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Abstract

Consider the following three important problems in statistical inference, namely, constructing 

confidence intervals for (1) the error of a high-dimensional (p > n) regression estimator, (2) the 

linear regression noise level, and (3) the genetic signal-to-noise ratio of a continuous-valued trait 

(related to the heritability). All three problems turn out to be closely related to the little-studied 

problem of performing inference on the -norm of the signal in high-dimensional linear 

regression. We derive a novel procedure for this, which is asymptotically correct when the 

covariates are multivariate Gaussian and produces valid confidence intervals in finite samples as 

well. The procedure, called EigenPrism, is computationally fast and makes no assumptions on 

coefficient sparsity or knowledge of the noise level. We investigate the width of the EigenPrism 

confidence intervals, including a comparison with a Bayesian setting in which our interval is just 

5% wider than the Bayes credible interval. We are then able to unify the three aforementioned 

problems by showing that the EigenPrism procedure with only minor modifications is able to 

make important contributions to all three. We also investigate the robustness of coverage and find 

that the method applies in practice and in finite samples much more widely than just the case of 

multivariate Gaussian covariates. Finally, we apply EigenPrism to a genetic dataset to estimate the 

genetic signal-to-noise ratio for a number of continuous phenotypes.
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1 Introduction

1.1 Problem Statement

Throughout this paper we will assume the linear model

(1.1)

where y, , , and . Denote the ith row and jth column of X by xi and Xj, 

respectively. We assume the xi are drawn i.i.d. from a mean-zero distribution with 

covariance matrix Σ.

Our goal is to construct a two-sided confidence interval (CI) for the expected signal squared 

magnitude  (or equivalently just θ). Explicitly, for a given significance level α ∈ (0, 

1), we want to produce statistics Lα and Uα, computed from the data, obeying
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(1.2)

In words, we want to be able to make the following statement: “with 100(1 – α)% 

confidence, θ2 lies between Lα and Uα.”

1.2 Motivation

This problem can be motivated first from a high level as an approach to performing 

inference on β in high dimensions. Since p > n, we cannot hope to perform inference on the 

individual elements of β directly (without further assumptions, such as sparsity), but there is 

hope for the one-dimensional parameter θ. Although θ is not often considered a parameter 

of inference in regression problems, it turns out to be closely related to a number of well-

studied problems.

Suppose one has an estimator  for β. Perhaps the most important question to be asked is: 

how close is  to β? This question can be answered statistically by estimating and/or 

constructing a CI for the error of that estimate, namely, . This is a fundamental 

statistical problem arising in many applications. Consider, for example, a compressed 

sensing (CS) experiment in which a doctor performs an MRI on a patient. In MRI, the image 

is observed not in the spatial domain, but in the frequency domain. If as many observations 

as pixels are made, the result is the Fourier transform (with some added noise) of the image, 

from which the original spatial pixels can be inferred. CS theory suggests that one can 

instead use a number of observations (rows of the Fourier matrix) that is a fraction of the 

number of pixels, and still get very good recovery of the original image using perhaps 

sophisticated  methods (Candès et al., 2006). However, for a specific instance, there is no 

good way to estimate how “good” the recovery is. This can be important if the doctor is 

looking for a specific feature on the MRI, such as a small tumor, and needs to know if what 

he or she sees on the reconstructed image is accurate. In the authors’ experience, this is the 

most common question asked by end-users of CS algorithms. Put another way, when the 

Nyquist sampling theorem is violated, there is always a possibility of missing some of the 

signal, so what reassurances can we make about the quality of the reconstruction?

The estimation of the noise level σ2 in a linear model is another important statistical 

problem. Consider, for example, performing inference on individual coefficients in the linear 

model. When n > p, OLS theory provides an answer that depends on σ2 or at least an 

estimate of it. Indeed, one can find in almost any introductory statistics textbook both 

estimation and inference results for σ2 in the case of n > p. However much recent work has 

investigated the problem of performing inference on individual coefficients in the high-

dimensional setting of n ≤ p (Berk et al., 2013; Lockhart et al., 2014; Taylor et al., 2014; 

Javanmard and Montanari, 2014; van de Geer et al., 2014; Zhang and Zhang, 2014; Lee et 

al., 2015), and they all require knowledge of σ2. Unfortunately very few such results exist 

for the high-dimensional setting of n ≤ p. Beyond regression coefficient inference, σ2 can be 

useful for benchmarking prediction accuracy and for performing model selection, for 
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instance using AIC, BIC, or the Lasso. It also may be of independent interest to know σ2, for 

instance to understand the variance decomposition of y.

A third topic is the study of genetic heritability (Visscher et al., 2008), which can be 

characterized by the following question: what fraction of variance in a trait (such as height) 

is explained by our genes, as opposed to our environment? Colloquially, this can be 

considered a way of quantifying the nature versus nurture debate.

It turns out that all three of these problems can be solved by connection with our original 

problem of estimating and constructing CIs for θ2. Indeed, in the MRI example, the doctor 

may split the collected observations into two independent subsamples, (y(0), X(0)) and (y(1), 

X(1)), and construct an estimator  from just (y(0), X(0)). Then the vector 

follows a linear model,

(1.3)

so that if Σ = I, inference on θ in this linear model corresponds exactly to inference on the 

regression error of . Note that since the analysis is conditional on , there is no restriction 

on how  is computed from (y(0), X(0)), and so the method applies to any coefficient 

estimation technique. We defer the connection between inference for θ2 and inference for σ2 

and genetic variance decomposition to Section 3.

1.3 Main Result

Although we will ultimately argue that our method applies more broadly, we will begin with 

the following distributional assumptions,

(1.4)

with X independent of ε. Note that p > n ensures the design matrix will have a nontrivial null 

space, and thus conditional on X, the linear model (1.1) (including θ) is unidentifiable (since 

any vector in the null space of X can be added to β without changing the data-generating 

process). This necessitates a random design framework. The assumption of independence on 

the rows of the design matrix is often satisfied in realistic settings when observations are 

drawn independently from a population. However, the independence (and multivariate 

Gaussianity) of the columns is rather stringent and just a starting point—Sections 3.3, 4.1, 

and 5 demonstrate in simulations and on real data that in practice EigenPrism achieves 

nominal coverage even when the marginal distribution of the entries of X are far from 

Gaussian, as well as in some cases when Σ ≠ I. We are treating the coefficient vector β as 

fixed, not random.

Under these assumptions, we will develop in Section 2 an estimator that is unbiased for θ2, 

is asymptotically normally distributed, and has an estimable tight bound on its variance. 

None of these properties, including estimability of the variance, require knowledge of the 
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noise level σ2 or any assumption, such as sparsity, on the structure of the coefficient vector 

β. From these results, it is easy to generate valid CIs for θ2 (or θ), and we will show that 

such CIs are nearly as short as they can be, and provide nominal coverage in finite samples 

under a variety of circumstances (even beyond the assumptions made here).

