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Abstract

During S-phase, minor DNA damage may be overcome by DNA damage tolerance (DDT) 

pathways that bypass such obstacles, postponing repair of the offending damage to complete the 

cell cycle and maintain cell survival. In translesion DNA synthesis (TLS), specialized DNA 

polymerases replicate the damaged DNA, allowing stringent DNA synthesis by a replicative 

polymerase to resume beyond the offending damage. Dysregulation of this DDT pathway in 

human cells leads to increased mutations rates that may contribute to the onset of cancer. 

Furthermore, TLS affords human cancer cells the ability to counteract chemotherapeutic agents 

that elicit cell death by damaging DNA in actively replicating cells. Currently, it is unclear how 

this critical pathway unfolds, in particular where and when TLS occurs on each template strand. 

Given the semi-discontinuous nature of DNA replication, it is likely that TLS on the leading and 

lagging strand templates is unique for each strand. Since the discovery of DDT in the late 1960’s, 

most studies on TLS in eukaryotes have focused on DNA lesions resulting from ultraviolet (UV) 

radiation exposure. In this review, we re-visit these and other related studies to dissect the step-by-

step intricacies of this complex process, provide our current understanding of TLS on leading and 

lagging strand templates, and propose testable hypotheses to gain further insights.

Graphical abstract

1. Introduction

The genomes of cellular organisms encode genetic information in strands of DNA that 

assemble into an antiparallel DNA double helix. Each time a cell divides, the genome must 

be faithfully copied and transferred to a daughter cell for genetic inheritance. The former 

relies on replicative DNA polymerases (pols) that read a template strand in the 3′ to 5′ 
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direction and synthesize complementary DNA in the 5′ to 3′ direction4. In eukaryotes, 

DNA replication emanates from many replication origins (Ori) that are activated at different 

times over the course of an extended S-phase5. At each Ori, two replication forks are 

established (forming a replication bubble, Figure 1) and progress in opposite directions as 

the template strands of each fork are replicated in concert. Due to the antiparallel nature of 

the DNA double helix and the direction of DNA synthesis, each template strand is copied in 

a unique manner. The leading strand template is replicated continuously in the direction of 

replication fork progression while the nascent DNA on the lagging strand template is 

synthesized in short fragments (i.e., discontinuously) in the opposite direction. These short 

fragments, referred to as Okazaki fragments, are subsequently processed and ligated together 

to form a continuous, mature DNA strand4.

The replicative pols have very stringent polymerase domains as well as 3′ to 5′ exonuclease 

(“proofreading”) domains and, thus, cannot accommodate distortions to the native DNA 

sequence6–9 However, genomic DNA is continuously subjected to spontaneous damage from 

reactive metabolites and environmental mutagens. Prominent examples are modifications 

(lesions) to the native template bases that alter or eliminate their base pairing capability. 

Despite the protection provided by cellular DNA repair pathways, some lesions may evade 

detection and persist into S-phase10, 11. Consequently, DNA synthesis on an afflicted 

template strand abruptly stops upon encountering a lesion. Failure to restart often results in 

double-strand breaks which may lead to gross chromosomal rearrangements, cell-cycle 

arrest, and cell death10–13. Therefore, it is often more advantageous to circumvent such 

replicative arrests and postpone repair of the offending damage to complete the cell cycle 

and maintain cell survival11, 13, 14. Such a process, referred to as DNA damage tolerance 

(DDT), may be carried out by translesion DNA synthesis (TLS) where the replicative pol is 

exchanged for one or more TLS pols. With a more “open” pol active site and the lack of an 

associated proofreading activity, TLS pols can support stable, yet potentially erroneous, 

nucleotide incorporation opposite and beyond damaged templates (i.e. bypass), allowing 

DNA synthesis by the replicative pol to resume15.

Dysregulation of TLS in human cells leads to increased mutations rates that may contribute 

to the onset of cancer. Furthermore, TLS affords human cancer cells the ability to counteract 

chemotherapeutic agents that elicit cell death by damaging DNA in actively replicating 

cells16. Currently, it is unclear how this critical pathway unfolds, in particular where and 

when TLS occurs on each template strand. The most prevalent source of exogenous DNA 

damage is ultraviolet (UV) radiation provided by exposure to the sun. Since the discovery of 

DDT in the late 1960’s, most studies on TLS in eukaryotes have focused on DNA lesions 

resulting from UV radiation exposure. In this review, we re-visit these and other related 

studies to dissect the step-by-step intricacies of this complex process and provide our current 

understanding of TLS on leading and lagging strand templates. We begin with a brief 

overview of the eukaryotic replisome (Figure 2).

2. The eukaryotic replisome

At each replication fork, dsDNA is unwound by the replicative helicase, CMG (Cdc45, 

MCM proteins 2 – 7, and GINS), that translocates with a 3′ to 5′ polarity and, hence, 
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tracks along the leading strand. This helicase is comprised of core proteins MCMs 2 – 7 

(MCM core) and two accessory subunits, Cdc45 and GINS2, 17–19 The leading strand 

template enters through the C-terminal Domain (CTD) tier of the MCM core while the 

lagging strand template is sterically occluded2, 20. Upon unwinding of dsDNA, the single 

strand DNA (ssDNA) templates are immediately coated by the ssDNA binding protein, 

replication protein A (RPA), which binds to ssDNA with extremely high-affinity (< pM) at 

physiological ionic strength21. Binding of RPA protects ssDNA from cellular nucleases and 

prevents formation of alternative DNA structures22, 23. The bi-functional pol α-primase 

complex (pol α-primase) constitutively interacts with the CMG helicase through a Ctf4 

bridge that connects it to GINS on the N-terminal half of the helicase complex. Ctf4 is a 

homotrimer with three identical binding sites; one site is occupied by GINS, one site is 

occupied by the DNA polymerase subunit of pol α-primase, and the last site is available to 

bind an unidentified third protein24. Pol α-primase is a four-subunit complex that contains 

both RNA primase and DNA polymerase activities in separate subunits and it synthesizes 

complementary RNA/DNA hybrid primers every 100 – 250 nucleotides on the exposed 

lagging strand template. In other words, re-priming is an innate property of discontinuous 

lagging strand DNA synthesis. The hybrid primers are comprised of 7–10 nucleotides of 

RNA followed by 10 – 12 nucleotides of DNA25–32. The switch from RNA to DNA occurs 

without dissociation of pol α-primase from DNA; the template is transferred internally from 

the primase active site to the DNA polymerase active site24.

The replicative pols anchor to ring-shaped sliding clamps to achieve the high degree of 

processivity required for efficient DNA replication. The highly-conserved toroidal structure 

of sliding clamps has a central cavity large enough to encircle double-stranded DNA 

(dsDNA) and slide freely along it. Thus, such an association tethers the pol to DNA, 

increasing the extent of continuous replication. The eukaryotic sliding clamp, PCNA, is a 

trimer of identical subunits aligned head-to-tail, forming a ring with two structurally distinct 

faces. The “C-terminal” or “front” face of the homotrimeric PCNA ring is a platform for 

interaction with pols33, 34. The complex of PCNA and a pol is often referred to as a pol 

holoenzyme. The closed circular structure of the PCNA ring necessitates an enzyme-

catalyzed mechanism which not only opens it for assembly and closes it around DNA but 

targets it to sites where DNA synthesis is initiated and orients it correctly for replication. 

The eukaryotic clamp loader complex, replication factor C (RFC), utilizes ATP binding and 

hydrolysis to selectively load PCNA rings onto primer/template (P/T) junctions with 

recessed 3′ hydroxyl ends such that the “front” face of the ring is oriented towards the 

terminal 3′ hydroxyl end of the primer where DNA synthesis will initiate33. Thus, a PCNA 

ring is loaded onto each Okazaki fragment on the lagging strand template while a single 

PCNA ring may be utilized throughout leading strand replication of a given genomic 

segment. The eukaryotic replicative pols, δ and ε, then bind to the “front” face of PCNA 

encircling a P/T junction, completing formation of the replisome (Figure 2).

Extensive studies utilizing various experimental techniques indicate that the leading and 

lagging strand templates are primarily copied by pol ε and pol δ, respectively1, 31, 35–47. 

Recent biochemical and biophysical studies have revealed how this “division of labor” is 

established. Pol ε docks onto the C-terminal halves of MCMs 2 and 5 and contacts Cdc45 

and GINS. Thus, pol ε and pol α are located on opposite sides of the CMG helicase. Pol δ is 
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not stabilized on the leading strand by CMG and can be ejected by pol ε, even in the 

presence of PCNA31, 48, 49. Conversely, the affinity of pol ε for PCNA alone on the lagging 

strand is relatively weak such that pol ε can be ejected from PCNA by pol δ or RFC, even 

when the pol ε● PCNA complex is replicating DNA1, 31, 42, 43, 49–51. These unique 

interactions select and stabilize pol ε on the leading strand template with CMG and banish 

pol δ to the lagging strand where it utilizes the hybrid primers synthesized by pol α-

primase1, 30, 31, 35–47. Altogether, these studies indicate that the lagging strand holoenzyme 

(pol δ●PCNA) does not contact the CMG helicase in an active replisome and, hence, does 

not travel with the replisome24, 31, 48, 49. In other words, Okazaki fragment (i.e., 

discontinuous) synthesis by pol δ on the lagging strand is not physically coupled to 

unwinding of the duplex DNA by the CMG helicase whereas continuous DNA synthesis by 

pol ε on the leading strand is.

3. Escaping detection: UV-induced DNA lesions in S-phase

There are two major UV-induced lesions (photodimers); cis-syn cyclobutane pyrimidine 

dimers (CPDs) account for ~67 – 83 % of the photoproducts and pyrimidine (6–4) 

pyrimidone photoproducts ((6–4) PPs) account for the rest (Figure 3)52. In eukaryotes, the 

main pathway for repairing these photodimers is nucleotide excision repair (NER)53 and it 

should be noted that NER is the only mechanism for repair of UV-induced photodimers in 

placental mammals, including humans54, 55. NER proceeds by two sub-pathways that differ 

primarily in the damage recognition step56. Global genome NER (GG-NER) can occur 

anywhere in the genome and is initiated by NER factors that recognize ssDNA regions 

within duplex DNA that is thermodynamically destabilized by a UV-induced photodimer. 

