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Abstract

Traditionally, somatic mutations are detected by examining DNA sequence. The maturity of 

sequencing technology has allowed researchers to screen for somatic mutations in the whole 

genome. Increasingly, researchers have become interested in identifying somatic mutations 

through RNAseq data. With this motivation, we evaluated the practicability of detecting somatic 

mutations from RNAseq data. Current somatic mutation calling tools were designed for DNA 

sequencing data. To increase performance on RNAseq data, we developed a somatic mutation 

caller GLMVC based on bias reduced generalized linear model for both DNA and RNA 

sequencing data. Through comparison with MuTect and Varscan we showed that GLMVC 

performed better for somatic mutation detection using exome sequencing or RNAseq data. 

GLMVC is freely available for download at the following website: https://github.com/shengqh/

GLMVC/wiki.
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INTRODUCTION

Traditionally, somatic mutations are detected using Sanger sequencing or real-time 

polymerase chain reaction (RT-PCR) by comparing paired tumor and normal samples. One 

obvious limitation of such methods is that the somatic mutation detection must be limited to 

a certain genomic region of interest. Now with high-throughput sequencing (HTS), whole 

exomes or genomes can be screened for somatic mutations at a reasonable cost (Figure S1). 

There are two major next-generation sequencing (NGS) paradigms: RNA and DNA 
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sequencing. Both RNA and DNA sequencing can be used to answer different sets of 

scientific questions important for biomedical research. RNAseq refers to the sequencing of 

the transcriptome. The two most common forms of DNAseq are exome and whole genome 

sequencing.

Due to the popularity of RNAseq technology for gene expression profiling over microarray 

technology [1–4], huge amounts of RNAseq data have been accumulated over the past few 

years. And the majority of these RNAseq data has been only studied for gene expression. 

More and more researchers have begun to ask the question of whether or not somatic 

mutations can be detected accurately through RNAseq data. Same as DNAseq, RNAseq is at 

single nucleotide resolution. Thus, single nucleotide variants (SNVs) can be detected. To 

date, many tools, such as Varscan [5] and MuTect [6], have been developed for the 

identification of somatic mutations through DNAseq data. Yet, less effort has been relatively 

spent on the detection of SNVs using RNAseq data. In contrast to using DNAseq data, 

identifying mutations using RNAseq data poses stronger challenges for the primary reason 

of RNAseq data having a much higher false positive rate for SNVs than DNAseq data [7, 8]. 

The high false positive rate results from several issues, of which include cycle bias [9], 

strand bias [10] alignment complexity in the transcriptome, RNA editing, and random errors 

introduced during reverse transcription and PCR. Cycle bias happens in a heterozygous 

position when one of two alleles in the supporting reads lie heavily at the beginning or end 

of the reads [11, 12]. Strand bias occurs when alternative allele detection heavily originates 

from one of the two strands (forward or reverse). Such bias indicates false positive mutation 

detection in RNAseq data [12]. Most advanced somatic mutation callers[5] [6] [13] have 

built-in strand bias quality control. Also, the alignment of RNAseq data proves more 

complicated than DNAseq data [14]. In mRNA, introns are removed by splicing, thus a read 

is likely to span the splicing junction, causing a higher probability for error. Similarly, 

processes such as RNA editing and polyadenylation introduce additional mismatches not 

found in DNAseq alignment. For conducting expression studies, minor mismatches in 

alignment do not affect expression value because the computation of expression value 

depends only on the count of reads mapped to a gene’s genomic span and therefore do not 

require the examination of theRNAseq at single nucleotide resolution for gene expression. 

However, SNVs are detected by counting the number of mismatches in alignment against a 

reference. Thus, excessive mismatches due to errors described above will result in a high 

false positive rate for SNV detection. False positives due to cycle bias may be filtered out 

through a quality control check that removes all reported mutations at the beginning or end 

of the reads that are disproportionate. This has been effectively demonstrated by Kleinman 

et al.[15]. False positives due to splicing locations are more difficult to distinguish from true 

variants. Thus, SNPs and somatic mutations identified near splicing sites should be removed 

or flagged for further review. Most RNAseq data specific variant detection tools, such as 

SNVQ [16] and SNPiR[14], focus on SNV rather than somatic mutation. And none of these 

tools consider cycle bias.