1.4 Related Work

When n > p, ordinary least squares (OLS) theory gives us inference for β and thus also for θ. 

When n ≤ p, the problem of estimating θ2 has been studied in Dicker (2014). Dicker (2014) 

uses the method of moments on two statistics to estimate θ2 and σ2 without assumptions on 

β, and with the same multivariate Gaussian random design assumptions used here. Dicker 

(2014) also derives asymptotic distributional results, but does not explore the estimation of 

the parameters of the asymptotic distributions, nor the coverage of any CI derived from it. 

The main contribution of our work is to provide tight, estimable CIs which achieve nominal 

coverage even in finite samples.

Inference for high-dimensional regression error, noise level, and genetic variance 

decomposition are each individually well-studied, so we review some relevant works here. 

To begin with, many authors have studied high-dimensional regression error for specific 

coefficient estimators, such as the Lasso (Tibshirani, 1996), often providing conditions under 

which this regression error asymptotes to 0 (see for example Bayati et al. (2013); Knight and 

Fu (2000)). To our knowledge the only author who has considered inference for a general 

estimator is Ward (2009), who does so using the Johnson–Lindenstrauss Lemma and 

assuming no noise, that is, εi ≡ 0 in the linear model (1.1). Thus the problem studied there is 

quite different from that addressed here, as we allow for noise in the linear model. 

Furthermore, because the Johnson–Lindenstrauss Lemma is not distribution-specific, it is 

conservative and thus Ward's bounds are in general conservative, while we will show that in 

most cases our CIs will be quite tight.

There has also been a lot of recent interest in estimating the noise level σ2 in high-

dimensional regression problems. Fan et al. (2012) introduced a refitted cross validation 

method that estimates σ2 assuming sparsity and a model selection procedure that misses 

none of the correct variables. Sun and Zhang (2012) introduced the scaled Lasso for 

estimating σ2 using an iterative procedure that includes the Lasso. Städler et al. (2010) also 

use an  penalty to estimate the noise level, but in a finite mixture of regressions model. 

Bayati et al. (2013) use the Lasso and Stein's unbiased risk estimate to produce an estimator 

for σ2. All of these works prove consistency of their estimators, but under conditions on the 

sparsity of the coefficient vector. Indeed, it can be shown (Giraud et al., 2012) that such a 

condition is needed when X is treated as fixed (which it is not in the present paper). Under 

the same sparsity conditions, Fan et al. (2012) and Sun and Zhang (2012) also provide 

asymptotic distributional results for their estimators, allowing for the construction of 

asymptotic CIs. What distinguishes our treatment of this problem from the existing literature 

is that our estimator and CI for σ2 make no assumptions on the sparsity or structure of β.

An unpublished paper (Owen, 2012) estimates θ2 using a type of method of moments, with 

the goal of estimating genetic heritability by way of a variance decomposition. Although 

Owen gives conditions for consistency of his esimator, no inference is discussed, and he 
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points out that the work is only valid for estimating heritability if the SNPs are assumed to 

be independent. In general, heritability is a well-studied subject in genetics, with especially 

accurate estimates coming from studies comparing a trait within and between twins (e.g. 

Silventoinen et al. (2003)). However, in order to better understand the genetic basis of such 

traits, some authors have tried to directly predict a trait from genetic information. Since most 

forms of genetic information, such as SNP data, are much higher-dimensional than the 

number of samples that can be obtained, the main approaches are either to try and find a 

small number of important variables through genome-wide association studies (e.g. Weedon 

et al. (2008)) before modeling, to estimate the kinships among subjects and use maximum 

likelihood, assuming independence among SNPs and random effects, on the trait covariances 

among subjects to estimate the (narrow-sense) heritability (e.g. Yang et al. (2010); Golan 

and Rosset (2011)), or to assume random effects and use maximum likelihood to estimate 

the signal-to-noise ratio in a linear model (e.g. Kang et al. (2008); Bonnet et al. (2014); 

Owen (2014)). However, attempts to explain heritability by genetic prediction have fallen 

quite short of the estimates from twin studies, leading to the famous conundrum of missing 
heritability (Manolio et al., 2009). Our main contribution to this field will be to consistently 

estimate and provide inference for the signal-to-noise ratio in a linear model, which is 

related to the heritability, without assumptions on the coefficient vector (such as sparsity or 

random effects), knowledge of the noise variance, or feature independence. This contribution 

may be especially valuable given the increased popularity of the rare variants hypothesis 

(Pritchard, 2001) for missing heritability, which conjectures that the effects of genetic 

variation on a trait may not be strong and sparse, but instead distributed and weak (and their 

corresponding mutations rare).

We note that neuroscientists have also done work estimating a signal-to-noise ratio, namely 

the explainable variance in functional MRI. That problem is made especially challenging 

due to correlations in the noise, making it different from the i.i.d. noise setting considered in 

this paper. For this related problem, Benjamini and Yu (2013) are able to construct an 

unbiased estimator in the random effects framework by permuting the measurement vector 

in such a way as to leave the noise covariance structure unchanged.

2 Constructing a Confidence Interval for θ2

In this section we develop a novel method for constructing a valid CI for θ2. This method 

does not require σ2 to be known. However, for pedagogical reasons, we begin with the 

simpler situation in which σ2 is known, which may arise in many signal or image processing 

applications.

2.1 Known σ2

Consider a sample of size n from the linear model (1.1). Then

which implies
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(2.1)

Denote the τth quantile of the  distribution by . Then when σ2 is known, a valid CI 

can be obtained by setting

that is, (1.2) is satisfied under this choice of Lα, Uα. Note that the method of Ward (2009) 

also assumes σ2 is known, and equal to zero, so we may consider comparing it to the above. 

In particular we want to emphasize that Ward (2009)'s inference method is conservative due 

to the generality of the Johnson–Lindenstrauss lemma, while [Lα, Uα] contitutes an exact 
100(1 – α)% CI. The same procedure can be generalized using the bootstrap on the unbiased 

estimator

(2.2)

See Appendix A for details.

2.2 Unknown σ2

2.2.1 Theory—Consider again the linear model (1.1) with assumptions (1.4), in particular 

that X has i.i.d. standard Gaussian elements. Recall that we assume n < p, and let 

 be a singular value decomposition (SVD) of X, so that U is n × n orthonormal, 

D is n × n diagonal with non-negative, non-increasing diagonal entries, and V is p × n 

orthonormal. Let , and denote the diagonal vector of D by d. We emphasize that the 

singular values in D are arranged along the diagonal in decreasing order, so that d1 ≥ d2 ≥ ··· 

dn ≥ 0. Then

and note that

where the third equality follows from the fact that in our model the columns of V are 

uniformly distributed on the unit sphere, and independent of d.
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To give some intuition for what follows, assume n is even and consider the expectation, 

conditional on d, of the difference between the sum of squares of the first half of the entries 

of z and the sum of squares of the second half of the entries of z,

Note that the terms containing σ2 in the first line cancel out, but because the singular values 

di of X are in decreasing order, a term proportional to θ2 remains. We generalize this idea 

below.