Alternatively, RNA polymerase II stalled at a UV-induced lesion may initiate transcription-

coupled repair (TC-NER) of the offending damage in actively transcribed genes. Subsequent 

steps of both pathways funnel them to the “core” NER factors that complete the repair 

process53.

(6–4) PPs impose a significant distortion in duplex DNA and, hence, are efficiently 

recognized and rapidly repaired by the GG-NER machenery53. Indeed, Hela cells remove 

nearly all (6–4) PPs within 2–3 hours of UV radiation exposure56. However, CPDs do not 

dramatically destabilize duplex DNA and, thus, are less-efficiently recognized by GG-NER 

recognition factors. Rather, these lesions are repaired via TC-NER in a much slower fashion. 

In studies on human cells irradiated with UV, repair of CPD lesions was not observed until 

the repair of (6–4) PPs was nearly complete and only 10% of CPDs were removed within 2 

– 3 hours after UV irradiation56, 57. Thus, the vast majority of (6–4) PPs are repaired prior to 

an encounter with a moving replisome while most CPD lesions persist into and throughout 

S-phase. However, both lesions can be accommodated, i.e., “tolerated,” during S-phase by 

TLS and this process absolutely requires the interaction of TLS pols with PCNA encircling 

the damaged DNA58–64.

Three TLS pols, η, ι, and ζ, provide alternative routes for TLS across a (6–4) PP. Pols η and 

ι function in an error-prone manner while pol ζ promotes high fidelity TLS58, 65. It should 

be noted that (6–4) PPs may also be accommodated in lower eukaryotes by an alternative, 

error-free DDT pathway that is independent of TLS pols. This pathway is prominent at low 

Hedglin and Benkovic Page 4

Chem Rev. Author manuscript; available in PMC 2017 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



UV doses and readers are directed to a recent review (and references cited therein) for more 

information66. In contrast to TLS across (6–4) PPs, a single pol, pol η, carries out TLS 

across a CPD and does so with high fidelity (>90%). The magnitude of this feat is 

underscored by xeroderma pigmentosum variant (XPV), a human autosomal recessive 

genetic disorder in which the xpv gene encoding pol η is either mutated or deleted. In the 

absence of functional pol η, pols ζ, ι, and κ perform mutagenic TLS across UV-induced 

CPD lesions. Hence, patients afflicted with this disease are hypermutable to UV irradiation 

and suffer from sunlight sensitivity and extreme predisposition to sunlight-induced skin 

cancer67, 68.

4. When two worlds collide: The replisome encountering a UV-induced DNA 

lesion in S-phase

As the replisome approaches a UV-induced lesion, the CMG helicase will be the first to 

encounter the offending damage. CMG unwinds duplex DNA by a steric exclusion 

mechanism in which the leading strand template enters the central chamber of the MCM 

core and the lagging strand is sterically occluded1, 24. This suggests that DNA lesions on the 

excluded lagging strand do not stall/arrest the CMG helicase while lesions on the leading 

strand may. However, the CMG helicase does not “read” the leading strand template nor the 

phosphodiester backbone and translocates along the ssDNA template in a sequence-

independent manner. Indeed, significant DNA lesions within a leading strand template, such 

as intrastrand crosslinks, do not impede CMG helicase movement. In fact, the CMG helicase 

can proceed past four, consecutive biotinylated thymidine nucleotides within a leading 

strand template20, 69. Thus, UV-induced lesions (Figure 3) are not envisioned to stall/arrest 

unwinding of duplex DNA by the CMG helicase. This has been directly demonstrated for 

the closely-related simian virus 40 (SV40) large T-antigen (T-Ag) helicase on single-origin 

plasmids containing a site-specific CPD in either template strand70. In contrast, the three 

pols within the eukaryotic replisome (α-primase, δ, and ε) cannot accommodate UV-

induced lesions and DNA synthesis by these pols abruptly stops upon encountering such 

damage71–74. The impending consequences on semi-discontinuous DNA replication are 

unique for each pol and each is discussed below.

4.1. The Pol α-primase complex encountering a UV-induced lesion on a lagging strand 
template

During S-phase, pol α-primase synthesizes RNA/DNA hybrid primers on the leading strand 

templates at each replication origin but predominantly interacts with the lagging strand 

templates where hybrid primers are required for each Okazaki fragment. Hence, pol α-

primase only “reads” a small fraction of a diploid genome (≤ 11% in humans)5. 

Furthermore, UV fluences comparable to what an individual experiences from one hour of 

mid-day sun only generate one lesion every 3 – 4 kilobases (kb) in somatic human cells, 

which equates to < 0.017% of the diploid genome incurring damage56, 75, 76. Altogether, this 

suggests that the likelihood of pol α-primase encountering a UV-induced lesion during S-

phase is extremely rare. Unlike pols ε and δ, pol α-primase does not require a preexisting 

P/T junction to initiate or re-start DNA synthesis. Thus, in the rare event that pol α-primase 

encounters a UV-induced lesion, we envision that pol α-primase simply releases the lagging 
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strand template and re-primes upstream (5′) of the UV-induced lesion, keeping pace with the 

progressing replisome. This leaves behind a ssDNA gap extending from the blocked 3′ 
hydroxyl terminus of the aborted primer to the 5′ terminus of the downstream primer. 

Hence, the burden of UV-lesions encountered by pol α-primase on a lagging strand template 

is passed onto a pol δ holoenzyme assembled on the blocked P/T junction or approaching 

from the nascent primer upstream of the offending damage (Figure 4). If the aborted primer 

is of sufficient length, RFC will load PCNA onto the P/T junction abutting the UV-induced 

lesion33, 77. However, a pol δ holoenzyme will not synthesize past a UV-induced lesion. If 

approaching from the upstream nascent primer, a pol δ holoenzyme can remove the aborted 

primer by strand-displacement synthesis but cannot replicate past the offending damage.

4.2. Pol ε encountering a UV-induced lesion on a leading strand template

Pol ε docks onto the CMG helicase within the replisome (Figure 2) and this interaction is 

maintained during replication fork progression, promoting continuous DNA synthesis on a 

leading strand template31, 43, 48. During unperturbed S-phase, replication forks progress with 

a mean fork velocity of ~1.6 kb/min in human78–80 and Saccharomyces cerevisiae (budding 

yeast)81, dramatically slower than dNTP insertion catalyzed by pol ε at 37°C (kpol > 500 

s−1)82. This suggests that fork progression is driven by the relatively slow CMG helicase 

and, hence, leading strand DNA synthesis is rate-limited by unwinding of the DNA duplex. 

The drastic contrast in these enzymatic activities is critical as it ensures tight coupling of 

leading strand synthesis and DNA unwinding such that complementary dNTPs are inserted 

by pol ε as soon as template base pairs are available, limiting exposure of a leading strand 

template. Upon encountering a UV-induced lesion within a leading strand template, the 

coordinated activities of pol ε and the CMG helicase become “uncoupled”; DNA synthesis 

by pol ε abruptly stops (i.e., kpol = 0)71–74 while the CMG helicase and, hence, the 

replication fork progress onward, exposing long stretches of the leading strand template 

before eventually stalling downstream of the offending damage83–85. Herein, such events 

such events are simply referred to as “uncoupling”. During uncoupling, RPA coats the 

exposed leading strand template, which may be longer than 3 kilobases (kb) in S. cerevisiae 
and 20 kb in humans85, 86. This raises two critical issues for when a UV-induced lesion is 

encountered within a leading strand template; 1) Is the undamaged lagging strand template 

also exposed during uncoupling or does lagging strand DNA synthesis continue? 2) Does the 

progressing CMG helicase carry non-replicating pol ε along with it or is pol ε left behind at 

the UV-induced lesion? Each is discussed in detail below.

4.2.1 Lagging strand DNA synthesis after a UV-induced lesion is encountered 
on a leading strand template—Pol α-primase constitutively interacts with the CMG 

helicase during unperturbed S-phase and this interaction is maintained upon 

uncoupling24, 26, 28, 30–32, 87. Thus, DNA synthesis may continue on an undamaged lagging 

strand template after a UV-induced lesion is encountered within a leading strand template. 

Direct visual evidence of this was provided by electron microscopy (EM) studies on 

chromosomal replication forks obtained from S. cerevisiae. In untreated cells, both template 

strands were fully replicated up to the fork or a small ssDNA stretch (<400 nt) was observed 

on only one of the template strands, interpreted as the lagging strand. After UV irradiation, 

ssDNA stretches as long as 3 kb were observed on only one side of the fork while the 
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opposing side was either fully-replicated up to the fork or contained a small ssDNA stretch 

(<400 nt). Furthermore, in essentially all replication bubbles containing extended ssDNA 

regions at both forks, the two regions were distributed in trans. These observations suggested 

an unrepaired UV lesion encountered in a leading strand template only blocks leading strand 

synthesis and the extended ssDNA regions (≤ 3 kb) were generated by uncoupling. Hence, 

lagging strand synthesis continues onward with the uncoupled, and progressing replication 

fork after a UV-induced lesion is encountered within the leading strand template. This 

agreed with later studies on extracts from Xenopus laevis (frog) that suggested that new 

RNA primers continue to be synthesized by pol α-primase on a lagging strand template after 

uncoupling and these primers are extended by pol δ88. Furthermore, the same conclusion 

had been reached in earlier studies on human cell free extracts that utilized various 

experimental techniques to thoroughly analyze the replication of single-origin plasmids 

containing a unique, site-specific CPD in the leading strand template70, 89–95. Altogether, 

these studies suggest that DNA synthesis by pol ε abruptly stops upon encountering a UV-

induced lesion within a leading strand template but unwinding of the DNA duplex by the 

CMG helicase and DNA synthesis by pol δ on the undamaged lagging strand template 

continue onward.