We want to identify somatic mutations through RNAseq data for several reasons. Due to 

budget limitations, sample quantities or study goals, researchers often choose RNAseq over 

DNAseq. However, the potential for RNAseq data should be maximized by performing 

additional analysis for which RNAseq was not originally designed, such as somatic mutation 
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detection[7]. For somatic mutation, RNAseq has been used primarily in two ways: discovery 

and validation. Discovery concerns the identification of somatic mutations using RNAseq 

data alone. For example, Xu et al. identified somatic mutations in prostate cancer using 

RNAseq data by applying a standard DNA processing pipeline [17]. Validation refers to the 

use of RNAseq data to validate somatic mutations found within DNAseq data. For example, 

in the cancer genome atlas (TCGA), RNAseq data has been used to validate somatic 

mutations found from DNA exome sequencing [18]. We have developed GLMVC which can 

identify somatic mutations from both DNAseq and RNAseq data. GLMVC uses a bias 

reduced generalized linear model (brGLM[19]) to identify somatic mutation candidates and 

to filter out false positives based on several unique characteristics of RNAseq data. GLMVC 

can take in either BAM files or pileup files as input, and it automatically generates a 

comprehensive somatic mutation report based on user-defined parameters. Here, we 

demonstrated GLMVC’s effectiveness using TCGA breast cancer data and compared the 

results with other popular somatic mutation callers. Through our analyses, we were able to 

address two important questions: 1) Can somatic mutations be reliably detected through 

RNAseq data as compared to DNAseq data? 2) What germline reference source (adjacent 

normal or blood) is better for somatic mutation inference?

METHODS

The overall workflow of GLMVC can be seen in Figure 1. GLMVC works in three steps: 

mutation calling, filtering, and annotaton. Due to the high false positive rate associated with 

identifying variants using RNAseq data, GLMVC is designed to focus on specificity rather 

than sensitivity. We employed several filters to eliminate potential false positive SNVs. To 

identify a somatic mutation in RNAseq data at a particular locus, alignments must be 

obtained for paired tumor and normal samples. To increase the confidence of somatic 

mutation calling, a minimum base Phred quality score of 20 [20] is used to filter out low 

quality reads and bases. A recent report suggests that only >10X coverage is required to 

ensure 89% accuracy and 92% sensitivity for single nucleotide variations (SNVs) [21]. 

Thus, a minimum depth of 10 from both tumor data and normal data is required for GLMVC 

to consider the candidate base. Also, GLMVC requires the percent of observed mutated 

alleles in the tumor sample to be above a certain threshold (default: 10%), requires a 

minimum number of observed mutated alleles in the tumor sample (default: 5), and requires 

the mutated allele frequency in a normal sample to be lower than a determined threshold 

(default: 2%). The thresholds can be adjusted according to purity of tumor samples and 

tumor-contamination within normal samples. An initial screening of somatic mutation 

candidates is done using Fisher’s exact test to significantly reduce the total number of 

candidate somatic mutations that need to be considered in the filtering steps, which in turn 

significantly decreases the overall run time of GLMVC.

Several unique characteristics of RNAseq data were taken into consideration in GLMVC. 

GLMVC performs a test using brGLM with the bias-reduction method [19] that considers 

not only the occurance of mutated alleles, but the base quality scores, the strands of the 

reads, and most importantly, the cycle position at each read. By using a binomial response 

brGLM model in GLMVC, the probability of somatic mutation signals was adjusted by 

score, strand and position bias (linear model: Allele ~ tumor/normal + Score + Strand + 
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Position. The somatic mutation candidates passing the brGLM test were sent to the next step 

for annotation.