Let  be the eigenvalues of , let  be a vector of weights (which need 

not be nonnegative), and consider the statistics . We can compute its 

expectation, conditional on d, as

(2.3)

Based on this calculation, constraining  and  makes S an unbiased 

estimator of θ2 (even conditionally on d). We can also compute its conditional variance (see 

Appendix B for a detailed computation),

(2.4)

which, under the aforementioned constraint  can be rewritten as

(2.5)

where
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(2.6)

is the fraction of the variance of the yi accounted for by the signal (recall that Var(yi) = θ2 + 

σ2). The inequality will be quite tight when p is large and . By noting that 

this variance bound, as a function of ρ, is a quadratic equation with positive leading 

coefficient, it follows that it is maximized either at ρ = 0 or at ρ = 1. This leads to one more 

upper-bound,

(2.7)

The above equation has two striking features. The first is that it depends on θ2 and σ2 only 

through the sum θ2 + σ2, for which we have an excellent estimator given by . The 

second feature is that it separates into the product of two terms: one term that does not 

depend on w, and a second term that is known (in that it contains nothing that needs to be 

estimated) and (strictly) convex in w. Thus we can use convex optimization to find the vector 

w that minimizes the upper-bound (2.7) on the variance subject to the two linear equality 

constraints mentioned earlier,  and , which ensure that S remains 

unbiased for θ2. Figure 1 shows an example of such an optimized weight vector when n = 

200 and p = 2000. Note that instead of just giving some positive weight to large λi's and 

some negative weight to small λi's, the optimal weighting is a smooth function of the λi. 

This makes sense, as the zi's with large associated λi have a larger signal-to-noise ratio, and 

should be given greater weight. Denote the statistic S constructed using these constrained-

optimal weights by T2. Explicitly, let w* be the solution to the following convex 

optimization program :

(2.8)

and denote by  the minimized objective function value. Then the statistic for our 

main procedure in this paper, which we call the EigenPrism procedure, is the following,

(2.9)
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where the only approximation in the variance is the replacement of θ2 + σ2 by its estimator 

.

With these calculations in place, we now define our (1 – α)-confidence interval for θ2, by 

assuming that T2 follows an approximately normal distribution (discussed later on). We 

construct lower and upper endpoints

where the value of Lα is clipped at zero since it holds trivially that θ2 > 0, and where 

is the (1 – α/2) quantile of the normal distribution.

Remark: The idea of constructing the zi's as contrasts has been used in the heritability 

literature before, e.g. Kang et al. (2008); Bonnet et al. (2014); Owen (2014), but in a strict 

random effects framework. In particular, when the entries of β are i.i.d. Gaussian, the zi's 

become independent. With independent zi's whose distribution depends only on the signal 

(θ2) and noise (σ2) parameters, the authors are able to apply maximum likelihood 

estimation, with associated asymptotic inference results for the signal, noise, or signal-to-

noise ratio (we note that Bonnet et al. (2014) generalize such estimators somewhat to the 

case of a Bernoulli-Gaussian random effects model). The crucial difference between our 

work and theirs is that we make no assumptions (e.g., Gaussianity, sparsity) on the 

coefficient vector, and thus not only are the zi's not independent in our setting, but their 

dependence (and thus the full likelihood) is a function of the products βiβj, and thus a 

maximum likelihood approach in this setting would still be overparameterized.

Next, we discuss the coverage and width properties of this constructed confidence interval.

2.2.2 Coverage—Now that we are equipped with an unbiased estimator and a computable 

variance (upper-bound), and have constructed a confidence interval (CI) using a normal 

approximation, there are two main questions to answer in order to determine whether these 

CIs will exhibit the desired coverage properties. In particular, we would like to know if 

substituting θ2 + σ2 with  substantially affects the variance formula, and we would 

like to know if T2 is approximately normally distributed (so that we can construct arbitrary 

CIs from just the second moment). For the first question, since  is a rescaled  random 

variable, for nominal coverage of 1 – α, the coverage actually achieved can be closely 

approximated by  (where the N(0, 1) and the  are 

independent), assuming exact normality. Table 1 shows that for nominal 95% coverage, one 

would need fewer than 20 samples to achieve less than 90% coverage. For the second 

question, the following theorem establishes the asymptotic normality of T2.

Theorem 1: Under the linear model (1.1) with Gaussian random design and errors given in 
Equation (1.4), the estimator T2 as defined in Equation (2.9) is asymptotically normal as n, p 
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→ ∞ and n/p → γ ∈ (0, 1). This holds for any values of θ2 and σ2, including values that 
vary with n. Explicitly,

Proof: The proof is given in Appendix C.

For finite-sample results, we defer to the simulation results of Section 3.1 to show that for 

problems of reasonable size , CIs constructed as if T2 were exactly 
normal with variance exactly given by Equation (2.9) never result in below-nominal 

coverage.

2.2.3 Width—Once we have confirmed that our CIs provide the proper coverage, the next 

topic of interest is their widths. It is not hard to obtain a closed-form asymptotic upper-

bound for Var(T2) (the details are worked out in Appendix D). In particular, letting Yγ 
denote a random variable with Marčenko–Pastur (MP) distribution with parameter γ 
(Marčenko and Pastur, 1967), and Mγ denote the median of Yγ, define the constants,

(2.10)

Then in the limit as n, p → ∞ and n/p → γ ∈ (0, 1),

(2.11)

We can draw a few conclusions from Equation (2.11). The most obvious is that for n, p → 
∞, n/p → γ ∈ (0, 1), σ2 asymptotically bounded above and θ2 asymptotically bounded 

below, the error of T2, as a fraction of its estimand θ2, converges to 0 in probability at a rate 

of n−1/2. Note that we make no assumptions at all on the structure of β, and just require that 

θ2 does not asymptote at 0. The equation also lets us compute a conservative upper-bound 

on the asymptotic relative efficiency (ARE), defined as the asymptotic ratio of standard 

deviations (although it is often defined by variances elsewhere), of T2 with respect to T1 

from Section 2.1 (see (2.2)), the latter of which uses exact knowledge of σ2 and has standard 

deviation characterized by the  distribution. While we may not be able to formulate a 

closed-form expression for it in terms of expectations due to the constrained minimization 

functional, the standard deviation bound for T2 in Equation (2.9) will also converge to a 

constant times SD(T1) under the same asymptotic conditions, where the constant depends 

only on the MP distribution. This is because the optimal weights are a smooth function of 

the λi. Due to fast convergence to the MP distribution, we can numerically approximate this 

exact asymptotic ratio. Figure 2 shows this estimate of the ARE of T2 to T1 as a function of 
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γ. Note that the standard deviation bound for T2 in Equation (2.9), used to compute the 

curve in Figure 2, is still an upper-bound for the ARE of T2 with respect to T1, but it reflects 

the ratio of CI widths between the EigenPrism procedure and a CI constructed from T1 with 

knowledge of σ2. The figure demonstrates how close in width the EigenPrism procedure 

comes to an exact CI for T1 which knows σ2. In particular, for γ ≳ 0.25, the EigenPrism CIs 

are at most twice as wide as those for T1.

