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Abstract

Bioprocess optimization has yielded powerful clones for biotherapeutic production. However, new 

genomic technologies allow more targeted approaches to cell line development. Here we review 

efforts to enhance protein production in mammalian cells through metabolic engineering. Most 

efforts aimed to reduce toxic byproducts accumulation to enhance protein productivity. However, 

recent work highlights the possibility of regulating other desirable traits (e.g., apoptosis and 

glycosylation) by targeting central metabolism since these processes are interconnected. 

Therefore, as we further detail the pathways underlying cell growth and protein production and 

deploy diverse algorithms for their analysis, opportunities will arise to move beyond simple cell 

line designs and facilitate cell engineering strategies with complex combinations of genes that 

together underlie a phenotype of interest.

Graphical Abstract

Correspondence to: Nathan E. Lewis, nlewisres@ucsd.edu, Address: 9500 Gilman Dr. MC 0760, La Jolla, CA, 92093. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Opin Syst Biol. Author manuscript; available in PMC 2018 December 01.

Published in final edited form as:
Curr Opin Syst Biol. 2017 December ; 6: 1–6. doi:10.1016/j.coisb.2017.05.019.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Over the past few decades, protein-based products have emerged as important 

biopharmaceuticals that treat complex human diseases (e.g., inflammatory disorders, cancer 

and infectious diseases). These drugs are predominantly synthesized in mammalian cells 

lines since the cells often produce high quantities of therapeutic proteins with appropriate 

critical quality attributes (CQAs) that impact potency and immunogenicity (e.g., 

glycosylation) [1]. The market for mammalian-produced therapeutic proteins has gradually 

grown and is projected to further increase to ~20% of the pharmaceutical market in 2017 [2].

High volumetric productivity and product titer are important to obtain more affordable 

protein therapeutics [3]. A cell line may achieve these goals from a combination of changes 

that collectively make the host system a protein “superproducer” [4]. Thus, these attributes 

are selected by manufacturers and include high translation efficiency, secretory capacity, 

growth capacity, duration of viability at maximum cell density, and human-like post-

translational modifications [4, 5].

To date, most improvements in protein production have been achieved by media and 

bioprocess optimization (e.g., feeding strategies and process parameter control) [6]. Random 

mutagenesis is also been used to find cell factories with desired phenotypes. However, the 

availability of high-throughput omics data (genomic, transcriptomic, proteomic and 

metabolomic) [7] and the emergence of genome editing tools [3] provide novel opportunities 

for targeted genome engineering of the host cell. Indeed, they have enabled the 

overexpression or down-regulation of specific gene candidates to increase yield during 

culture and control product quality [3, 4, 8–10]. Several prominent strategies have targeted 
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cell metabolism, cell cycle regulatory machinery, the protein secretion pathway, apoptosis, 

and protein glycosylation [9, 11].

Core metabolic engineering for an effective host cell alteration

The engineering approaches developed to control protein production attributes have resulted 

in mixed levels of success. Most successful studies targeted energy metabolism to reduce the 

accumulation of toxic by-products (i.e., lactate and ammonia) and/or increase metabolic 

efficiency (Table 1).

Several studies have successfully decreased glucose uptake by up to 50%, leading to reduced 

lactate production. This has been accomplished by knocking down the glucose transporter 

GLUT1 [12] or by transfecting the fructose transporter GLUT5 [13, 14]. An 80% reduction 

in lactate production was also achieved by knocking down lactate dehydrogenase [15, 16] 

leading to an improved product titer from 2–3-fold. Other strategies have overexpressed 

pyruvate carboxylase to improve the connection between glycolysis and the TCA cycle [17–

20]. Interestingly, the overexpression of pyruvate carboxylase decreased glutamine 

consumption and extended cell viability. Zhou et al. [21] attenuated the expression of both 

lactate dehydrogenase and pyruvate dehydrogenase kinase using siRNAs, thus forcing the 

conversion of pyruvate to acetyl-coA instead of lactate. This strategy successfully reduced 

lactate production by almost 90% and increased specific and volumetric productivity by 

75% and 68%, respectively, without decreasing cell growth. Another double target strategy 

to reduce lactate production was performed by [22] by overexpressing alanine 

aminotransferase and the taurine transporter. The overexpression of the taurine transporter in 

CHO cells leads to an accumulation of alanine in the early period of the culture, but an 

overexpression of alanine aminotransferase converts the alanine to pyruvate, which is 

subsequently metabolized in the TCA cycle.

In addition to lactate, efforts have been made to control other toxic byproducts that impact 

cell viability and product quality. For example, ammonia production has been reduced by 

overexpressing the first two steps of the urea cycle by up to 35% [23] and by overexpressing 

glutamine synthetase. Such efforts have improved the synthesis of glutamine from glutamate 

[24–26] and thereby improved cell phenotypes.