During the annotation step, GLMVC uses ANNOVAR [22] to annotate information, such as 

amino acid change status, dbSNP ID, Polyphen [23], SIFT [24], and other available 

annotations. Additionally, GLMVC annoates several unique measurements: 1) distance to 

nearest splicing junction or indel (RNAseq data only); 2)mutation density; 3) RNA editing 

status (RNAseq data only). If TopHat[25] is used for alignment, BED files generated by 

TopHat for junctions, insertions and deletions can be used as inputs for GLMVC. If TopHat 

alignment results are not avaliable, junction information from the GTF format file can be 

used in its place. Distances to the nearest junction, insertion or deletion are computed for 

each somatic mutation detected, which may indicate the confidence of the mutation. The 

mutation density denotes the distance from one mutation to the nearest mutaton. The number 

of true non-synonymous mutations per tumor ranges from several to around 100 [26]. Thus, 

it is unlikely to observe two non-nonymous mutations in close proximity (distance smaller 

than 10 base pairs). It is also difficult to distinguish between a true RNA mutation and an 

RNA editing event. Thus, we used DARNED, the RNA editing database [27], to flag all 

somatic mutations observed at known RNA editing locations.

To demonstrate the effectiveness of GLMVC, we downloaded sequencing data of 10 breast 

cancer subjects (TCGA-A7-A0D9, TCGA-BH-A0B3, TCGA-BH-A0B8, TCGA-BH-A0BJ, 

TCGA-BH-A0BM, TCGA-BH-A0C0, TCGA-BH-A0DK, TCGA-BH-A0DP, TCGA-BH-

A0E0, TCGA-BH-A0H7). The sequencing data contains exome sequencing data for tumor, 

blood, adjacent normal and RNAseq data for tumor and adjacent normal. We performed 

preprocessing steps on the TCGA BAM files using the GATK’s best practice. For exome 

sequencing data, we performed mark duplicate, realignment, and recalibaration. For 

RNAseq data, we added a Split and Trim step prior to the realignment step. Using the 

released somatic mutation list of these 10 patients by TCGA as the gold standard, we 

compared somatic mutations identified through both DNAseq and RNAseq data using 

GLMVC, MuTect (v1.1.7) and Varscan (v2.4.1) for sensitivity, specificity and F-score. The 

F-score is the combined evaluation of both sensitivity and specifity, and computed as 

.

RESULTS

First, we examined the total number of somatic mutation callable sites between DNA and 

RNA. A somatic mutation callable site is defined as a genomic position with a depth of 10 or 

greater for both tumor and normal samples at either the DNA or RNA level. We observed 

more callable sites in exome sequencing data than RNAseq data. On average, exome 

sequencing data had 103,574,917 callable sites and RNAseq data had 35,309,313 callable 

sites, with the average overlap between them at 17,610,391 callable sites (Figure 2).

Of the 10 TCGA breast cancer samples we downloaded, 396 somatic mutations were 

reported by the TCGA breast cancer study (August, 2015), in which 383 somatic mutations 

were annotated in exonic region by Annovar. We called somatic mutations using GLMVC, 
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MuTect and Varscan on both DNA (tumor tissue vs. blood and tumor tissue vs. adjacent 

normal tissue) and RNA (tumor tissue vs. adjacent normal tissue) sequencing data.

Using the default recommended filters from each caller, MuTect, Varscan, and GLMVC, we 

found 2533, 3430, 1891 somatic mutations and 649, 539, 553 exonic somatic mutations 

respectively (Table 1). All three callers found more somatic mutations than reported by 

TCGA. Using the 383 TCGA reported exonic somatic mutations as the gold standard, 

MuTect had the highest sensitivity at 88.8%, GLMVC had second best sensitivity at 83%, 

and Varscan had the lowest sensitivity at 56.7%. However, high sensitivity of MuTect came 

at the cost of low specificity, with MuTect having 52.4% specificity, Varscan having 40.3% 

specificity, and GLMVC having the highest specificity at 57.5%. The balance between 

sensitivity and specificity allowed GLMVC to achieve the highest F-score at 0.679. Out of 

the 383 TCGA exonic somatic mutations, 260 were non-synonymous. Within the non-

synonymous mutations, GLMVC also achieved the highest F-score of 0.766. Figure 3A 

indicated the overlap of exonic somatic mutations detected by TCGA, MuTect and GLMVC. 