4.2.2 Location of pol ε after a UV-induced lesion is encountered on a leading 
strand template—Pol ε maintains several contacts to the CMG helicase within an actively 

progressing replisome. Specifically, pol ε docks onto the C-terminal halves of MCMs 2 and 

5 and contacts Cdc45 and GINS (Figure 2)31, 43, 48. These binding interactions may persist 

after a UV-induced lesion is encountered in a leading strand template. Indeed, free, i.e. non-

replicating, pol ε binds to the CMG helicase with very high affinity (low nM) in solution 

such that CMG helicase and pol ε can be purified from budding yeast cells as a stable 

protein complex42, 49. Furthermore, a study on X. laevis egg extracts that analyzed 

chromatin binding of replication fork proteins suggested that when both template DNA 

strands are continuous, the CMG helicase remains intact upon uncoupling from leading 

strand DNA synthesis and maintains contact with pol ε as the replication fork progresses87. 

This raises three possibilities; 1) pol ε maintains contact with both the CMG helicase and the 

blocked P/T junction during uncoupling, forming an extensive, RPA-coated ssDNA loop; 2) 

pol ε releases the blocked P/T junction upon uncoupling and is carried away by the 

progressing CMG helicase or 3) a combination of both possibilities.

At physiological ionic strength, human RPA has an occluded binding site size of 30 +/−2 nt 

of ssDNA. Assuming a mean fork velocity of ~1.6 kb/min in human cells, this length of 

ssDNA is exposed within ~1 s of an uncoupling event78–80, 96, 97. When bound by RPA, a 

ssDNA sequence is stretched to within 10% of its full contour length and its bending rigidity 

is increased 2–3 fold98–100. Such an extended and stiffened conformation antagonizes loop 

formation and is expected to strain a P/T junction●pol ε●CMG helicase complex. 

Furthermore, RPA is ~240-fold more abundant than pol ε in human cells and binds to 

ssDNA with extremely high affinity (< pM), more than 3 orders of magnitude tighter than 

the affinity of non-replicating pol ε for a native P/T junction49, 101, 102. Thus, RPA 

effectively outcompetes non-replicating pol ε for ssDNA. Altogether, this suggests that pol ε 
is released from a blocked P/T after uncoupling. Supporting in vivo evidence was provided 
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by studies that analyzed proteins on daughter DNAs in relation to progressing (active) or 

stalled replication forks.

In untreated human cells, pol ε and the CMG helicase are highly enriched near the 

elongating P/T junctions at active replication forks, indicating assembly and progression of 

the replisome103–105. Upon treatment with hydroxyurea (HU) or aphidocolin (Aph), both of 

which trigger uncoupling without damaging DNA, the abundance of the CMG helicase near 

blocked P/T junctions decreased over time while RPA and its interacting proteins were 

recruited, consistent with the increased ssDNA generated during uncoupling. Under these 

conditions, the abundance of pol ε near blocked P/T junctions also decreased with time, 

indicating that pol ε released the blocked P/T junction after fork uncoupling. Furthermore, 

pol ε and the CMG helicase decreased with similar kinetics, consistent with the CMG 

helicase maintaining contact with pol ε after uncoupling and carrying the polymerase away 

from blocked P/T junctions on leading strand templates83, 87, 103, 106, 107. These studies on 

human cells agree with previous studies on S. cerevisiae cells that tracked the movement of 

replication fork proteins along genomic DNA. When cells were synchronized in G1 phase of 

the cell cycle, MCM6, cdc45, GINS, and pol ε were all detected at an early replication 

origin, indicating assembly of the replisome. When cells were released into S-phase in the 

presence of HU, cdc45, GINS, and pol ε were all detected kb away from an early replication 

origin after increasing periods of time, suggesting that an intact CMG helicase carries pol ε 
away from the replication origin upon uncoupling from DNA synthesis. Altogether, the 

biochemical and cellular studies described in this section collectively suggest that the CMG 

helicase remains intact upon uncoupling from leading strand DNA synthesis and maintains 

contact with a non-replicating pol ε as the DNA is unwound. Pol ε may also maintain 

contact with the blocked P/T junction after uncoupling, forming a ssDNA loop. However, 

these complexes are expected to be short-lived (~1 s) due to the well-characterized 

properties of RPA described above. Released from a blocked P/T junction on the leading 

strand template, non-replicating pol ε is carried away downstream by the CMG helicase.

In contrast to pol ε, PCNA is likely to be left behind at the blocked P/T junction on a leading 

strand template. As discussed above in section 2, the affinity of pol ε for PCNA encircling a 

P/T junction is dramatically weak compared to pol δ (see also section 4.3 below) and, 

hence, the contribution of the sliding clamp to continuous DNA synthesis by pol ε is 

relatively minimal1, 31, 42, 43, 49–51. In fact, cellular pol ε was initially isolated from pol δ-

containing fractions and referred to as “PCNA-independent pol δ” or “pol δ2” based on the 

marginal stimulation of its DNA synthesis activity by PCNA50. Thus, pol ε likely 

disengages from PCNA upon encountering a UV-induced lesion, akin to that described 

below for pol δ (section 4.3), and, hence, leaves PCNA behind at the blocked P/T junction. 

Recent in vivo studies revealed that enzyme-catalyzed unloading/recycling of PCNA from a 

P/T junction will not occur during S-phase until the primer is fully-extended and ligated to 

the downstream duplex region108. This suggests that a PCNA ring residing at a blocked P/T 

junction on a leading strand template persists as the replication fork progresses onward 

(Figure 5).
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4.3. Pol δ encountering a UV-induced lesion on a lagging strand template

Pol δ alone has dramatically low, if any, affinity for P/T DNA and must anchor to PCNA to 

efficiently replicate the lagging strand templates49, 51, 77, 109 . At a progressing replication 

fork, pol δ effectively captures a PCNA ring encircling a nascent P/T junction on the lagging 

strand and initiates DNA synthesis77, 109–113. A pol δ holoenzyme inserts dNTPs at least 3 

orders of magnitude faster than pol δ dissociates from PCNA encircling DNA109, 113. Thus, 

anchoring to PCNA dramatically increases the processivity of pol δ-mediated synthesis on a 

lagging strand template. Recent studies on the human pol δ holoenzyme revealed that pol δ 
rapidly and passively dissociates into solution upon stalling, leaving PCNA behind on the 

DNA77, 109. This scenario mimics the encounter of a UV-induced lesion within a lagging 

strand template71. As described above, the pol δ holoenzyme does not contact the CMG 

helicase within an active replisome and, hence, is not physically coupled to unwinding of the 

DNA duplex31, 43, 48, 49. Thus, when a pol δ holoenzyme encounters a UV-induced lesion in 

a lagging strand template, DNA synthesis on the afflicted Okazaki fragment abruptly stops 

but the replisome may continue unimpeded. Indeed, extensive ssDNA regions (> 400 nt) 

leading up to a replication fork were never observed on both template strands in the 

aforementioned EM studies on chromosomal replication forks obtained from UV-irradiated 

S. cerevisiae85. This suggests that an unrepaired UV lesion encountered in a lagging strand 

template does not stall progression of the replication fork nor leading strand DNA synthesis. 

Rather, pol ε continues to replicate the undamaged leading strand template as the CMG 

helicase unwinds the duplex DNA and pol α-primase performs “scheduled” synthesis of 

RNA/DNA hybrid primers every 100 – 250 nt on the exposed lagging strand template 

(Figure 6). Accordingly, DNA synthesis by pol δ must also continue upstream of the 

offending damage to limit the exposure of the lagging strand template. Such behavior would 

generate small ssDNA gaps behind a progressing replication fork. This will be discussed in 

detail in section 5.2 below.

Altogether, the aforementioned studies confirm the original model put forth from the 

seminal studies on UV-irradiated cells carried out decades before 89, 114–136. That is, DNA 

synthesis on both templates does not stop when a UV-induced lesion is encountered within 

either template. Rather, DNA synthesis continues on the undamaged template until it too 

reaches a photodimer.

5. The GPS for TLS: Correlation between re-priming the damaged template 

and TLS

Upon encountering a UV-induced lesion within a given template, resumption of DNA 

synthesis by the respective replicative pol requires a primer terminus annealed to an 

undamaged section of that template. This may be provided by one of two pathways. First, 

one or more TLS pols may insert dNTPs across from and beyond the offending DNA lesion 

such that the aborted primer terminus is extended to an undamaged section of the respective 

template. Alternatively, the damaged template may be re-primed, providing a nascent primer 

terminus on an undamaged section of the respective template and leaving behind a ssDNA 

gap containing the lesion. Hence, a re-priming event may provide a beacon for when and 

where TLS occurs. As each template is replicated and re-primed in a unique fashion, this 
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suggests that TLS on leading and lagging strand templates is distinct. Each is discussed in 

detail below.

5.1. Solicited re-priming of a leading strand template, TLS, and fork re-start

A UV-induced lesion encountered within a leading strand template uncouples the activities 

of pol ε and the CMG helicase and eventually stalls progression of the replication fork 

downstream of the offending damage (Figure 5). Accordingly, progression of the replication 

fork can only be re-started (i.e., fork restart) when leading strand DNA synthesis and DNA 

unwinding are re-coupled and this requires a primer terminus suitable for extension by pol ε 
to be provided to the stalled CMG helicase. This may be achieved in one of two ways. First, 

the offending DNA lesion may be bypassed via TLS such that the aborted primer terminus is 

extended to an undamaged section of the leading strand template where a replicative pol 

may faithfully extend the primer to the stalled CMG helicase, allowing fork-restart. In this 

pathway, referred to as “on the fly” TLS, bypass of the UV-induced lesion is required for 

fork restart and leading strand DNA synthesis remains continuous (Figure 7)137. In other 

words, “on the fly” TLS allows leading strand DNA synthesis to continue without the 

formation of ssDNA gaps opposite DNA lesions. Alternatively, the damaged leading strand 

template may be re-primed downstream (3′) of the offending damage, providing a nascent 

primer terminus on an undamaged section of the leading strand template. This leaves behind 

a ssDNA gap extending from the blocked P/T junction to the 5′ end of the newly-

synthesized primer downstream of the offending damage.