Another notable feature of Figure 2 is how large the ARE becomes as γ → 0. This is a 

symptom of an important property of not just our procedure, but the frequentist problem as a 

whole. First, it is clear that if all the λi ≡ 1, our procedure fails, as the  no longer provide 

any contrast between θ2 and σ2, and no linear combination of them will produce an unbiased 

statistic for θ2. Intuitively, note that , so that the problem of estimating 

ρ is that of estimating the slope and intercept of a regression line. But in regression, when 

the predictor variable assumes a constant value, as it would when λi ≡ 1, it becomes 

impossible to estimate the slope and intercept. To understand better how our procedure 

performs when the spread of the λi approaches zero, consider the case when λ1 = ··· = λn/2 

= 1 + a and λn/2+1 = ··· = λn = 1 – a. In this case SD(λi) = a, and it is easy to show that

so if , then a2n → 0 and so .

Returning to our original model in which X is i.i.d. N(0, 1), the λi's will be approximately 

MP-distributed with parameter γ = n/p. Figure 3 shows visually how the width of the MP 

distribution depends on γ, and analytically, SD(Yγ) = √γ. We show in the following theorem 

(proved in Appendix E) that if the λi's are too close to 1 and n << p, it is impossible for any 
procedure to reliably distinguish between the case of ρ = 0 (pure noise) and ρ = 1/2 

(variance equally split between signal and noise).

Theorem 2: Let p ≥ n ≥ 1. Suppose that

(2.12)

where θ < 0, σ < 0, and a unit vector a are all fixed but unknown,  is a known 

nonnegative diagonal matrix with ,  is a random Haar-

distributed orthonormal matrix, and ε ~ N(o, In) independent of V. Consider the simple 

scenario where we are trying to distinguish between only two possibilities, denoted by 

distributions P0 and P1:
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Then for any test , the power to correctly distinguish between these two 

distributions is bounded as

In other words, every test ψ has high error, with

so that if the λi are tightly distributed around 1 and n << p, the problem of estimating ρ, and 

thus θ, is extremely difficult. Note that for approximately MP-distributed λi with γ = n/p ≈ 

0, both  and n/p are quite small, explaining the spike in ARE in Figure 2 as γ 
→ 0.

Another way to evaluate how short the EigenPrism CIs are, compared to how short they 

could be, is to compare to a Bayesian procedure on a Bayesian problem. This is done in 

Section 3.1.

2.2.4 Computation—As a procedure intended for use in high-dimensional settings, it is of 

interest to know how the EigenPrism procedure scales with large problem dimensions. There 

are essentially two parts to the procedure: the SVD, and the optimization (2.8) to choose w*. 

Due to the strict convexity of the optimization problem, it is extremely fast to solve (2.8) and 

in all of our simulations the runtime was dominated by the SVD computation. In Appendix 

F we include a snippet of Matlab code in the popular convex optimization language CVX 

(Grant and Boyd, 2014, 2008) that reformulates the optimization problem (2.8) as a second-

order cone problem. Even if the optimization becomes extremely high-dimensional, note 

that the optimal weights w* are a smooth function of their associated eigenvalues λi. Thus 

we can approximate w* extremely well by subsampling the λi, computing a lower-resolution 

optimal weight vector, and then linearly interpolating to obtain the higher-resolution, high-

dimensional w*. For the SVD, note that V never needs to be computed. Thus, the 

computation scales as n2p with a small constant of proportionality, as the SVD of  is 

all that is needed.

3 Derivative Procedures

In this section, we go into more detail about the three related problems of performing 

inference on estimation error of a high-dimensional regression estimator, noise level in a 

high-dimensional linear model, and genetic signal-to-noise ratio, including simulation 

results. MATLAB code for the numerical results in this paper is available on the first 

author's website.
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3.1 High-Dimensional Regression Error

We have already shown in Section 1.2 that the problem of inference for high-dimensional 

regression error is equivalent, with a change of variables, to that of inference on θ. Under 

assumptions (1.4), our framework even allows for selection of a subset of , for instance if 

the doctor sees an anomaly in a region of the reconstructed image, he or she may only care 

about error in that region. In that case, for a subset of indices R (with corresponding 

complement Rc), Equation (1.3) can be rewritten as

where  is an i.i.d. Gaussian vector independent of , so that defining 

puts this problem squarely into the EigenPrism framework, regardless of the fact that R may 

be chosen after observing  (recall that  was fitted on an independent subset of the data, 

(X(0), y(0))).

We note that the requirement that the columns of X be independent in order to perform 

inference on  cannot be relaxed. However, with a known covariance Σ, one could 

instead perform inference on . Of course, inference for either  or 

 is sufficient if the ultimate goal is to invert the CI to test a global null 

hypothesis on the coefficient vector.

What remains to be seen then is (1) that coverage is not lost by approximating θ2 + σ2 by 

 and by assuming T2 is normal, and (2) how short the resulting CIs are relative to how 

short they could be. To investigate (1), we fixed p at 104, θ2 + σ2 = 104, varied n on a log 

scale between 0 and p, and varied ρ (recall Equation 2.6) between 0 and 1 by taking equally 

spaced values of log(ρ/(1 – ρ)). Note that due to rotational symmetry, the direction of β is 

irrelevant. We ran 104 simulations of the EigenPrism procedure to generate 95% CIs and 

compared coverage across the settings in Figure 4(a). We also simulated CIs using the 

results of Dicker (2014) by simply plugging in its estimators for θ2 and σ2 to its asymptotic 

variance formula (which depends on the exact parameters). Note that the EigenPrism CIs 

achieve at least nominal coverage in all cases, while the Dicker procedure is less reliable, 

especially for large ρ. One setting in which we see EigenPrism over-cover is when n ≈ p and 

ρ ≈ 1. This can be explained by the variance upper-bound for T2 in Equation (2.5), which is 

tight when p is large and . Figure 5 shows that, except when n ≈ p, 

we indeed have .

