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Abstract

Inference on data with missingness can be challenging, particularly if the knowledge that a 

measurement was unobserved provides information about its distribution. Our work is motivated 

by the Commit to Quit II study, a smoking cessation trial that measured smoking status and weight 

change as weekly outcomes. It is expected that dropout in this study was informative and that 

patients with missed measurements are more likely to be smoking, even after conditioning on their 

observed smoking and weight history. We jointly model the categorical smoking status and 

continuous weight change outcomes by assuming normal latent variables for cessation and by 

extending the usual pattern mixture model to the bivariate case. The model includes a novel 

approach to sharing information across patterns through a Bayesian shrinkage framework to 

improve estimation stability for sparsely observed patterns. To accommodate the presumed 

informativeness of the missing data in a parsimonious manner, we model the unidentified 

components of the model under a non-future dependence assumption and specify departures from 

missing at random through sensitivity parameters, whose distributions are elicited from a subject-

matter expert.
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1. Introduction

One of the more challenging aspects in analyzing repeatedly measured data on human 

subjects is handling missing observations. This is particularly true when the knowledge that 

an observation is missing may itself provide information about the distribution of the 

unobserved data. Methodology to deal with this informative missingness is both challenging 
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and potentially controversial, as any analysis will require the statistician to make untestable 

assumptions about the unobserved data. Despite this difficulty missingness in experimental 

data is ubiquitous, and the analyst risks mischaracterizing the results or drawing faulty 

conclusions by failing to deal with it appropriately.

We recall some key results from the missing data literature (e.g., Little and Rubin, 2002). 

Let Yi = (Yi1, …, YiT) denote the vector of (potentially observed) responses, and let Rit be 

an indicator that response Yit is observed, i.e., Rit = I(Yit is observed). Define the (full) data 

response model as the probability model for Y, p(y|θ1), parametrized by θ1. We then define 

the missing data mechanism (MDM) as p(r|y, θ2) with parameter θ2. Finally, yobs 

(respectively, ymis) is the set of Yits that are observed (missing). The missing data 

mechanism is ignorable if the following three conditions hold: 1) p(r|y, θ2) = p(r|yobs, θ2), 

i.e., the missingness only depends on the observed responses, so it is missing at random 

(MAR); 2) the parameter θ of the full model p(y, r|θ) can be decomposed as (θ1, θ2) with 

p(y|θ1) and p(r|y, θ2); 3) the parameters of the response model and the missing data 

mechanism are a priori independent, i.e. p(θ) = p(θ1)p(θ2). Models with ignorable 

missingness comprise a wide and commonly used class of techniques. In particular, standard 

Bayesian analysis using the observed data likelihood for the responses implicitly makes the 

assumption that missingness is ignorable (Schafer, 1997; Little and Rubin, 2002).

When any of the three conditions above are not satisfied, the missingness is referred to as 

non-ignorable. Often, this is due to the first condition failing, i.e., p(r|y, θ2) ≠ p(r|yobs, θ2), 

known as missing not at random (MNAR). It is then necessary to specify the MDM as a 

function of both yobs and ymis. The joint model for (y, r) will require untestable assumptions 

about the missing data, as can be seen from the factorization

(1)

While the parameters of the observed data model θO are identifiable, it is clear that the 

observed data provide no information about θE. We call the leading term on the right the 

extrapolation distribution (Daniels and Hogan, 2008).

There are three main classes of models based on different factorizations of the full data 

distribution p(y, r|θ): selection models, shared parameter models, and pattern mixture 

models. Selection models involve the factorization p(y, r|θ) = p(y|θ1)p(r|y, θ2) (Diggle and 

Kenward, 1994). If data are MNAR, structural assumptions about the MDM lead to a fully 

identified model, including the extrapolation distribution for which the observed data give no 

information. Shared parameter models assume a latent variable βi, and typically set yi and ri 

to be independent given βi by modeling p(yi|βi) and p(ri|βi) (Wu and Carroll, 1988; Cowles 

et al., 1996; Dunson and Perreault, 2001). A drawback of shared parameter models is that 

formulas for the MDM are generally difficult to obtain (β must be integrated out), making it 

challenging to specify MAR models.