There were 65 out of 383 TCGA exonic somatic mutations not identified by GLMVC, in 

which 24 exonic somatic mutations were detected by MuTect. We examined the reasons 

behind these missing somatic mutations. Of the 65 missing somatic mutations, 22 were due 

to not being callable sites (read depth < 10); three had no mutated allele after filtering read/

base quality in tumor; two had lower mutated allele frequency in tumor than normal; seven 

passed the upper threshold for mutated allele frequency in normal sample (2%); 21 failed to 

reach the lower threshold for mutated allele in tumor sample (10% and at least five reads); 

the remaining 10 failed to reach p-value cutoff for either Fisher’s exact test or brGLM 

(Figure 3B). Of the 24 missing somatic mutations which were detected by MuTect, four had 

less than 10 reads in either tumor or normal samples; 12 failed to reach the lower threshold 

for mutated allele in tumor sample (10% and at least five reads); three failed to pass fisher 

exact test and another five failed to pass brGLM test (Figure 3C). The results suggest that by 

default, MuTect inferred somatic mutations from low coverage. For example, in exome 

sequencing data of sample TCGA-BH-A0B8, at chromosome 11, position 1,268,931, 

MuTect inferred a somatic mutation with nine reads in blood sample (nine reference, zero 

mutated) and three reads in tumor sample (one reference, two mutated) were observed. 

GLMVC can be configured to reach greater sensitivity than MuTect, however, the sacrifice 

in specificity is too great to ignore. Thus, GLMVC by default focuses more on specificity 

than sensitivity.

Using RNAseq data with a substantially lower number of callable sites, all three callers 

identified significantly more somatic mutations than in exome sequencing data (Table 1). 

Using the recommended filters, MuTect, Varscan and GLMVC identified 44387, 26417, 

8990 somatic mutations and 79051, 6052, 1639 exonic somatic mutations, respectively. 

GLMVC achieved the highest sensitivity (23.2%) and the highest specificity (5.4%). MuTect 

was the lowest specificity (1.8%) and tied sensitivity (22.7%) with Varscan. Varscan was 

second in sensitivity (1.3%). When combining sensitivity and specificity, GLMVC had the 

highest F-score for the 383 exonic somatic mutations (0.088) and 260 non-synonymous 

somatic mutations (0.15). Note that since there were almost three times more callable sites 

in DNA than RNA sequencing data, a significant portion of the missing sensitivity was 

caused by not having sequence coverage.
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Through our anlaysis, we also showed that blood is better germline reference than adjacent 

normal tissue for the purpose of somatic mutation inference because adjacent normal tissue 

is more likely to receive tumor contamination. All three somatic mutation calling tools had 

higher sensitivity and specificity when using blood as a germline reference as compared to 

adjacent normal (Table 1). Furthermore, we observed a higher MAF of mutated sites in 

exome sequencing data generated from adjacent normal tissues than from blood (Figure 4, 

Wilcox Rank Sum test pvalue < 0.0001). Even for blood, there are some low frequency 

mutated alleles occasionally, we suspect that these were from mutated circulating cell free 

DNA or random errors. Overall, the evidence supports the hypothesis that tumor 

contamination is more prevalant in adjacent normal tissues.

Similar to other somatic callers, GLMVC can be customized with multiple parameters, such 

as minimum base quality and minimum read quality. For GLMVC, the two most important 

parameters are the minimum mutated allele frequency (MMAF) and the minimum mutated 

allele reads (MMAR) in tumor sample. In Table 2, we presented four combination scenarios 

for these two parameters. When increasing MMAF or MMAR thresholds, sensitivity 

increases but specificity decreases, which represents the tradeoff between sensitivity and 

specificity. The selection of proper parameters entirely depends on the goal of the analysis. 