Given the extensive unwinding of duplex DNA upon uncoupling at a UV-induced lesion, re-

priming of a leading strand template may generate relatively large ssDNA gaps behind a 

progressing replication fork. In the seminal studies on UV-irradiated cells, estimates of the 

gap sizes ranged from 150 to 1250 nt117, 132. The former agreed with ssDNA gaps generated 

on a lagging strand template by interruption of an Okazaki fragment (see section 5.2 and 

Figure 9 below). The latter implied a leading strand template can be re-primed downstream 

of a UV-induced lesion. Visual confirmation was later provided by EM studies on 

chromosomal replication forks obtained from UV-irradiated S. cerevisiae where ssDNA gaps 

ranging from 200 to more than 1600 nts in length were observed. Importantly, in 

approximately half of the molecules containing multiple ssDNA gaps, discontinuities were 

observed on opposite sides of the same fork, confirming that re-priming events occur on 

both templates85. In this alternative pathway, fork-restart requires a re-priming event rather 

than TLS and leading strand DNA synthesis is no longer continuous. Bypass of the 

offending damage and “filling in” of the ssDNA gap occurs after replicative DNA synthesis 

has resumed on the afflicted template. Hence, TLS in this scenario is commonly referred to 

as “postreplicative gap-filling” (see Figure 8 below).

On a leading strand template, a single primer is continuously extended by pol ε in the 

direction of replication fork progression. Thus, in contrast to the lagging strand template 

where re-priming is an innate property, re-priming events on a leading strand template are 

unprogrammed and must be solicited. Pol α is reloaded onto exposed leading strand 

templates and such events are required for activation of the ATR checkpoint at ssDNA gaps 

where a re-priming event has occurred138. Thus, it is tempting to speculate, as others have, 
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that when a UV-induced lesion is encountered within a leading strand template, pol α 
mediates fork-restart by re-priming the leading strand template downstream of the offending 

damage88. However, this has yet to be demonstrated and additional work is required to 

garner support for this model. Meanwhile, recent studies have implicated a novel primase for 

re-priming leading strand templates, as discussed below.

5.1.1 Re-priming of a leading strand template by PrimPol—Primase-Polymerases 

(PrimPols) are a novel family within the archaeao-eukaryotic primase (AEP) superfamily 

that have been identified in most eukaryotes, including mammals. Notably, PrimPols are 

absent from D. melanogaster, S. pombe, S. cerevisiae, and C. elegans74, 139. Unlike most 

primases that are heterodimeric and utilize NTPs, PrimPols are monomers that prefer dNTPs 

for de novo nucleic acid synthesis. Furthermore, PrimPols can extend primers, even across 

UV-induced lesions, and both primase and DNA polymerase activities are catalyzed by the 

same active site73, 74, 140–142. In humans, the highly-conserved C-terminus of PrimPol is 

required for its interaction with RPA139, 143. Following treatment of human cells with either 

HU or Aph, PrimPol accumulated into nuclear foci on genomic DNA and such behavior 

required the initiation of DNA replication (i.e., entry into S-phase) and the RPA-binding 

domain of PrimPol73, 74, 139. Similar behavior was also observed for PrimPol after UV 

treatment and PrimPol foci colocalized with UV-induced lesions and PCNA73, 74. Survival 

assays revealed that depletion or knockout of PrimPol sensitizes cells to UV treatment and 

such behavior was non-epistatic with both pol η and pol ζ 74, 141, 144 . However, re-

localization of PrimPol was not observed after DNA strand breaks were generated by 

ionizing radiation (IR) and PrimPol knockout cells are not sensitive to IR74. Together, this 

suggested that PrimPol functions in the tolerance of UV-induced lesions encountered during 

S-phase and its role in this process is RPA-dependent but nonredundant with that of TLS 

pols η and ζ . Hence, PrimPol may serve to re-prime leading strand templates downstream 

of UV-induced lesions. Such activity had been demonstrated in vitro with various 

obstructions that block DNA synthesis and, indeed, primers synthesized by PrimPol can be 

efficiently extended by pol ε141, 144, 145. Clever genetic assays validated this model in vivo.

Upon incorporation of a chain-terminating nucleotide analog (CTNA) at the 3′ terminus of 

a growing DNA chain, further extension is prevented and DNA synthesis can only resume 

from a nascent primer. PrimPol knockout cells are hypersensitive to killing by CTNA 

treatment and suppression of this phenotype by complementation absolutely required the 

primase activity of PrimPol144. The same behavior was also observed with UV treatment, 

suggesting that re-priming of damaged DNA templates by PrimPol is critical for the cellular 

tolerance of UV-induced lesions 74, 141, 144. Indeed, loss of PrimPol markedly increased the 

delay or blockage of replication fork progression in UV-irradiated cells and reversion of this 

phenotype was only achieved by complementation with PrimPol containing active primase 

activity73, 74, 142, 144. Altogether, this suggests that RPA directly recruits PrimPol to an 

exposed leading strand template where it re-primes downstream of a UV-induced lesion, 

allowing fork-restart. PrimPol activity is independent of PCNA and PrimPol does not 

interact with PCNA in vivo. Furthermore, an interaction between PrimPol and any 

constituent of the eukaryotic replisome (Figure 2) has yet to be reported in the literature. 

Hence, it is likely that re-priming by PrimPol occurs anywhere along the RPA-coated 
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ssDNA. However, it remains to be seen how such a feat is achieved within the nuclear 

environment as PrimPol is very distributive on naked DNA, inserting up to 4 nucleotides 

within a single binding encounter139, 141, 142, and its primase activity is inhibited by RPA143.

Extensive studies on UV-irradiated cells suggest that both of the aforementioned pathways 

for fork-restart (“on the fly” TLS and postreplicative gap-filling) are operational in all 

eukaryotes but the propensity for each may vary depending on the nature of the damage (i.e., 

CPD versus (6–4) PP) and/or the organism76, 85, 137, 146–158. In each pathway, long stretches 

of the leading strand template may be exposed by uncoupling of pol ε and CMG 

activities85, 86. Given the properties of pol ε-mediated DNA synthesis discussed up to this 

point, this raises a critical issue for when a UV-induced lesion is encountered on a leading 

strand template; after a primer terminus suitable for extension by a replicative pol is 

provided downstream of a UV-induced lesion by either TLS or re-priming, which replicative 

pol (δ or ε) binds to the resident PCNA and faithfully extends the primer to the stalled CMG 

helicase or fills in the postreplicative gap? This is discussed in detail below.

5.1.2 Pol δ copies the undamaged ssDNA on each template strand during DDT
—In cellular studies on X. laevis, only pol δ accumulated on replication-arrested chromatin 

in response to UV or Aph treatment while the level of chromatin-bound pol ε did not 

change88, 159. Furthermore, the level of pol δ on chromatin gradually decreased after release 

from Aph-induced fork arrest159. These observations are similar to those from later studies 

on human cells that analyzed proteins on daughter DNAs in relation to progressing (active) 

or stalled replication forks. In untreated human cells, both pol δ and pol ε were enriched 

near elongating P/T junctions at active replication forks, consistent with assembly and 

progression of the replisome. Upon treatment with HU, only pol δ was enriched near the 

blocked P/T junctions behind stalled replication forks104. Considering these observations, 

we propose that the undamaged ssDNA exposed during DDT is predominantly replicated by 

pol δ. Indeed, genetic experiments on S. cerevisiae revealed that only pol δ is required for 

DDT of UV-induced lesions while pol ε has a minor role, if any160. Recent in vitro studies 

have also provided staunch supporting evidence for the proposed model.

Both modes of TLS absolutely require the interaction of pols with PCNA encircling DNA. 

The affinity of pol ε alone for PCNA encircling a P/T junction is dramatically weak 

compared to pol δ such that pol δ outcompetes pol ε for PCNA and even ejects pol ε from 

PCNA encircling a P/T DNA substrate, even when the pol ε● PCNA complex is replicating 

the DNA1, 31, 42, 43, 49–51. Thus, the contrasting binding affinities of the replicative pols for 

PCNA encircling a P/T junction drive the selection of pol δ for replicating the extensive 

stretches of ssDNA during DDT. Altogether, the independent biochemical and cellular 

studies described in this section provide strong evidence that the undamaged ssDNA 

exposed during DDT is predominantly replicated by pol δ while pol ε plays a minor role, if 

any. Perhaps emerging technologies, such as HydEn-seq, that map DNA synthesis by the 

replicative pols to specific template strands within cells will be exploited in the future to 

definitively confirm this47.

In the event pol δ faithfully extends a primer to a stalled CMG helicase during DDT, the 

bound pol ε rapidly replaces pol δ on the leading strand template, re-starting progression of 
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the stalled replication fork. This exchange is driven by re-assembly of an active replisome 

(Figure 2) and may be promoted further by “collision release” of pol δ from PCNA upon 

colliding with the stall CMG helicase1, 30, 31, 35–51. Considering these various pol exchange 

events, we propose that TLS on a leading strand template may occur by either “on the fly” 

TLS (Figure 7) or postreplicative gap-filling (Figure 8) as described in the indicated figures.

5.2. Scheduled re-priming of a lagging strand template and TLS

Upon encountering a UV-induced lesion within a lagging strand template, pol δ rapidly 

dissociates into solution, leaving PCNA behind on the DNA109. However, leading strand 

DNA synthesis and “scheduled” re-priming of the lagging strand template continue onward 

with the progressing replication fork (Figure 6). The rate of replication fork progression in 

human and S. cerevisiae cells is ~1.6 kb/min78, 79, 81, indicating that a ssDNA template for 

an Okazaki fragment (100 – 250 nt) is exposed and primed every 3.8 – 9.4 s on average. 

During this time frame, pol δ may reiteratively dissociate and re-bind to the PCNA 

encircling the blocked P/T junction but pol δ-mediated DNA synthesis cannot resume on the 

afflicted Okazaki fragment until the lesion is bypassed via TLS. Hence, bypass of the UV-

induced lesion and the subsequent resumption of pol δ-mediated synthesis on the afflicted 

Okazaki fragment has a very narrow window of opportunity (< 10 s) before the lagging 

strand template undergoes scheduled re-priming upstream (5′) of the offending damage. 