To investigate (2), we simulated the EigenPrism procedure on a Bayesian model and 

compared the EigenPrism widths to those obtained by computing equal-tailed Bayes 

credible intervals (BCI) from a Gibbs-sampled posterior. The details of the Bayesian setup 

are given in Appendix G, but the resulting CI widths are summarized in Figure 4(b) for p = 
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104 and a range of n. Again, we also compared to Dicker CIs. Each point on the plot 

represents 1000 simulations. Although the Dicker CIs become slightly shorter than 

EigenPrism's for large n, we note (as evidenced by Figure 4(a)) that this is exactly the 

regime in which the Dicker CIs have unreliable coverage. We will see later in Section 4.1 

that even for small n and ρ, the Dicker CIs quickly lose coverage as correlations are added to 

the design matrix, while EigenPrism's coverage is in fact quite robust. The other salient 

features of this plot are that the EigenPrism CI widths decrease at a steady √n-rate, while the 

BCI widths start much lower and appear to asymptote around the EigenPrism CI width 

curve. The fact that the BCI widths are much shorter for small n can be explained by the 

information contained in the priors, which is important for two reasons. In any frequentist-

Bayesian comparison of methods, there is always the phenomenon that small n means the 

data contains little information, so the prior information given to the Bayesian method 

makes it heavily favored over the frequentist method. However, as we saw in Section 2.2.3, 

the frequentist problem is fundamentally limited not just by n but by SD(λi) as well, and 

here since p is fixed, small n corresponds to small SD(λi) as well, adding an extra layer of 

challenge for the EigenPrism procedure. As n increases though, the BCIs rely more heavily 

on the data, and come much closer in width to the EigenPrism CIs, with the average relative 

width increase bottoming-out at about 5% for n = 5000. The relative uptick in the 

EigenPrism CI widths for n ≈ p can again be explained by the upper-bound in Equation 

(2.5).

3.2 Inference on σ2

We can use almost exactly the same EigenPrism procedure for σ2 as we did for θ2. Recall 

Equation (2.3),

To make S unbiased for θ2, we constrained  and . However by 

switching these linear constraints, so that  and , we make S 
unbiased for σ2. The variance formulae and upper-bounds in Equations (2.4)–(2.7) still hold, 

so that we can construct T3 (and an associated CI). Let w** be the solution to the following 

convex optimization program :

and denote by  the minimized objective function value. Then the EigenPrism 

procedure for performing inference on σ2 reads
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where again, the only approximation in the variance is the replacement of θ2 + σ2 by its 

estimator . The analogue to Theorem 1 holds and is proved in Appendix C:

Finally, as before, we construct the lower and upper endpoints to obtain an approximate (1 – 

α)-CI for σ2 via

Note that if the columns of X have a known covariance matrix Σ, the exact same machinery 

goes through by replacing X by XΣ−1/2 and replacing β by Σ1/2β.

Turning to simulations, we aim to show that the EigenPrism CIs for σ2 have at least nominal 

coverage. We take the same setup as in Figure 4(a) but instead construct 95% CIs for σ2. 

Figure 6 shows the result, and as before we see that EigenPrism's coverage never dips below 

nominal levels in any of the settings, while for small ρ the Dicker CI's coverage can be 

unreliable, especially for large n. We performed a similar experiment with a Bayesian model 

to compare EigenPrism CI widths for σ2 with those of equal-tailed BCIs, but found a less-

desirable comparison than in the θ case. In particular, the most favorable simulations showed 

the EigenPrism CI approximately 30% wider than the BCI, which can likely be attributed to 

the more-informative prior (Inverse Gamma) on σ2 than that on θ2 (nearly Exponential) in 

the Bayesian model (G.1). Although we would have liked to try an Exponential prior for σ2, 

due to a lack of conjugacy the resulting Gibbs sampler was computationally intractable. We 

note that except in special cases, it can be very computationally challenging to construct 

BCIs, especially in high dimensions.

We point out that only two other σ2 estimators in the literature provide any inference results, 

namely the scaled Lasso (Sun and Zhang, 2012) and the refitted cross validation (CV) 

method of Fan et al. (2012). In particular, under some sparsity conditions on the coefficient 

vector, the authors find aymptotic normal approximations to their estimators. To compare 

our CIs with theirs, we compared them on the same simulations, but quickly found that 

scaled Lasso and refitted CV CIs only achieve nominal coverage in extremely sparse 

settings. We also compared the plug-in CI for the estimator in Dicker (2014). This coverage 

comparison is shown in Figure 7(a). The scaled Lasso CIs only achieve nominal coverage 

when 1 out of the 1000 coefficients are non-zero, and quickly drop off to less than half of 
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nominal coverage by 1% sparsity. The refitted CV CIs undercover by about 10% even in the 

sparsest settings, and also fall off further in coverage as sparsity decreases. The EigenPrism 

and Dicker CIs achieve at least nominal coverage at all sparsity levels examined. Figure 7(b) 

shows average CI widths for the same simulations. The much smaller widths of the scaled 

Lasso and refitted CV CIs align with their lack of coverage, reflecting the fact that the bias 

and variance of their estimators can be poorly characterized in finite samples. The Dicker 

CIs are consistently wider than EigenPrism's, with the inflation factor nearly 40% at the 

right-hand side of the plot.

3.3 Genetic Variance Decomposition

Consider a linear model for a centered continuous phenotype (yi) such as height, as a 

function of a centered SNP array (xi). The variance can be decomposed as

(3.1)

Under linkage disequilibrium, assuming column-independence is unrealistic. However, a 

wealth of genomic data has resulted in this column dependence possibly being estimable 

from outside data sets (e.g. Abecasis et al. (2012)), so we may instead take 

with Σ known (we will discuss a relaxation of the normality in Section 4.1). Then Equation 

(3.1) reduces to

which provides a formula for the linear model's signal-to-noise ratio,

The SNR is connected to the genetic heritability in that, for the simplified approximation to 

a linear model with additive i.i.d. noise, it quantifies what fraction of a continuous 

phenotype's variance can be explained by SNP data. We note that there are many different 

definitions of heritability, and the SNR aligns most closely with the narrow-sense, or 

additive, heritability, as we do not allow for interactions or dominance effects. The extent of 

the connection between the two definitions depends on how complete the SNP array is—if 

every SNP is measured, they correspond exactly.

Although until now we have been working with , while the SNR estimation problem 

seems to call for , the above problem turns out to fit right into our framework. 

Explicitly, the linear model can be rewritten as
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where now the rows of (XΣ−1/2) are i.i.d. N(0, I), and θ2 corresponds to the new quantity of 

interest: . Since  now, applying our methodology to 

XΣ−1/2 gives a natural estimate for SNR, namely,

Continuing, as we have done throughout this paper, to treat  as if it is known 

and equal to , our distributional results for T2 extend to give us an approximate 

confidence interval for .