If the goal is to identify the most probable somatic mutation candidates, then more stringent 

parameters are recommended. If the goal is to identify all potential somatic mutation 

candidates, less stringent parameters should be used. For RNA, due to the high false positive 

rate in RNAseq data, we strongly recommend stringent parameters, such as MMAF >= 0.1 

and MMAR >= 5 in tumor sample.

In addition to the somatic mutation detection from all callable sites, GLMVC supports a 

functionality that validates a list of user predefined somatic mutations using paired normal-

tumor or non-paried tumor data. When using normal-tumor paired samples to validate, 

GLMVC performs somatic mutation detection based on the brGLM model as described 

earlier. However, raw p-values from brGLM are used instead of adjusted p-values because in 

validation, only some supporting evidence is required to justify the correctness of the 

somatic mutations being validated. To demonstrate, we tried to validate all 396 TCGA 

reported somatic mutations using corresponding paired and non-paired exome sequencing 

(Table S1) and RNAseq data (Table S2). Exome sequencing data validated more mutations 

than RNAseq data. This result is not surprising given that the TCGA inferred somatic 

mutations based on exome sequencing data. Within callable sites, exome sequencing 

achieves a higher validation rate (validated sites divided by callable sites) as compared to 

RNAseq (87% vs 49%) for paired data. The complete validation results using tumor-normal 

paired RNA and exome sequencing data can be found in Table S3 and Table S4.

When using only tumor sample for validation, GLMVC computes the allele frequency of the 

mutated allele for the callable sites. The user can make his/her own judgment on which 

percentage of the mutated allele frequency is considered valid based on extracted 

information. By default, GLMVC considers a somatic mutation valid if the mutated allele 

frequency is greater than 1%. Using one sample for validation will yield a much higher 

validation rate due to less filters being used. Using the same 396 somatic mutations as an 
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example, the validation rate increased for both exome sequencing and RNAseq data (99% vs 

74%) under default parameters. (Figure 5).

GLMVC is developed using C# in Microsoft .net enviroment. It can be installed and ran on 

Windows with .net framework 4.0+ or on Linux/Mac systems with mono framework. 

Because GLMVC was designed to process the sequencing data in parallel on the 

chromosome level, GLMVC has a better run-time performance than MuTect and Varscan in 

both single and multi thread scenarioes (Figure 6). For a a pair of tumor-normal bam files of 

8GB each, the total runtime for GLMVC is roughly one hour and 40 minutes on an eight 

core CPU with 2.8 Ghz speed and 16 GB memory. GLMVC is freely available for download 

at the following website: https://github.com/shengqh/GLMVC/wiki.

DISCUSSION

The introduction of HTS technology has made a powerful impact in the biomedical research 

field. One of the most utilized applications of HTS technology is to screen for somatic 

mutation candidates. Conventionally, somatic mutations are detected using exome or whole 

genome sequencing data of DNA. Whether somatic mutations can be accurately inferred 

from RNAseq data remains unanswered.

Tumor contamination in normal samples can perturb somatic mutation signals, causing the 

misclassification of somatic mutation into germline variants. The phenomenon of tumor 

contamination in adjacent normal tissues has been previously documented [28, 29]. To 

further evaluate the effect of tumor contamination, we examined the mutated allele 

frequency from three different sources (blood exome sequencing, adjacent normal exome 

sequencing and adjacent normal RNAseq), and found that the mutated allele frequencies are 

significantly higher for adjacent normal samples when compared to the blood samples of the 

same subjects. This suggests that blood is better suited as normal reference when inferring 

somatic mutation. When adjacent tissue is the only source for normal reference, GLMVC 

can mitigate the effect of tumor contamination by allowing users to adjust the mutated allele 

frequency threshold in a normal sample. Tumor purity was another factor we considered 

during the design of GLMVC. Unlike SNP, where we expect to see alternative alleles near 

50%, tumor tissues are most often a mixture of mutated and normal tissues. The mutated 

allele frequency could vary without pattern. Procedures such as microdissection can help 

estimate tumor purity in the sample [30]. The expected minimum mutated allele frequency 

in tumor samples can be adjusted based on the estimated tumor purity.