However, TLS pols are not “on standby” for such rapid events. TLS pols were not identified 

near actively progressing replication forks in human cells, unlike all other components of the 

replisome, suggesting that TLS pols do not travel with progressing replication forks103, 104 . 

Indeed, pol η is distributed uniformly throughout the nucleus during unperturbed S-phase in 

human cells, in contrast to PCNA, which is concentrated into intranuclear foci at sites of 

DNA replication161. Furthermore, the protein levels of TLS pols ζ and η in human and S. 
cerevisiae cells do not fluctuate significantly during the cell cycle nor in response to UV 

irradiation151, 162–164. Collectively, this suggests that TLS on a UV-damaged Okazaki 

fragment most likely occurs after pol δ-mediated DNA synthesis has initiated from the 

nascent hybrid primer upstream (5′) of the offending damage.

According to the aforementioned model, an RPA-coated ssDNA gap less than or equal to the 

size of an Okazaki fragment is generated behind a progressing replication fork, extending 

from the UV-induced lesion to the 5′ terminus of the downstream Okazaki fragment. The 

seminal studies on UV-irradiated eukaryotic cells initially suggested 

this 114–118, 120–130, 132, 133 and staunch supporting evidence was provided by extensive 

studies on the SV40 model system which hijacks the replication machinery of the infected 

mammalian host cell for viral DNA replication115, 116, 134, 136, 165–174. In particular, studies 

that utilized human cell free extracts and various experimental techniques to thoroughly 

analyze the replication of SV40-based plasmids containing a single Ori and a unique, site-

specific CPD demonstrated that a UV lesion encountered in the lagging strand template only 

blocks synthesis of the Okazaki fragment containing the lesion; both leading and lagging 

strand synthesis continue onward with the progressing replication fork, essentially 

unaffected70, 89–95. This was later confirmed by EM studies on chromosomal replication 

forks obtained from S. cerevisiae. In the absence of UV irradiation, ssDNA gaps were not 

detected. After UV irradiation, 30 – 40% of the replication forks contained one or more 

Hedglin and Benkovic Page 13

Chem Rev. Author manuscript; available in PMC 2017 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ssDNA gaps, most of which (>70%) were smaller than 400 nt. Interestingly, most (>55%) 

ssDNA gaps were observed more than 2.5 kb from the replication fork and as far away as 15 

– 20 kb. Furthermore, the percentage of DNA molecules containing ssDNA gaps only 

marginally increased (by 17%) when TLS was abolished, indicating that bypass of UV-

induced lesions does not dictate the frequency of ssDNA gaps left behind on a lagging strand 

template85. Rather, such gaps are generated by the relatively fast re-priming of lagging 

strand templates compared to TLS and these discontinuities are not immediately filled in 

behind a progressing replication fork.

As mentioned above, enzyme-catalyzed unloading/recycling of PCNA from a P/T junction 

will not occur until the primer is fully-extended and ligated to the downstream duplex 

region108. This suggests that PCNA residing at a blocked P/T junction on a lagging strand 

template persists as the replication fork progresses onward and, hence, pol δ holoenzymes 

are rapidly re-assembled with new PCNA rings on the nascent hybrid primers upstream of 

the offending damage. Considering this, we propose that TLS on a lagging strand template 

occurs by postreplicative gap-filling as described in Figure 9. Hence, “on the fly” TLS is 

limited to DNA lesions encountered within a leading strand template.

6. Critical aspects of TLS in eukaryotes

UV-induced lesions that persist into S-phase can be accommodated by TLS and this DDT 

pathway absolutely requires the interaction of TLS pols with PCNA encircling the damaged 

DNA58–64. As discussed above, extensive stretches of ssDNA are generated when UV-

induced lesions are encountered by the replisome, especially within the leading strand 

template, and the aforementioned models for TLS provide options for when these 

abnormalities are resolved. Recent studies indicate that postreplicative gaps generated in 

response to UV irradiation can persist throughout S-phase and into G2/M147–149, 151. 

Furthermore, PCNA remains associated with these postreplicative gaps, even after bulk 

DNA synthesis is completed147. Thus, critical aspects of eukaryotic TLS on either template 

strand are maintaining PCNA at blocked P/T junctions and permitting access of TLS pols 

and related factors to postreplicative gaps throughout S-phase. Each is discussed below.

6.1. Dynamics of PCNA on UV-damaged DNA

Retention of PCNA at a blocked P/T junction may be promoted during DDT by; 1) 

inhibiting the unloading of PCNA from DNA; 2) prohibiting diffusion of PCNA along DNA; 

3) promoting the loading of PCNA onto DNA or; 4) a combination of one or more of these 

possibilities (Figure 10). As mentioned above, enzyme-catalyzed unloading of PCNA from a 

P/T junction will not occur until the primer is fully-extended and ligated to the downstream 

duplex region108. A PCNA ring may rapidly diffuse along the newly-synthesized dsDNA 

behind a progressing replication fork175. However, chromatin assembly is rapidly initiated 

on this nascent duplex DNA by the deposition of nucleosomes within 250 base pairs of a 

progressing replication fork (see section 6.2 below)176, 177. Furthermore, high-affinity 

transcription factors essential for the establishment of chromatin structure also re-bind to 

nascent DNA duplexes immediately after passage of a replication fork178. Thus, diffusion of 

PCNA along the dsDNA adjacent to blocked P/T junctions is likely restricted during S-phase 
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by physical blocks. However, PCNA may diffuse along the adjacent ssDNA which varies 

greatly in length and may be as long as 20 kb in human cells85, 86. If PCNA can vacate a 

blocked P/T junction in this manner, new PCNA rings are not envisioned to be continuously 

re-loaded as PCNA levels are limiting179 and the RFC clamp loader travels with progressing 

replication forks during S-phase104, 179. Thus, preventing diffusion of PCNA along ssDNA 

may be critical to maintain PCNA at blocked P/T junctions for ensuing TLS.

Dramatically increasing the frictional drag of PCNA by tethering a large object to the sliding 

clamp ring only marginally decreases the diffusion coefficient of PCNA on DNA175. Hence, 

a large protein simply binding to PCNA encircling a blocked P/T junction will not prohibit 

diffusion of PCNA along the adjacent ssDNA180. Human RPA binds to ssDNA with 

extremely high affinity (<pM) at physiological ionic strength and might prohibit diffusion of 

PCNA along ssDNA by serving as a physical block21, 181. The effect of RPA on the 

occupancy of various P/T DNA substrates was recently monitored by utilizing a unique Cy3-

Cy5 FRET pair that directly reports on the retention of human PCNA on DNA110. Results 

from various kinetic assays indicated that RPA binds sufficiently tight to ssDNA adjacent to 

a P/T junction such that it restricts PCNA to the upstream duplex region by physically 

blocking diffusion of PCNA along ssDNA180.

6.2. Access to postreplicative gaps during S-phase

Genomic DNA is packaged into chromatin within the nucleus of a eukaryotic cell. The 

fundamental unit of chromatin is the nucleosome which consists of dsDNA wrapped around 

a histone octamer comprised of one (H3-H4)2 tetramer and two H2A-H2B dimers182. 

During S-phase, nucleosomes ahead of a replication fork (comprised of parental histones) 

must be disassembled for the replisome to gain access to the parental DNA. Immediately 

following passage of a replication fork, histone chaperones deposit parental and newly-

synthesized histones onto the nascent daughter DNA, re-forming nucleosomes182, 183. This 

process is tightly-coupled to on-going DNA replication and occurs within 250 – 600 base 

pairs of a progressing replication fork (Figure 11A)176, 177. Upon assembly onto nascent 

DNA, nucleosomes are immediately repositioned into an evenly (regularly) spaced 

arrangement by ATP-dependent chromatin remodeling enzymes184. Nucleosomal DNA is 

then further compacted into higher-order structures, culminating with the formation of 

chromatin where access to genomic DNA is limited185.

Postreplicative gaps create an intriguing paradox for this process. Chromatin assembly must 

resume in the wake of restarted replication forks in order for the cell to continue progression 

through S-phase186. However, postreplicative gaps may persist into G2/M and, hence, must 

remain accessible throughout S-phase147–149, 151. Upon filling in and sealing of the gap, 

chromatin must be fully-restored on the nascent DNA to complete the cell cycle187. Thus, 

chromatin assembly at/near postreplicative gaps must be selectively and dynamically 

regulated during S-phase, but how? Given these demands, a reversible post-translational 

modification (PTM) is quite befitting of the task. In response to agents that halt progression 

of replication forks, such as UV radiation, Rad6/Rad18 catalyzes the attachment of single 

ubiquitin moieties (i.e. monoubiquitination) to PCNA rings encircling damaged DNA. This 

PTM is unique to eukaryotic TLS and the ubiquitin attachment site on PCNA (K164) has 

Hedglin and Benkovic Page 15

Chem Rev. Author manuscript; available in PMC 2017 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



been fully conserved throughout evolution (Supplemental Figure 1)34. PCNA 

monoubiquitination is imperative for replication through UV-induced lesions34 and extensive 

in vivo studies collectively suggest that this PTM is restricted to PCNA residing at 

postreplicative gaps and is required for postreplicative gap-

filling130, 137, 146, 147, 150, 151, 153, 156, 188. In particular, the ubiquitin moieties conjugated to 

PCNA after exposing human cells to UV are not removed until the bulk of DNA synthesis 

(i.e., S-phase) has been completed and, hence, postreplicative gaps have been filled150, 189. 

In the ensuing sections we propose that PCNA monoubiquitination selectively governs 

chromatin assembly at/near a postreplicative gap until the gap is filled. We begin with a brief 

overview of monoubiquitinated PCNA and TLS.