Alternatively, pattern mixture models (PMM) factor p(y, r|θ) as p(r|π)p(y|r, ψ), first 

drawing the missingness indicators R, referred to as the missingness pattern, then the 
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responses conditional on the pattern (Little, 1993, 1994). The data response model is 

recovered by marginalizing over R, p(y|θ1) = Σr p(r|π)p(y|r, ψ). A key advantage to PMMs 

with missingness due to dropout is that the extrapolation distribution appears explicitly in 

the model specification. Hence, PMMs often lead to a straightforward understanding of the 

role the missing data assumptions play and provide easier specification of θE through 

sensitivity parameters, as opposed to selection and shared parameter models (Daniels and 

Hogan, 2000).

While many of these methods are well understood when the response Yit is univariate, 

additional considerations arise if a bivariate (or more generally, multivariate) response is 

repeatedly observed and subject to non-ignorable missingness. Our work is partially 

motivated by the analysis of a smoking cessation trial (Marcus et al., 2005). In this study 

patients were measured weekly for whether they had smoked during the previous week and 

for the percentage weight change from baseline. In addition to study dropout, the analysis is 

further complicated by the joint modeling of the discrete and continuous longitudinal 

outcomes.

In the next section we provide details on the motivating data. Section 3 introduces our 

proposed bivariate pattern mixture model and the role of the extrapolation distribution. In 

particular, we propose new methodology to share information across patterns to gain 

stability in the parameter estimates for patterns with few patients. Section 4 contains a 

simulation study to evaluate the performance of our proposed model, and we then apply the 

methods to the smoking cessation data in Section 5. Next, we discuss issues arising from 

non-ignorability including the role of sensitivity parameters, elicitation of their distribution, 

and the estimation of treatment effects. We provide some concluding remarks in Section 7.

2. The Commit to Quit II smoking cessation trial

The Commit to Quit II study (CTQ2; Marcus et al., 2003, 2005) was a 4-year randomized 

trial undertaken to test the efficacy of moderate-intensity physical activity as an aid for 

smoking cessation in women. Study enrollees were healthy women aged 18–65 who had 

regularly smoked five or more cigarettes per day for at least a year and who routinely 

exercise for less than 90 minutes a week. Patients were randomized into one of two 

treatments, a moderate-intensity exercise condition (denoted as exercise) and a contact 

condition (denoted as wellness). The outcomes of interest, measured weekly, were quit 

status (a longitudinal binary outcome) and weight change (a longitudinal continuous 

outcome). As it is believed that many cessation attempts fail due to weight gain, the goal of 

the study was to test whether an exercise treatment may lead to higher quit rates by better 

managing weight changes.

Two hundred, seventeen women were enrolled into the study, and measurements were 

intended to be taken for each of T = 8 weeks. For our analysis we exclude patients who were 

missing a baseline weight or who missed all eight measurement times. This left 208 patients 

with 104 in each treatment arm. As is common in studies of this type, there was substantial 

missingness with only a third of patients having an observed smoking status for all time 

points. Figure 1 displays smoking and missingness statuses for each patient by treatment; 
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black, gray, and white represent smoking, not smoking, and missing for a given week. 

Patients are not asked to quit until week 3 (bottom two rows are mostly black), and the 

amount of missingness (white) increases by week. It is believed that patients who miss an 

appointment are more likely to be smoking than those who are observed, so a careful 

handling of the missingness is necessary to make appropriate conclusions from this study. In 

addition to comparing cessation success and weight change between the two treatments, we 

also wish to determine the sensitivity of these conclusions to our assumptions about the role 

of the missingness.

We let Qit denote weekly smoking quit status, equal to 1 (0) if patient i abstains (smokes) 

during week t. The percentage weight change from baseline is Wit, and ai denotes the 

indicator of whether subject i was randomized to the exercise treatment. The corresponding 

vectors of the binary and continuous outcomes are Qi = (Qi1, ⋯, QiT)⊤ and Wi = (Wi1, ⋯, 

WiT)⊤, with Qi,obs and Wi,obs representing the observed parts of Qi and Wi respectively. We 

assume a normally-distributed, latent variable Zit whose sign determines the weekly 

cessation status through Qit = I(Zit ≥ 0), and let Zi = (Zi1, ⋯, ZiT)⊤.

Liu et al. (2009) analyze the CTQ2 data by modeling the joint distribution of the binary and 

continuous variables by a multivariate normal specification on the latent quit propensity and 

weight change through . An important complication is that 

the T × T block of Σai corresponding to Zi must be a correlation matrix for identifiability 

(Chib and Greenberg, 1998; Gueorguieva and Agresti, 2001). However, their analysis is 

made under the assumption of ignorable missingness, whereas the goal of this work to 

develop models appropriate for analysis under MNAR. To that end we introduce a pattern 

mixture model for this data.