Beyond the aim to eliminate toxic byproducts, Chong et al. [27] engineered metabolism to 

improve integral cell number. They had observed that malate accumulated in the medium of 

CHO cultures. This suggested that a bottleneck existed at the step of the malate 

dehydrogenase reaction in the TCA cycle. To overcome this, they overexpressed malate 

dehydrogenase II to reduce NAD+ concentration and increase NADH, which was further 

used by oxidative phosphorylation to produce ATP, thus increasing cell viability by 1.9-fold.

Thus, numerous efforts have been made to engineer the central metabolic pathways in 

mammalian cell culture to reduce toxic byproducts and increase cell viability, usually by 

targeting just one or two genes. Further efforts will continue, especially since recent work 

has identified many more endogenous metabolites that inhibit growth [28] and so metabolic 

engineering efforts will aim to control their concentration in mammalian cell culture.
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Controlling other metabolic pathways while engineering central metabolism

Most of the metabolic engineering efforts in the aforementioned studies aimed to reduce 

toxic by-product accumulation by targeting single genes related to carbohydrate metabolism 

(Table 1). However, studies are now tracking the influence of central carbon metabolism on 

other pathways, including the biosynthesis and metabolism of amino acids, nucleic acids, 

lipids, and ultimately protein synthesis and protein quality. The knowledge of these pathway 

connections can be used, for example, to track the cellular switch occurring between 

exponential growth and protein production, since this event changes the balance of different 

central metabolic pathways (e.g., pentose phosphate pathway flux and oxidative TCA cycle) 

[29]. For example, the ratio of flux between the pentose phosphate pathway (PPP) and 

glycolysis flux has been suspected to significantly impact protein production. Indeed, the 

PPP activity in a human cell line was much lower compared to CHO K1 cell line that 

produced higher amounts of protein [30, 31]. Furthermore, Mulukutla et al. [32] recently 

investigated the regulation of glucose metabolism, including the connections between 

glycolysis, the pentose phosphate pathway, nucleotide synthesis, glycerol-3 phosphate 

metabolism and serine/glycine/threonine biosynthesis. The interconnection between these 

pathways reiterates the central role of carbon metabolism of regulating the global metabolic 

state of a cell and other cellular processes (e.g., apoptosis, glycosylation) influencing protein 

quality attributes (Figure 1).

With carbon metabolism connected to other cell processes, it is possible to control desired 

cellular attributes by only manipulating genes of central metabolism. For example, Majors et 

al. [33] inhibited apoptosis by modifying GLUT1 and/or hexokinase expression, since a high 

glycolytic activity can slow the onset of apoptosis by improving energy efficiency [34]. 

Moreover, recent studies have altered glycosylation patterns by maintaining efficient glucose 

metabolism and avoiding accumulation of toxic byproducts, since central metabolism 

controls the supply of nucleotide sugar precursors [35, 36]. Finally, Mulukutla et al. [32] 

highlighted several potential engineering targets within central metabolism (e.g. PFK, 

F26BP, PKM2, PGAM, 3PG, 3PGDH and 6PGD) that globally impact cell growth and 

protein production. Thus, knowledge of how different pathways are connected will guide 

future cell engineering efforts and enable the use of metabolic engineering to regulate the 

many pathways related to protein production.

Conclusion - A more holistic picture of mammalian cell physiology can 

guide more complex engineering strategies

The ideal CHO cell line for protein production does not have any exact, defined phenotypic 

traits in particular. However, it typically includes attributes of high cell viability, cell density, 

and titer. It also would exhibit robust growth, high stability of expression and control over 

desired post-translational modifications. To achieve these attributes, multiple modifications 

are needed in CHO cells, and such changes would target diverse cell pathways and 

physiological functions.

To begin identifying genes whose expression correlate with desirable attributes of protein 

synthesis and secretion, several studies have use diverse experimental data types to compare 
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mammalian factories that produce high or low titers of recombinant protein. These have 

included data types such as transcriptomics [5, 37, 38], metabolomics [39], proteomic 

profiling [40, 41], and miRNA expression patterns [42]. These studies highlight the 

importance of intracellular trafficking, endocytosis, cytoskeletal elements, lipid metabolism, 

the unfolded protein response, protein-processing constituents in the Golgi, and cell cycle 

related functions (e.g., apoptosis resistance and proliferation) [3, 5]. However, we are still 

missing fundamental knowledge about how these cellular mechanisms are organized and 

link together. Furthermore, it is often not clear how they are connected to process conditions, 

and how these factors all impact protein production [43]. Thus, efforts to further enhance 

drug production will be facilitated as the molecular basis of these processes are studied and 

linked to protein production. Pathway maps and interaction networks [44–46] are starting 

points that link the processes, and can help identify new process conditions and cell 

engineering strategies that control product quantity and quality.