6.2.1 Monoubiquitinated PCNA: A Brief Overview—Most studies on the role of 

monoubiquitinated PCNA during TLS have focused on TLS pols belonging to the Y-family 

of DNA pols. Members of this family, which includes pol η, contain at least one ubiquitin-

binding domain (UBD) in addition to their PCNA-binding domains15. Following UV 

irradiation, PCNA encircling damaged DNA is monoubiquitinated during S-phase and pol η 
co-localizes with PCNA in replication factories (foci) on damaged DNA. Both activities are 

imperative for replication through UV-induced lesions34, 190–192. The seminal in vivo studies 

proposed that the ubiquitin moieties attached to PCNA may serve to selectively recruit TLS 

pols via their UBDs to sites of DNA damage where they may also displace a blocked 

replicative pol190–192. However, the authors pointed out that the studies did not provide 

evidence for a direct interaction between the UBD of pol η and a ubiquitin moiety 

conjugated to PCNA191. Indeed, pol η co-localized with PCNA in replication foci during 

unperturbed S-phase in human cells and this activity required the UBD of pol η even though 

PCNA monoubiquitination was absent192. Thus, one cannot extrapolate these in vivo 
findings to conclude that a direct interaction between pol η and a ubiquitin moiety 

conjugated to PCNA is required or even occurs during DDT190–192. Furthermore, this model 

posits that TLS pols bind tighter to monoubiquitinated PCNA than to native PCNA due to 

additive binding domains193, which is counterintuitive to TLS and inconsistent with the 

remarkably low error rates observed in human cells after UV exposure65, 194. At 

postreplicative gaps, which may be kilobases long and persist into G2/M, a tighter 

interaction with monoubiquitinated PCNA would selectively promote error-prone DNA 

synthesis by Y-family TLS pols downstream of a UV-induced lesion. Finally, three of the 

seven human TLS pols lack a UBD16. In particular, pol ζ, a B-family TLS pol implicated in 

TLS following UV exposure (see above), does not contain a UBD yet assembly of pol ζ into 

replication foci at UV-induced lesions requires PCNA monoubiquitination and is 

independent of Rev1, a Y-family TLS pol that also recruits other TLS pols195, 196. Together, 

this argues strongly against a “universal” and direct role of monoubiquitinated PCNA 

recruiting TLS pols to sites of DNA damage. In follow up studies on these seminal in vivo 
reports, it was observed that accumulation of pol η into replication foci after UV irradiation 

was independent of PCNA monoubiquitination197, 198 and did not require the UBD of pol 

η199. Rather, monoubiquitinated PCNA and the UBD of pol η independently retained 

localized pol η within replication foci, increasing its residence time. Independent reports 

arrived at the same conclusion but challenged the requirement of the UBD of pol η for TLS 

following UV irradiation59, 60. Altogether, these cellular studies suggest that the ubiquitin 
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moieties conjugated to PCNA following UV irradiation do not serve to directly recruit pol η 
to PCNA encircling damaged DNA. Biochemical studies have since confirmed this.

In studies on isolated binding domains of human pol η, the affinity of a PCNA-binding 

domain for PCNA was more than 190-fold tighter than the affinity of its UBD for ubiquitin, 

arguing against a selectively enhanced affinity for monoubiquitinated PCNA thru additive 

binding domains200, 201. Ensuing studies on the wild-type, full-length protein confirmed that 

binding of human pol η to PCNA is independent of PCNA monoubiquitination; human pol η 
binds to PCNA and monoubiquitinated PCNA with identical affinities77. Accordingly, 

exchange of pol δ for pol η at a P/T junction (i.e. polymerase switching) and the ensuing 

TLS by pol η across a UV-induced CPD are both independent of PCNA 

monoubiquitination77, 109. Thus, direct binding of pol η to the ubiquitin moieties conjugated 

to PCNA, if it occurs, is dispensable for pol η-mediated TLS across a UV-induced CPD 

lesion, in agreement with the aforementioned in vivo studies59, 60, 77, 109, 197–201. 

Furthermore, monoubiquitination of PCNA encircling DNA has no effect on the formation, 

stability, or processivity of the pol δ holoenzyme77, 109. Similar behaviors are expected for 

pol ε holoenzymes on leading strand templates as the ubiquitin moieties attached to PCNA 

do not alter the conformation of the sliding clamp ring 202 nor do they shelter the region of 

PCNA that interacts with DNA pols 203, 204. Collectively, this argues against PCNA 

monoubiquitination indirectly promoting TLS by destabilizing the replicative pol 

holoenzymes. Importantly, this also indicates that the ubiquitin moieties attached to PCNA 

do not need to be removed after TLS so that DNA synthesis by the replicative pols can 

resume, in agreement with the extended lifetime of monoubiquitinated PCNA in UV-

irradiated human cells150, 189. Altogether, these recent cellular and biochemical studies 

suggest that monoubiquitinated PCNA serves an indirect role in postreplicative gap-filling 

that persists until the gap is filled.

6.2.2 A Proposal: Monoubiquitination of PCNA inhibits CAF1-mediated 
nucleosome assembly—Chromatin assembly factor 1 (CAF-1) is unique among histone 

chaperones in that it has no apparent affinity for either single- or double-stranded DNA and 

is instead recruited by a direct interaction with PCNA encircling DNA. Once localized, 

CAF-1 deposits a (H3-H4)2 tetramer onto DNA, initiating nucleosome assembly, and this 

activity is required following exposure to UV irradiation182, 183, 205–208. However, CAF-1 

can efficiently trigger bidirectional propagation of nucleosomal arrays from a ssDNA gap in 

the absence of DNA synthesis and, indeed, ssDNA gaps can be enveloped by histones and 

“nucleosome-like” particles209–215. In vivo, such activity may impede postreplicative gap-

filling by limiting access of TLS pols and other associated factors to the gap and, hence, 

must be prevented until the gap is filled. On the other hand, chromatin must be fully-restored 

on the nascent DNA upon filling in and sealing of the gap to complete the cell cycle187. 

Thus, CAF-1 activity must be selectively and dynamically regulated at/near postreplicative 

gaps.

PCNA remains associated with postreplicative gaps generated by UV irradiation, even after 

bulk DNA synthesis is completed, and such retention is independent of PCNA 

monoubiquitination by Rad6/Rad18147. In a recent study on human cells, accumulation of 

pol η into replication foci after UV irradiation was independent of PCNA 
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monoubiquitination but monoubiquitinated PCNA increased the residence time of pol η 
within the foci. In other words, monoubiquitination of PCNA transiently immobilized pol η 
within replication foci. The same behavior was observed after treatment with a DNA 

intercalating agent, DRAQ5, that temporarily disrupts chromatin structure, resulting in the 

release of histones and exposure of genomic DNA. However, DRAQ5 does not elicit PCNA 

monoubiquitination nor activate a DNA damage checkpoint, suggesting that transient 

opening of chromatin promotes access of pol η to UV-damaged DNA197. Thus, we propose 

the single ubiquitin moieties conjugated to PCNA after DNA damage facilitate the temporal 

exposure of DNA at/near postreplicative gaps by regulating CAF-1 activity.

PCNA residues (R61, D63) that are required for CAF-1-mediated nucleosome assembly are 

fully-conserved (Supplemental Figure 1) and located in a distinct region far removed from 

the region of PCNA that interacts with replication proteins (Figure 11B–C)206. Indeed, 

PCNA interacts with components of the replication machinery and CAF-1 independently208. 

In recent modeling studies, the ubiquitin moieties conjugated to PCNA at K164 spent most 

of the time (65 – 80%) docked onto the sliding clamp ring at two discrete locations (Figure 

11B). In both locations, the surface of the ubiquitin moieties that interacted with PCNA was 

the canonical hydrophobic surface centered on conserved residues L8, I44, and V70, in 

agreement with a recent NMR study on human, monoubiquitinated PCNA193, 203, 204, 216. 25 

– 30% of the time, ubiquitin interacted with the back face of the PCNA ring (ubiquitin 

docking position 1). This position was first identified in the crystal structure of 

monoubiquitinated PCNA from budding yeast and is not likely to be biologically relevant as 

strains harboring mutations within ubiquitin docking site 1 display wild-type resistance to 

UV irradiation and are not growth defective193, 203, 204, 208. 40 – 50% of the time, ubiquitin 

was docked onto the side of the PCNA ring at the subunit-subunit interface (ubiquitin 

docking site 2), intimately close to PCNA residues (R61, D63) required for CAF-1 

binding203, 204. In this preferred orientation (ubiquitin docking site 2), the ubiquitin moieties 

interact with residues at the subunit-subunit interfaces of the PCNA ring, particularly loop J 

(Figure 11C)203, 204.

Budding yeast strains harboring a E104A/D105A mutation in loop J do not display defects 

in cell growth or viability under normal conditions. Indeed, the E104A/D105A mutation has 

no effect on the ability of PCNA to stimulate the activities of DNA replication proteins, pol 

δ in particular208, 217. However, E104A/D105A strains are grossly defective in 

postreplicative gap-filling following UV irradiation and, hence, are drastically more sensitive 

to killing by UV compared to wild-type cells207, 208. Furthermore, the enhanced UV 

sensitivity of the E104A/D105A mutant was not elevated further when either rad6 or rad18 

were deleted. Altogether, this suggests that the E104A/D105A mutation in ubiquitin docking 

site 2 specifically impairs a Rad6/Rad18 dependent process (i.e. postreplicative gap-filling) 

in a manner that is independent of the interactions between PCNA and the DNA replication 

machinery217. Considering these observations, we propose that the ubiquitin moieties 

conjugated to PCNA at a postreplicative gap preferentially dock onto the sliding clamp ring 

at ubiquitin docking site 2, sheltering or disrupting the CAF-1 binding sites on PCNA 

(Figure 11D). This precludes CAF-1 binding to PCNA and, hence, selectively inhibits 

nucleosome assembly at/near a postreplicative gap until the gap is filled. Future studies are 

underway to test this proposal.
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6.2.3 Maintenance of monoubiquitinated PCNA throughout S-phase—As 

mentioned above, postreplicative gaps may persist into G2/M phase of the cell cycle and, 

hence, must remain accessible throughout S-phase147–149, 151. This is particularly relevant in 

human cells where postreplicative gaps generated by UV irradiation at the G1/S border 

disappear primarily in G2 phase when the bulk of chromosomal replication has been 

completed, ~16 – 24 hours after irradiation 151. According to the proposed model (Figure 

11D), monoubiquitinated PCNA must be generated and maintained at postreplicative gaps 

for an extensive period of time. Indeed, this PTM is upregulated in human cells following 

UV exposure and remains elevated until the bulk of DNA synthesis (i.e., S-phase) has been 

completed and, hence, the postreplicative gaps have been filled150. A similar trajectory was 

observed in genetic studies on budding yeast146. As described below, this feat is achieved on 

one hand by promoting PCNA monoubiquitination and on the other hand by inhibiting the 

removal of this PTM.