In this study, we introduced GLMVC, a new somatic mutation caller based on the brGLM 

model for both high throughput DNA and RNA sequencing data. Because one of the major 

focuses of GLMVC is RNAseq data somatic mutation identification, GLMVC enforces 

strong filters to limit false positive rates. When compared with two other popular somatic 

mutation callers, MuTect and Varscan, GLMVC proved the best in both sensitivity and 

specificity. In default settings, GLMVC generates a more conservative list of somatic 

mutations.
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We also evaluated the practicality of identifying somatic mutations using RNAseq data. Our 

results and other reports have shown that high false positive rate is unavoidable when 

detecting variants from RNAseq data. Thus far, we have given several potential reasons for 

this, including complexity in the alignment due to splicing, RNA editing, and random errors 

introduced during reverse transcription or PCR amplification. Another unavoidable 

drawback of detecting variants from RNAseq data is the limitation that results from RNA 

expression. RNAseq data’s sequencing depth coverage is highly correlated to RNA 

expression. For a normal human, as much as 40%–50% of all genes may not be expressed. 

Thus, RNAseq data does not have enough coverage on the unexpressed genes to infer any 

variants. Given all of the possible complications with identifying SNVs using RNAseq data, 

we designed GLMVC to consider these complications while processing RNAseq data, and, 

by default, GLMVC focuses on specificity rather than sensitivity.

In conclusion, our study made three contributions to the field of somatic mutation research. 

First, we developed GLMVC, a novel somatic mutation caller with competitive performance 

for both DNA and RNA sequencing data. The ability to detect somatic mutation in RNAseq 

data offers new opportunities for reanalyzing and repurposing of accumulated RNAseq data. 

For example, expression quantitative trait loci (eQTL) are detected by analyzing SNP and 

gene expression data. Similar study can be conducted with RNAseq data to examine the 

relationship between gene expression and somatic mutation. It has been shown that somatic 

mutation resides in or around splice junctions can cause the deletion of exon or partial gene 

[31]. Second, we demonstrated that in general, somatic mutation detection will be more 

accurate using DNAseq data than RNAseq data. Due to the high false positive rate in the 

somatic mutation calls in RNAseq data, we recommend additional validation using different 

assays, such as RT-PCR or Sanger sequencing. However, RNAseq data can serve as a good 

validation source for somatic mutations inferred from DNAseq data. Third, we demonstrated 

that blood is a better germline reference than adjacent normal for somatic mutation inference 

purposes.
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Refer to Web version on PubMed Central for supplementary material.
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Research Highlight

• We have developed GLMVC, a freely-available novel mutation caller with 

improved performance on RNAseq data.

• GLMVC has better combination of sensitivity and specificity with faster run-

time than comparable programs.

• We confirm blood is a better germline reference than adjacent normal tissue.
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Figure 1. 
GLMVC workflow
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Figure 2. 
Callable sites distribution of RNAseq data, exome sequencing data and their overlap. 

RNAseq data have more callable sites than exome sequencing data.
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Figure 3. 
Comparison of exonic somatic mutations from TCGA, MuTect and GLMVC.
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Figure 4. 
The MAF of mutated sites is higher in adjacent normal tissue than blood, suggesting that 

adjacent normal tissues are subjected to tumor contamination.

Sheng et al. Page 15

Genomics. Author manuscript; available in PMC 2017 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Validation functionality of GLMVC. RNA can validate around 50% of somatic mutations 

using tumor-normal paired sample and 80% of somatic mutations using one sample.
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Figure 6. 
Runtime comparison between GLMVC, MuTect and Varscan. Because GLMVC is designed 

to process sequencing data in parallel by chromosomes, it benefits more from running on a 

multi-core computer than MuTect and Varscan, thus saves overall runtime substantially.
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