To completely map out the cellular pathways, it is first critical to know the genetic basis of 

the cells. Recent efforts to sequence the Chinese hamster genome [47–50] have enabled this 

for CHO cells. Furthermore, variations in the cell lines, such as mutations and epigenetic 

changes in individual cell lines [51], can be catalogued and analyzed to help develop 

engineering strategies for improved protein factories, focusing on a specific cell line.

With the genetic basis established, a holistic understanding of the cellular basis for high 

productivity could be achieved within the systems biology context. This will be 

accomplished by the development of detailed metabolic pathway and interaction maps of the 

major cell processes, and identifying the genes associated with the pathways [45, 52]. These 

metabolic networks can be converted into mathematical models that can guide engineering 

efforts by quantifying the connection of cellular processes to desired phenotypes and protein 

production using metabolic flux analysis [44, 45, 53]. Furthermore, these models will allow 

the analysis and integration of the avalanche of high-throughput data available at the 

genomic, transcriptomic, proteomic, and metabolomic levels thanks to innovations in these 

fields [54]. The analyses of these data in the context of cellular pathways will be particularly 

informative when investigated along with phenotypic differences of different cell lines, such 

as variations in growth media, feeding strategies, process conditions, and the type and 

amount of produced protein.

Finally, with the genetic basis and pathways mapped out, we can move toward the design 

and implementation of more complex genetic changes, using multiplex genome edits in 

CHO cells [55–57]. Similarly, we can harness the multiplex targeting of miRNA [58, 59]. 

Thus, with the guidance of predictive mathematical models of CHO cell metabolism, and 

emerging concepts of dynamic [60, 61] and combinatorial [8], more complex and targeted 

approaches can be explored to improve mammalian factories. These tools will be invaluable 

in the future of engineering, wherein multiplex metabolic engineering strategies account for 

details of cell line, culture environment and product, in the pursuit of a perfect therapeutic 

production factory.
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Highlights

• Mammalian cell metabolism impacts therapeutic protein production

• Recent sequencing efforts allow more targeted engineering approaches in 

CHO cells

• Metabolic engineering of CHO metabolism has improved production 

processes

• Systems biology tools can guide future engineering of metabolic phenotypes

Richelle and Lewis Page 10

Curr Opin Syst Biol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Central role of carbon metabolism to cell physiology, product quality, and bioprocess 
optimization
The engineering of central carbon metabolism enables the regulation of key cellular 

processes (i.e., glycosylation, secretory pathways, cell cycle regulation, apoptosis, 

intracellular trafficking, and endocytosis), involved in the acquisition of protein quality 

attributes (i.e., protein composition, aggregation, stability, specificity, complexity, and 

folding). Moreover, it helps in efforts to control the global metabolic state of a cell to ensure 

the achievement of optimal culture process goals (i.e., cell density, viability, productivity, 

product titer, quality, and reproducibility).
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Table 1

Metabolic engineering strategies used to reduce accumulation of lactate and ammonia in the culture medium

Target gene Effect References

glucose transporter (GLUT1) Decreased the transporter affinity to reduce flux through glycolysis and lactate 
production.

[12]

fructose transporter (GLUT5) Transfected GLUT5 to allows cell to grow on fructose as sole carbon source which 
results in a reduction of sugar consumption and lactate production.

[13, 14]

lactate dehydrogenase (LDH) Reduced the conversion of lactate from pyruvate and the regeneration of NAD+. [15, 16]

pyruvate carboxylase (PC) Increased the conversion of pyruvate to oxaloacetate and its entry into the TCA 
cycle. The overexpression of PC is often associated with a reduction in specific 
glucose, glutamine consumption rates and lactate to glucose yield.

[17–20]

Co-overexpression of alanine 
aminotransferase (ALT1) and taurine 
transporter (TAUT)

Increased transamination between 2-oxoglutarate and alanine, which accumulates 
early in the culture period due to the TAUT introduction. Pyruvate and glutamate 
were formed, thus increasing the flux through TCA cycle and reducing lactate 
formation.

[22]

carbamoyl phosphate synthetase I (CPS 
I) and ornithine transcarbamoylase 
(OTC).

Improved the first and the second steps of urea cycle, leading to decreased ammonia 
secretion.

[23]

glutamine synthetase (GS) Improved the synthesis of glutamine from glutamate and eliminated the need of 
exogenous supplied glutamine and reduced ammonia accumulation

[24–26]

malate dehydrogenase (MDH) Improved the conversion of oxaloacetate to malate, forced flow into TCA cycle, 
increased ATP and NADH intracellular levels, and improved growth.

[27]
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