We turn again to simulations to demonstrate the performance of the EigenPrism procedure 

described above for constructing SNR CIs. One major consideration is that of course, SNP 

data is discrete, not Gaussian. However, we will show in Section 4.1 that the EigenPrism 

procedure works well empirically even under non-Gaussian marginal distributions. Here, we 

run experiments for n = 105, p = 5 × 105, θ2 + σ2 = 104, Bernoulli(0.01) design with 

independent columns, β having 10% non-zero entries, and SNR varying from nearly 0 to 

nearly 1. Figure 8 shows the EigenPrism CI coverage and average widths. Note that although 

our CIs are conservative, we never lose coverage, and at worst our 95% CI would give the 

SNR to within an error of ±6.8%.

4 Robustness and 2-Step Procedure

In this section we follow up our investigation of the EigenPrism framework by considering 

its robustness to model misspecification and presenting a 2-step procedure that can improve 

the CI widths of the vanilla EigenPrism procedure.

4.1 Robustness

An important practical question is how robust the EigenPrism CI is to model 

misspecification. In particular, our theoretical calculations made some fairly stringent 

assumptions, and we explore here their relative importances. Some standard assumptions 

that we rely on are that the model is indeed linear and the noise is i.i.d. Gaussian and 

independent of the design matrix. These assumptions are all present, for instance, in OLS 

theory, and we assume that problems substantially deviating from satisfying them are not 

appropriate for our procedure. As explained in Section 1.2, the random design assumption is 

necessitated by the high-dimensionality (p > n) of our problem, and within the random 

design paradigm, the assumption of i.i.d. rows is still broadly applicable, for instance 

whenever the rows represent samples drawn independently from a population.
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The not-so-standard assumption we make is that the columns of X are also independent, and 

all of X's entries are N(0, 1) (note that each column of a real design matrix can always be 

standardized so that at least the first two marginal moments match this assumption). These 

assumptions are important because they ensure that the columns of V are uniformly 

distributed on the unit sphere, so that we can characterize both the expectation and variance 

of their inner product with β. Although we will see that the marginal distribution of the 

elements of X is not very important as long as n and p are not small, in general the 

independence of the columns is crucial. We note that there is work in random matrix theory 

showing that for certain random matrices which are not i.i.d. Gaussian, the eigenvectors are 

still in some sense asymptotically uniformly distributed on the unit sphere (see for example 

Bai et al. (2007)). This suggests that EigenPrism CIs, at least asymptotically, may work well 

in a broader context than shown so far.

Before explaining further, we feel it is important to recall that for two of the three inference 

problems this work addresses (inference for σ2 and signal-to-noise ratio), the EigenPrism 

procedure extends to easily account for any known covariance matrix among the columns of 

X. However in the vanilla example of simply constructing CIs for θ2, correlation among the 

columns of X can cause serious problems. To first order, we need , or 

else T2 will be biased and the resulting shifted interval will have poor coverage. From a 

practical perspective, unless β is adversarially chosen, it may seem unlikely that β will be 

particularly aligned or misaligned (orthogonal) to the directions in which X varies. In 

particular, if we make a random effects assumption and say that the entries of β are i.i.d. 

N(0, τ2), then the EigenPrism procedure will achieve nominal coverage. A slightly more 

subtle problem occurs if β is chosen not adversarially, but sparse in the basis of X's principal 

components. In this case, although T2 is approximately unbiased, the variance estimate 

could be far too small, resulting again in degraded coverage.

To investigate how wrong the model has to be to make our CIs undercover, we construct 

EigenPrism CIs on data coming from models not satisfying our assumptions. In particular, 

we ran the EigenPrism procedure on design matrices with either i.i.d. entries with very 

different higher-order moments than a Gaussian, i.i.d. entries that were sparse, or Gaussian 

entries and correlated columns. Since the direction of β becomes relevant in all these cases, 

we performed experiments with both dense and sparse β, and in each regime measured 

coverage for 20 different β's. The results of simulations with n = 103, p = 104, and θ2 + σ2 = 

104 are plotted in Figure 9. Each boxplot summarizes the coverage for 20 different β's, each 

of which is estimated with 500 simulations. The whiskers of the boxplots extend to the 

maximum and minimum points, and the black dotted line is the 95% confidence lower-

bound for the lowest whisker in each plot assuming all CIs achieve exact coverage. As can 

be seen from Figures 9(a) and 9(c), when β is dense, the marginal moments and sparsity of 

the entries of X do not affect coverage. Figures 9(e) and 9(f) show that even small 

unaccounted-for correlations among the columns of X do not greatly affect coverage, 

although larger correlations, as expected, can result in serious undercoverage for certain β's. 

As a comparison, we also simulated the Dicker CIs in the setting of Figures 9(e) and 9(f), 

wherein coverage never exceeded 40% for any β or correlation structure. Figures 9(b) and 

9(d) show that when β is sparse, coverage is much more sensitive to sparsity in X, although 
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if X is not sparse, coverage remains robust to higher-order moments of the design matrix. 

Figure 10 demonstrates the crucial difference when X is sparse by showing a few 

realizations of quantile-quantile plots comparing the distribution of the entries of V1 to a 

Gaussian distribution, for Bernoulli(0.1)- and Bernoulli(0.001)-marginally-distributed X. 

The figure shows that the distribution for Bernoulli(0.1) is very nearly Gaussian, but that this 

is far from the case for Bernoulli(0.001), and thus it is the problem described at the end of 

the preceding paragraph that causes problems.

4.2 2-Step Procedure

Note that in the variance upper-bound of Equation (2.7), the unknown ρ is maximized over 

to remove it from the equation. This leads not only to conservative CIs, but suboptimal w* as 

well, since w* are obtained by minimizing this upper-bound, as opposed to the more 

accurate function of ρ. However by the end of the EigenPrism procedure, we have produced 

estimates of both θ and θ2 + σ2, suggesting the possibility of a 2-step plug-in procedure to 

remove the need for the upper-bound in Equation (2.7). Explicitly, in the first step, we run 

the EigenPrism procedure to obtain an estimate  of ρ. In the second step, 

we re-run the procedure treating  as known, and thus minimize the bound (2.5) to 

compute w* . Although the 2-step procedure indeed produces shorter CIs than the 

EigenPrism procedure, it does not achieve nominal coverage with the same consistency, as 

shown in Figure 11.