The signal for PCNA monoubiquitination is the build-up and persistence of RPA-coated 

ssDNA downstream of blocked P/T junctions during S-phase. Specifically, the Rad6/Rad18 

complex is recruited to RPA-coated ssDNA where it catalyzes monoubiquitination of PCNA 

encircling the blocked P/T junction upstream34. The upregulation of Rad6/Rad18 activity 

during DDT has been extensively reviewed34. Given the model proposed in Figure 11D, it is 

relevant to re-iterate that ATP-dependent chromatin remodeling enzymes enhance PCNA 

monoubiquitination and this may ensure inhibition of CAF-1 activity. Recent in vivo studies 

from human and S. cerevisiae indicate that the RSC (remodels the structure of chromatin) 

and NuRD (nucleosome remodeling deacetylase) complexes are required for normal PCNA 

ubiquitination in response to UV irradiation. This suggests these remodelers direct Rad6/

Rad18 to PCNA encircling blocked P/T junctions by increasing the accessibility of DNA 

surrounding UV-induced lesions, perhaps by repositioning/removing nucleosomes deposited 

by CAF-1 prior to PCNA monoubiquitination.

USP1 is a member of the ubiquitin-specific protease (USP) family of deubiquitinating 

enzymes (DUBs) and is responsible for removing ubiquitin from PCNA218. The USP1 

protein is degraded during G1 phase, rapidly accumulates as the cell transitions into S-phase, 

and remains elevated until the late stages of mitosis 219–226. The high levels of USP1 during 

unperturbed S-phase allow any unwarranted ubiquitination of PCNA that may occur during 

normal DNA replication to be counteracted. However, upon exposure to DNA-damaging 

agents that block progression of the replication fork, the activity of USP1 must be down-

regulated to permit the buildup of monoubiquitinated PCNA on DNA227. Interestingly, the 

pathway by which this is achieved is unique to the DNA-damaging agent 

itself150, 189, 227–231. In response to UV irradiation, transcription of the USP1 gene is shut 

off and the USP1 protein undergoes internal autocleavage by its own protease activity on a 

sequence immediately after a well-conserved C-terminal glycine-glycine region221, 227, 230. 

The auto-generated C-terminal fragment (Gln-Usp1Ct) is inactive and bears an N-terminal 

glutamine that targets it for ubiquitin-dependent degradation via the Arg/N-end rule 

pathway232. Together, this significantly decreases the cellular concentration of active USP1 

protein for an extended period of time following UV exposure, permitting the buildup and 
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maintenance of monoubiquitinated PCNA at postreplicative gaps150, 221, 226, 227, 230. Such 

regulation is essential for replication through UV-induced lesions150, 227.

7. Conclusions and perspectives

Beginning in the mid 1960’s, many independent groups began investigating how eukaryotic 

cells replicate genomic DNA following exposure to DNA-damaging agents, UV radiation in 

particular. These pioneering studies collectively demonstrated that eukaryotes can perform 

DNA synthesis across UV-induced lesions and such activity is imperative for cell 

survival114, 116–118, 120–130, 188, 233–244. Substantial efforts in the ensuing years aimed to 

temporally and spatially define how this complex process unfolds in vivo. In this review, we 

thoroughly analyzed these and other related studies to dissect the step-by-step intricacies of 

this complex process and provide our current understanding of TLS on leading and lagging 

strand templates. The major points are summarized below.

• There are two major UV-induced lesions. CPDs are more prominent and most 

persist into and throughout S-phase. The less-prominent (6–4) PPs are likely 

repaired prior to an encounter with a moving replisome (Figure 3). Both lesions 

can be accommodated, i.e., “tolerated,” during S-phase by TLS.

• UV-induced lesions do not to stall/arrest unwinding of duplex DNA by the CMG 

helicase at the lesion site.

• In the extremely rare event that pol α-primase encounters a UV-induced lesion 

on a lagging strand template, pol α-primase simply releases the lagging strand 

template and re-primes upstream (5′) of the UV-induced lesion, keeping pace 

with the progressing replisome. This leaves behind a ssDNA gap extending from 

the blocked 3′ hydroxyl terminus of the aborted primer to the 5′ terminus of the 

downstream primer and passes the burden of the UV-lesion onto pol δ (Figure 

4).

• When a UV-induced lesion is encountered within a leading strand template, the 

coordinated activities of pol ε and the CMG helicase become “uncoupled”; DNA 

synthesis by pol ε abruptly stops while the CMG helicase progresses onward, 

exposing long stretches of the leading strand template before eventually stalling 

downstream of the offending damage. During such uncoupling, DNA synthesis 

continues on the undamaged lagging strand template as the CMG helicase 

continues to unwind duplex DNA and RPA coats the exposed leading strand 

template (Figure 5). The stalled replication fork may re-started by either “on the 

fly” TLS (Figure 7) or postreplicative gap-filling (Figure 8).

• When a UV-induced lesion is encountered within a lagging strand template, only 

DNA synthesis on the damaged Okazaki fragment stops; The CMG helicase and 

leading strand DNA synthesis continue unimpeded and lagging strand DNA 

synthesis resumes upstream of the offending damage through a “scheduled” re-

priming event (Figures 6 and 9). The damage is later bypassed by postreplicative 

gap-filling behind the progressing replication fork.
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• “On the fly” TLS occurs only on leading strand templates while postreplicative 

gap-filling may occur on either template strand.

• During DDT, PCNA is retained at blocked P/T junctions by concerted endeavors 

(Figure 10); 1) enzymatic unloading of PCNA from the P/T junction is 

prohibited; 2) Physical blocks such as nucleosomes restrict diffusion of PCNA 

along the dsDNA adjacent to the blocked P/T junction and; 3) RPA binds tight to 

the ssDNA adjacent to a blocked P/T junction, restricting PCNA to the upstream 

duplex by physically blocking diffusion of PCNA along ssDNA.

• In response to agents that halt progression of replication forks, Rad6/Rad18 

catalyzes the attachment of single ubiquitin moieties (i.e. monoubiquitination) to 

PCNA rings encircling damage DNA. This PTM is generated and maintained 

throughout S-phase and into G2/M by the synergistic upregulation of Rad6/

Rad18 activity and inhibition of the USP1 protease that removes ubiquitin from 

PCNA.

• PCNA monoubiquitination is restricted to PCNA residing at postreplicative gaps 

and is required for postreplicative gap-filling. This PTM is imperative for 

replication through UV-induced lesions but its functional role is currently 

unknown. We propose that the ubiquitin moieties conjugated to PCNA at a 

postreplicative gap dock onto the sliding clamp ring, sheltering or disrupting the 

CAF-1 binding sites on PCNA (Figure 11). This precludes CAF-1 binding to 

PCNA and, hence, selectively inhibits chromatin assembly at/near a 

postreplicative gap until the gap is filled.

TLS across the two major UV-induced lesions, CPDs and (6–4)PPs, is predominantly error-

free in vivo and is carried out by pols η and ζ, respectively. However, as studies in the field 

have progressed, additional TLS pols have been identified, further complicating the matter. 

Currently, at least seven TLS pols are utilized in human cells to combat the onslaught of 

diverse DNA-damaging agents16, 34. With an “open” DNA polymerase active site, these pols 

can accommodate multiple DNA lesions, including CPDs and (6–4)PPs, albeit with varying 

fidelities15. Hence, the appropriate TLS pol (or combination of TLS pols) must be selected 

to maximize the fidelity of DNA synthesis following exposure to UV radiation. Following 

UV irradiation of human cells, pols η, ζ, κ, and ι, accumulate into replication foci on 

damaged DNA34, 196. In particular, Rad6/Rad18 may physically deliver pol η●pol ι 
complexes to UV-irradiated DNA in a process driven by damaged-induced PTMs to the 

involved proteins34, 245–247. Furthermore, UV irradiation elicits monoubiquitination of 

PCNA by Rad6/Rad18 and phosphorylation of pol η, both of which are imperative for pol η-

mediated TLS in vivo34, 198. However, Polη has an eightfold preference for mis-insertion at 

(6–4)PPs and pols ζ, ι, and κ all perform mutagenic TLS across CPDs in human cells 

lacking functional pol η 58, 65, 67, 68. Thus, DNA-damaging agents and the cellular response 

they trigger may generically target TLS pols to damaged DNA but selection of the 

appropriate TLS pol(s) and, hence, the fidelity of DNA damage bypass is ultimately 

governed by the DNA lesion itself and perhaps the surrounding sequence. In other words, 

kinetics and thermodynamics drive selection of TLS pols during DDT and future 

biochemical studies are required to define this critical process.
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Figure 1. 
Semi-discontinuous DNA replication from a replication bubble. Parental and nascent 

(daughter) DNAs are shown in black and blue, respectively, with arrows indicating the 5′ to 

3′ direction of DNA synthesis. At each origin of replication (Ori, shown in green), two 

replication forks are established and progress in opposite directions (indicated by grey 

arrows) as the two template strands of each fork are replicated in concert. The leading strand 

templates are replicated continuously (solid line) in the direction of replication fork 

progression while the nascent DNA on the lagging strand templates is synthesized 

discontinuously (dashed line) in the opposite direction.
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Figure 2. 
A model of the eukaryotic replisome assembled at each replication fork. This model shown 

in cartoon form was generated from recent EM structures1, 2 and related studies (cited in 

main text). This model suggests that leading strand synthesis and at least the initiation of an 

