sham mice. Nonsignificant 

reductions were observed in EphB3−/− CCI injured mice compared to EphB3−/− sham mice 

in both contextual and cued learning. Data presented as mean ± SEM. WT sham, n = 10; 

WT CCI, n = 15; EphB3−/− sham, n = 10; EphB3−/− CCI, n = 8. ***p < 0.001 compared 

with WT sham.
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Fig. 6. 
CCI-induced alterations in synaptic protein levels are similar in WT and EphB3−/− 

hippocampi at 7 dpi. CCI injury did not result in significant changes in levels of GluR1 (A), 

NR1 (B), SNAP-25 (D) and SNAP-23 (E), but NR2B (C) was upregulated in both WT and 

EphB3−/− mice. (F) GFAP, a marker of reactive astrocytosis, was significantly upregulated 

after CCI with no differences between WT and EphB3−/− CCI groups. Insets, representative 

Western blots for each protein, including beta-tubulin as a loading control. For full blots see 

SFig. 4. All data presented as mean ± SEM; n = 4/group, repeated in triplicate. *p < 0.05, 

**p < 0.01, ***p < 0.001 compared with sham control.
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Fig. 7. 
Eph receptor signaling regulates injury-induced changes in D-serine but not glutamate levels 

in the hippocampus. CCI injury lead to significant increases in total levels of D-serine in WT 

but not EphB3−/− hippocampi at 4 and 24 hpi (A), while no significant changes were 

observed in total glutamate levels (B) at these time points. EphrinB3 stimulation of Eph 

signaling lead to increased levels of D-serine in WT but not EphB3−/−/EphA4−/− mice at 3 

dpi (C), while having no effect on levels of glutamate in both groups of mice (D). All data 

presented as mean ± SEM; A, n = 7/group; B, n = 6/group; C, n = 7/group; D, n = 6/group. 

*p < 0.05, **p < 0.01, ***p < 0.001 compared with WT sham.
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Fig. 8. 
Infusion of D-serine can reverse the enhanced synaptic plasticity observed in EphB3−/− mice 

at 7 dpi. (A) Basal synaptic transmission is diminished after D-serine but not vehicle infusion 

in EphB3−/− mice, as seen by downward shift in I/O curve in current intensities of 20 mA or 

higher. Inset, superimposed representative traces of evoked fEPSPs at increasing current 

intensities. (B) Examination of presynaptic function through PPF revealed no significant 

differences between animal groups. (C–E) A significant reduction in LTP was observed in D-

serine- versus vehicle-treated EphB3−/− mice. Examination of LTP in vivo at the CA1 

hippocampal synapse showed a significant injury-induced deficit in D-serine but not vehicle-

infused EphB3−/− mice (C). Analysis of fEPSP slope post-HFS revealed that injury resulted 

in significant reductions in both early (D) and late (E) phase LTP in D-serine infused 

EphB3−/− mice when compared with vehicle-infused EphB3−/− mice. All data presented as 

mean ± SEM; EphB3−/− CCI + vehicle, n = 6; EphB3−/− CCI + D-serine, n = 6. **p < 0.01, 

***p < 0.001 compared with vehicle-infused group.
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