There are two particularly surprising aspects of this plot. The first is that the 2-step 

procedure produces substantial gains in width even for ρ values near 0 and 1. This is 

surprising because the upper-bound (2.7) that is eliminated by the 2-step procedure is tight 

when ρ is nearly 0 or 1, however it is still not exact. The slightly loose variance upper bound 

turns out to have an optimizing w that is substantially different from the exact variance 

formula. The second surprising feature is that the width improvement is in fact smallest for ρ 
not near the endpoints 0 or 1. This can be explained by the clipping at 0. For ρ ≈ 0, most 

CIs, both EigenPrism and 2-step, are cut nearly in half by clipping, so the fractional width 

improvement achieved by the 2-step procedure is fully realized. For ρ ≈ 1, both intervals are 

rarely clipped, and again the 2-step procedure realizes its full width improvement. However, 

for ρ not close to 0 or 1, many EigenPrism CIs are only slightly shrunk by clipping, so that 

the shorter 2-step intervals shorten the right side of the interval but leave the unclipped left 

side about the same, so that much less than the full width improvement is realized.

Although the 2-step procedure can provide substantial gains in width, it loses the robustness 

of the EigenPrism procedure, as shown in the slight undercoverage for n = 100 and the 

substantial undercoverage for large ρ and n = p. Therefore, in practice, we recommend use 

of the 2-step procedure instead of the EigenPrism procedure when n ≉ p or when the 

statistician is confident that ρ is not close to 1.

5 Variance Decomposition in the Northern Finland Birth Cohort

We now briefly show the result of applying EigenPrism to a dataset of SNPs and continuous 

phenotypes to perform inference on the . The data we 
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use comes from the Northern Finland Birth Cohort 1966 (NFBC1966) (Sabatti et al., 2009; 

Järvelin et al., 2004), made available through the dbGaP database (accession number 

phs000276.v2.p1). The data consists of 5402 SNP arrays from subjects born in Northern 

Finland in 1966, as well as a number of phenotype variables measured when the subjects 

were 31 years old. After cleaning and processing the data (the details of which are provided 

in Appendix I), 328,934 SNPs remained. The resulting 5402 × 328, 934 design matrix X 
contained approximately 58% 0's (homozygous wild type), 34% 1's (heterozygous), and 8% 

2's (homozygous minor allele).

In order to use EigenPrism directly, we would need to know Σ, as simply using Ip presents 

two possible problems:

(1) If X is not whitened before taking the SVD, the columns of V may be far from 

Haar-distributed, rendering our bias and variance computations incorrect.

(2)
If Σ = Ip, then the ostensible target of our procedure is , which 

may differ substantially from .

Unfortunately, the problem of estimating the covariance matrix of a SNP array is extremely 

challenging (and the subject of much current research) due to the fact that n << p, even if we 

use outside data, so we prefer to avoid it here. In order to simply treat the covariance matrix 

as diagonal, we must consider the two problems above. There is a widely-held belief that the 

SNP locations that are important for any given trait are relatively rare (see, for example, 

Yang et al. (2010); Golan and Rosset (2011)), and thus spaced far enough apart on the 

genome to be treated as independent. This precludes problem (2) above, since with nonzero 

coefficients spaced far apart, we have  (we take the columns of X to be 

standardized, so the diagonal of Σ is all ones). For problem (1), we know that far apart SNPs 

are very nearly independent, so we may expect that the true Σ is roughly diagonal, and we 

already showed in Section 4.1 that the EigenPrism procedure is robust to some small 

unaccounted-for covariances when constructing CIs for . To ensure that problems (1) 

and (2) do not cause EigenPrism to break down, we perform a series of diagnostics before 

applying it to the real data.

Given the approximation of Σ as diagonal, we first performed a series of simulations to 

ensure EigenPrism's accuracy was not affected. Specifically, we ran the EigenPrism 

procedure (with adjustments described in the paragraph below) on artificially-constructed 

traits, but using the same standardized design matrix X from the NFBC1966 data set. For 20 

different β vectors, we generated 500 independent Gaussian noise realizations and recorded 

the coverage of 95% EigenPrism CIs for SNR. The noise variance was 1, and the β's were 

chosen to have 300 nonzero entries with uniformly distributed positions and all nonzero 

entries equal to  (so that SNR = 0.3 if = Σ = Ip). Table 2 shows the 

coverage over the 20 β's, and they are indeed all quite close to 95%, even though this 

simulation was conditional on X. Recomputing the target SNR using other estimates of Σ, 

such as hard-thresholding the empirical covariance at 0.1, changed the value of SNR very 

little, so that coverage was largely unaffected.
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A second diagnostic was to examine the columns of V to check for Gaussianity related to the 

phenomenon mentioned in Section 4.1. Indeed, we find that some of the columns of V are 

quite non-Gaussian, as shown in Figure 12. However, this phenomenon is localized to only 

the columns of V corresponding to the very largest λi. Applying the unaltered EigenPrism 

procedure could cause two problems. First, if the the first columns of V are not Haar-

distributed, T2 could be biased and/or higher-variance than our theory accounts for. Second, 

recalling the interpretation of EigenPrism as a weighted regression of  on λi, the fact that 

the problematic eigenvectors correspond to the largest eigenvalues means that they have high 

leverage, which exacerbates any unwanted bias or variance they create. Luckily, both 

problems can be remedied by running the EigenPrism SNR-estimation procedure (with Σ = 

Ip after standardizing the columns of X) with the added constraint to the optimization 

program in Equation (2.8) that the first entries of w are equal to zero. Explicitly, as the non-

Gaussianity of the columns of V appears to dissipate after around the 100th column, we set 

w1 = ··· = w100 = 0. The choice of 100 is somewhat subjective, but we tried other values and 

obtained very similar results. Because the resulting weights still obey the original 

constraints, the estimator of  remains unbiased and motivated the variance upper-bounds 

remain valid. Although by the diagnostics from Section 4.1, this adjustment has the added 

advantage of making the entire EigenPrism procedure completely independent of the first 

100 rows of U. It has been shown that the first rows of U are strongly related to the 

population structure of the sample (for example, the first two principal components 

correspond closely with subjects’ geographic origin), so constraining the first weights to be 

zero has the added effect of controlling for population structure (Price et al., 2006). As a 

final note, by subtracting off the means of each column of X, we reduced X's rank by one, 

resulting in λn = 0. As this is not actually reflective of the distribution of X, we also force wn 

= 0 so that the last column of V and last row of U do not contribute to our estimate or 

inference.

Encouraged by the simulation results from Table 2, we proceeded to generate EigenPrism 

CIs for the SNRs of the 9 traits analyzed in Sabatti et al. (2009), as well as height (these 10 

traits were also analyzed in Kang et al. (2010)). For each trait, transformation and subject 

exclusion was performed before computing SNR, following closely the procedures used in 

Sabatti et al. (2009); Kang et al. (2010) (see Appendix I for details). Lastly, all non-height 

phenotype values were adjusted for sex, pregnancy status, and oral contraceptive use, while 

height was only adjusted for sex. Table 3 gives the point estimate and 95% CI for the SNR 

of each phenotype, as well as the number of subjects used. Recall that these are CIs for the 

fraction of variance explained by the linear model consisting of the given array of SNPs. 