Okazaki fragment occur on opposite sides of the helicase, necessitating an unexpected path 

for the templates as the dsDNA is unwound. The lagging strand template is sterically 

occluded from the central chamber of the MCM core and traverses the outside of the MCM 

core to reach pol α-primase. The leading strand template enters the CTD tier of the MCM 

core, traverses the central chamber or exits at an internal position, and then bends upward 

toward pol ε.
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Figure 3. 
The most prominent DNA lesions resulting from exposure to UV radiation. The numerical 

positions within the six-membered rings are indicated in blue. Exposure of adjacent 

pyrimidines, such as two thymidines, results in formation of (6–4) PPs and CPDs. The 

proportion of each is indicated. The only mechanism for repairing these photodimers within 

the human genome is the NER pathway, which proceeds by two sub-pathways: GG-NER 

and TC-NER. (6–4) PPs are efficiently and rapidly repaired by GG-NER while CPDs are 

repaired via TC-NER in a much slower fashion.
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Figure 4. 
Pol α-primase encountering a UV-induced lesion ( ) on a lagging strand template. This 

model shown in cartoon form only displays pol α-primase on the lagging strand template for 

simplicity.
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Figure 5. 
Pol ε encountering a UV-induced lesion within a leading strand template. This model shown 

in cartoon form depicts discontinuous lagging strand DNA synthesis as a dashed line for 

simplicity. Arrows indicate the direction of DNA synthesis (5′ ➜ 3′). The heterohexameric 

MCM core is depicted as a barrel. (1) Upon encountering a UV-induced lesion ( ) within a 

leading strand template, DNA synthesis by pol ε abruptly stops but the CMG helicase 

remains intact and continues unwinding DNA, exposing long stretches of the leading strand 

template. During such uncoupling, RPA coats the exposed leading strand template and DNA 

synthesis continues on the undamaged lagging strand template as the replication fork 

progresses. Furthermore, non-replicating pol ε maintains contact with the CMG helicase and 

is carried downstream of the offending lesion while PCNA is left behind at the blocked P/T 

junction. Pol ε may also maintain contact with the blocked P/T junction upon uncoupling, 

forming ssDNA loop. However, such complexes are expected to be short-lived due to 

RPA●ssDNA interactions. (2) Uncoupled from leading strand DNA synthesis, the CMG 

helicase and, hence, lagging strand DNA synthesis eventually stall downstream of the 

offending damage, halting progression of the replication fork.
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Figure 6. 
Pol δ encountering a UV-induced lesion within a lagging strand template. For simplicity, this 

model shown in cartoon form depicts continuous leading strand DNA synthesis as a solid 

line and only displays PCNA, RPA and pol δ proteins on the lagging strand template. 

Arrows indicate the direction of DNA synthesis (5′ ➜ 3′). Upon encountering a UV-

induced lesion (X) within a lagging strand template, pol δ rapidly and passively dissociates 

into solution, leaving PCNA behind on the DNA. Pol δ may reiteratively dissociate and re-

bind to the PCNA encircling the blocked P/T junction but pol δ-mediated DNA synthesis 

will not resume on the afflicted Okazaki fragment until the lesion is bypassed. Meanwhile, 

pol ε continues to replicate the undamaged leading strand template as the CMG helicase 

unwinds the duplex DNA. In this schematic, “scheduled” re-priming of the lagging strand 

template by pol α-primase has not yet occurred.
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Figure 7. 
“On the fly” TLS on a leading strand template. An unrepaired UV-induced lesion ( ) 

encountered in a leading strand template leads to stalling of the replication fork downstream 

of the lesion (as depicted in Figure 5). TLS on a leading strand template can occur by one of 

two pathways. In “on the fly” TLS, bypass of the UV-induced lesion occurs before 

progression of the replication fork has been re-started through a re-priming event, as 

follows: 1) One or more TLS pols bypass the offending DNA lesion, extending the aborted 

primer terminus to an undamaged section of the leading strand template. 2) Pol δ faithfully 

extends the primer to the stalled CMG helicase where 3) the bound pol ε rapidly replaces 
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pol δ on the leading strand template, re-starting progression of the stalled replication fork. In 

this scenario, replication fork re-start requires TLS. As an alternative to “on the fly” TLS, 

UV-induced lesions within a leading strand template may be bypassed by postreplicative 

gap-filling (Figure 8).
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Figure 8. 
Postreplicative gap-filling on a leading strand template. An unrepaired UV-induced lesion 

( ) encountered in a leading strand template leads to stalling of the replication fork 

downstream of the lesion (as depicted in Figure 5). In postreplicative gap-filling, bypass of 

the UV-induced lesion occurs after the replication fork has been re-started through a re-

priming event, as follows. 1) PrimPol is recruited to the RPA-coated ssDNA downstream of 

a UV-induced lesion by a direct interaction with RPA. Once localized, PrimPol synthesizes a 

nascent primer at a random location downstream of the offending damage and a new PCNA 

ring is loaded onto the nascent 3′ hydroxyl terminus. This leaves behind an RPA-coated 

ssDNA gap (postreplicative gap) containing PCNA and the lesion. 2) Pol δ faithfully extends 

the nascent primer terminus to the stalled CMG helicase where 3) the bound pol ε rapidly 

replaces pol δ on the leading strand template, re-starting progression of the stalled 

replication fork. 4) Eventually, the offending DNA lesion within the postreplicative gap 

(shown) is bypassed by one or more TLS pols, extending the aborted primer terminus to an 

undamaged section of the leading strand template. 5) Pol δ “fills in” the remainder of the 

postreplicative gap and the 5′ RNA end of the downstream duplex region is removed as in 

Okazaki fragment processing/metabolism3. 6) The resident PCNA is removed some time 

after the fully-extended primer terminus is ligated to the 5′ end of the downstream daughter 

DNA.
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Figure 9. 
Postreplicative gap-filling on a lagging strand template. DNA synthesis by pol δ abruptly 

stops upon encountering a UV-induced lesion ( ) within a lagging strand template but the 

replisome and, hence, the replication fork continue unimpeded (as detailed in Figure 6). 

Bypass of the offending damage occurs by postreplicative gap-filling as follows. 1) Pol α-

primase performs “scheduled” synthesis of an RNA/DNA hybrid primer upstream (5′) of the 

offending damage on the exposed lagging strand template. PCNA residing at the blocked 

P/T junction remains and a pol δ holoenzyme is assembled on the nascent P/T junction with 

a new PCNA ring, allowing lagging strand DNA synthesis to resume and continue upstream 
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of the offending DNA lesion. This prevents excessive exposure of the lagging strand 

template and generates a postreplicative gap less than or equal to the size of an Okazaki 

fragment (~100 – 250 nt) extending from the blocked P/T junction to the 5′ terminus of the 

downstream Okazaki fragment. As the replisome progresses in the absence of TLS, the 

replication fork moves further and further ahead of the postreplicative gap. 2) Eventually, 

one or more TLS pols bypass the offending DNA lesion within the postreplicative gap, 

extending the aborted primer terminus to an undamaged section of the lagging strand 

template. 3) Pol δ then “fills in” the remainder of the postreplicative gap and the 5′ RNA 

end of the downstream duplex region is removed as in Okazaki fragment processing/

metabolism3. 4) The resident PCNA is removed some time after the fully-extended primer 

terminus is ligated to the 5′ end of the downstream Okazaki fragment.
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Figure 10. 
Dynamics of PCNA on a UV-damaged template. During DDT, the retention of PCNA at a 

blocked P/T junction abutting a UV-induced lesion ( ) is governed by three activities; 1) 

Enzymatic loading of PCNA onto the P/T junction; 2) Enzymatic unloading of PCNA from 

the P/T junction and; 3) diffusion of PCNA along either the nascent dsDNA or the adjacent 

ssDNA. If PCNA can vacate a blocked P/T junction, limiting PCNA rings will not be 

continuously re-loaded. However, diffusion of PCNA along DNA and enzyme-catalyzed 

unloading PCNA from DNA are prohibited during TLS, promoting retention of PCNA at 

blocked P/T junctions during S-phase.
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Figure 11. 
Accessibility of postreplicative gaps. (A) Chromatin dynamics during S-phase. On the 

lagging strand template, Okazaki fragments yet to be ligated are indicated by dashed lines. 

During S-phase, nucleosomes ahead of a replication fork are disassembled as the replication 

fork progresses. Immediately following passage of a replication fork, nucleosomes are re-

formed on the nascent daughter DNA by various histone chaperones. B) Monoubiquitination 

of PCNA and CAF-1 binding. Surface of the human PCNA ring generated with VMD (PDB 

1AXC). Coloring scheme is indicated. Each PCNA monomer consists of two independent 

domains joined by an interdomain connecting loop (IDCL). Three PCNA monomers arrange 

in a head-to-tail manner, resulting in a ring with structurally distinct faces. The “front” face 

contains the IDCLs and interacts with pols. Following UV irradiation, single ubiquitin 
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moieties are covalently attached to PCNA rings at the conserved lysine residue 164 (K164). 

C) Ubiquitin docking site 2. Shown in cartoon form is a side profile of a PCNA subunit-

subunit interface. Coloring scheme is identical to panel B. At the interface, the N-terminal 

domain from one PCNA monomer interacts with the C-terminal domain from the adjacent 

monomer. At ubiquitin docking site 2, a ubiquitin moiety conjugated to K164 interacts with 

loop J (indicated) and residues within the subunit-subunit interface. (D) Selective inhibition 

of CAF-1 activity at postreplicative gaps. Upon formation of postreplicative gaps within 

either template, chromatin assembly continues in the wake of a progressing replication fork. 

PCNA is retained at a postreplicative gap and is monoubiquitinated by Rad6/Rad18. We 

propose that the ubiquitin moieties dock onto the PCNA ring at ubiquitin docking site 2, 

sheltering/disrupting the CAF-1 binding sites on PCNA. This precludes CAF-1 binding to 

PCNA, selectively inhibiting nucleosome assembly at/near a postreplicative gap until the 

gap is filled.
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