Still, these CIs generally agree quite well with heritability estimates in the literature (Kang et 

al., 2010). For instance, (Kang et al., 2010, Supplementary Information) reports two 

“pseudo-heritability” estimates of 73.8% and 62.5% for height, and 27.9% and 24.2% for 

BMI, on the same data set. This is somewhat remarkable given that they use a completely 

different statistical procedure with different assumptions. In particular, while other works in 

the heritability literature tend to treat β as random, EigenPrism was motivated by a simple 

model with β fixed and the rows of X random. We find this model more realistic, as true 

genetic effects are not in fact random, but fixed. One could argue the difference is not too 

important as long as the genetic effects are approximately distributed as the random effects 
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model chosen, but such an assumption is impossible to verify in practice, as the true effects 

are never observed. EigenPrism's assumptions, on the other hand, are all on the design 

matrix, which is fully observed, leading to checks and diagnostics that can be performed to 

ensure the procedure will generate reasonable CIs.

6 Discussion

We have presented a framework for performing inference on the -norm of the coefficient 

vector in a linear regression model. Although the resulting confidence intervals are 

asymptotic, we show in extensive simulations that they achieve nominal coverage in finite 

samples, without making any assumption on the structure or sparsity of the coefficient 

vector, or requiring knowledge of σ2. In simulations, we are able to relax the restrictive 

assumptions on the distribution of the design matrix and gain an understanding of when our 

procedure is not appropriate. Applying this framework to performing inference on 

regression error, noise level, and genetic signal-to-noise ratio, we develop new procedures in 

all three that are able to construct accurate CIs in situations not previously addressed in the 

literature.

This work leaves open numerous avenues for further study. We briefly introduced a 2-step 

procedure that provided substantially shorter CIs than the EigenPrism procedure, but had 

less-consistent coverage. If we could better understand that procedure or come up with 

diagnostics for when it would undercover, we could improve on the EigenPrism procedure. 

We also explored in simulation a number of model failures that our procedure was robust (or 

not) to, but further study could provide theoretical guarantees on the coverage of the 

EigenPrism procedure for a broader class of random design models. Section 4.1 also briefly 

alluded to improved robustness in a random effects framework, which we have not explored 

further here. Finally, although in this work we consider a statistic that is linear in the , the 

framework and ideas of this work are not intimately tied to this restriction, and there may 

exist statistics that are nonlinear functions of the  that give improved performance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Plot of weights wi as a function of normalized eigenvalues λi for n = 200 and p = 2000.
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Figure 2. 
Estimate of the asymptotic relative efficiency of T2 to T1.
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Figure 3. 
Probability density function (PDF) of Marčenko–Pastur distribution for various values of γ.
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Figure 4. 
(a) Coverage of 95% EigenPrism and Dicker confidence intervals as a function of ρ for p = 

104 and θ2 + σ2 = 104. (b) EigenPrism confidence interval, Dicker confidence interval, and 

Bayes credible interval widths as a function of n for p = 104 and β sampled according to the 

Bayesian model in Equation (G.1).
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Figure 5. 

Plot of the fraction  as a function of n/p (on the log scale) for p = 104.
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Figure 6. 
Coverage of 95% EigenPrism and Dicker confidence intervals for σ2 as a function of ρ for p 
= 104 and θ2 + σ2 = 104. Each point represents 104 simulations, and the grey line denotes 

nominal coverage.
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Figure 7. 
(a) Coverage and (b) width of scaled lasso, refitted cross validation, plug-in CI from Dicker 

(2014) described in Section 3.1, and EigenPrism confidence intervals when n = 500, p = 

1000, σ2 = 1, and non-zero entries of β equal to 1. Each point represents 104 simulations, 

and the grey line denotes nominal coverage.
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Figure 8. 
(a) Coverage, and (b) average widths, of EigenPrism SNR 95% confidence intervals. 

Experiments used n = 105, p = 5×105, θ2 + σ2 = 104, Bernoulli(0.01) design, and β with 

10% non-zero, Gaussian entries. Each boxplot summarizes the (a) coverage and (b) width 

for 20 different β's, each of which is estimated with 500 simulations. The whiskers of the 

boxplots extend to the maximum and minimum points. The black dotted line in (a) is the 

95% confidence lower-bound for the lowest whisker in each plot assuming all CIs achieve 

exact coverage, and the grey line shows nominal coverage.
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Figure 9. 

The first column of plots ((a), (c), (e)) generates  and renormalizes to control 

θ2, while the second column of plots ((b), (d), (f)) does the same but then sets 99% of the βi 

to zero before renormalizing. The first two rows of plots ((a), (b), (c), (d)) use Xij i.i.d. from 

some non-Gaussian distribution renormalized to have mean 0 and variance 1. The third row 

of plots ((e), (f)) uses marginally standard Gaussian X but with correlations among the 

columns; see Appendix H for detailed constructions. See text for detailed boxplot 

constructions and interpretation of the dashed line.
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Figure 10. 
Quantile-quantile plots measuring the Gaussianity of 5 realizations of the entries of V1 for 

(a) Bernoulli(0.1)-distributed X and (b) Bernoulli(0.001)-distributed X.
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Figure 11. 
(a) Coverage and (b) width relative to EigenPrism of 2-step confidence intervals for p = 104 

and θ2 + σ2 = 104 across a range of ρ and n, with each point representing 104 simulations. 

Grey lines show (a) nominal coverage and (b) reference ratio of 1.
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Figure 12. 
Distribution of the entries of some eigenvectors of the NFBC1966 design matrix.
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Table 1

Values of  for a range of n.

n 10 20 50 100 500 1000 5000

Coverage 87.5% 91.0% 93.3% 94.1% 94.8% 94.9% 95.0%
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Table 3

CIs for heritability estimates for each of the 10 continuous phenotypes considered, along with the number of 

samples used for each.

Phenotype Name # Samples SNR 95% CI (%) Point Estimate (%)

Triglycerides 4644 [3.1, 29.3] 16.2

HDL cholesterol 4700 [17.1, 42.9] 30.0

LDL cholesterol 4682 [27.7, 53.6] 40.7

C-reactive protein 5290 [5.6, 28.8] 17.2

Glucose 4895 [4.0, 28.9] 16.5

Insulin 4867 [0.0, 21.5] 9.0

BMI 5122 [8.9, 32.8] 20.9

Systolic blood pressure 5280 [7.8, 31.0] 19.4

Diastolic blood pressure 5271 [7.4, 30.7] 19.0

Height 5306 [46.0, 69.1] 57.6
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