There are alternatives to using normal latent variables for the binary responses to specify a 

joint distribution of categorical and continuous outcomes. One could potentially use the 

general location model (Olkin and Tate, 1961; Liu and Rubin, 1998) or Gaussian copulas 

(Nelsen, 1999). An overview of Bayesian methods for mixed data can be found in the 

chapter Daniels and Gaskins (2013). As the latent variable choice yields a model that can 

more easily be extended to non-ignorability, we do not explore other choices here. In the 

next section we introduce a bivariate pattern mixture model for this type of data.

3. Bivariate pattern mixture model

3.1. Partial ignorability and the model for the missingness

The pattern mixture model is specified as p(y, r|θ) = p(r|π)p(y|r, ψ), where r is the 

missingness pattern. The CTQ2 data has 2T − 1 = 255 potential patterns, far too many to 

handle efficiently. Hence, we model this missingness through a dropout process. We say 

patient i drops out at time t if their final observed value occurs at t (Rit = 1 and Rij = 0 for all 

j > t). We denote this by Di = d(Ri) = t, and Di = T indicates that patient i completed the 

study. (Note that sometimes dropout is defined by Di + 1 and ranges from 2 to T + 1.) We 

assume that any missed values before dropout (called intermittent missingness) are MAR 

conditional on Di, while those after dropout may be MNAR. This is called partial 
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ignorability (Harel and Schafer, 2009) and requires an MDM of the form p(r|y, θ2) = p(d|y, 

θ2A)p(r|yobs, d(r), θ2B) with θ2 = (θ2A, θ2B). Note R depends only on the observed data and 

the dropout time D, whereas D may depend on both the observed and missing data. If p(d|y, 

θ2A) = p(d|yobs, θ2A), then the model is (fully) ignorable and MAR.

Under the partially ignorable mechanism described above, we base inference on the joint 

distribution p(y, d) instead of p(y, r) as partial ignorability implies that the only relevant 

information about Y from R is found in D = d(R) (Harel and Schafer, 2009, Proposition 2). 

See Section A.1 of the Web Appendix for details. We model p(y|θ1)p(d|y, θ2A) using the 

PMM factorization p(d|π)p(y|d, ψ) where p(d|π) is the model for dropout and p(y|d, ψ) is 

the model for the response. The distribution of dropout Di is multinomial on {1, …, T} with 

probabilities πai,d = P (Di = d) depending on the treatment assignment ai. A convenient 

conjugate prior for πa = (πa,1, …, πa,T) is Dirichlet(1,…,1) for a = 0, 1. The complexity lies 

in specifying the response model p(y|d, ψ) as a function of the pattern d. We assume 

different sets of model parameters (πa, ψa) for the two treatments, but to simplify notation 

we suppress the dependence on a in the following.

At each measurement time we have a pair of observations, and in all but a few instances, 

smoking status and weight change are either both observed or both missing at a particular 

week. When only one is observed, we treat this as observed to assign pattern membership 

and assume the missing measurement is partially ignorable since it occurs before dropout. 

Table 1 provides the number of patients in each pattern by treatment. As stated previously, 

our model is defined through the weight change Wit and the cessation latent variable Zit not 

the actual smoking status Qit. Likewise, partial ignorability assumes R depends on dropout 

time, the observed weight changes, and the “observed” Zits (Zit corresponding to an 

observed Qit). We return to the role of partial ignorability in the discussion of Section 7.

3.2. Model for the observed data response

We now introduce the response model conditional on the dropout time. To that end, let Yit = 

(Zit, Wit)⊤ be the quit status latent variable and weight change pair at time t, and the time-

ordered arrangement of the full response is Yi = (Zi1, Wi1, Zi2, Wi2, …, ZiT, WiT)⊤. The 

history at week t (t > 1) is denoted by . We construct the 

distribution for each pattern d sequentially through the factorization

where fd;t(yit|ȳit) is the density of the pair of measurements Yit at time t for subjects who 

leave the study at time d, conditional on the history Ȳit. Only those distributions fd;t(yit|ȳit) 

with d ≥ t are identified by the observed data. The remaining distributions, which taken 

together form the extrapolation distribution in equation (1), need to be specified through a 

combination of modeling choices and sensitivity parameters.
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The identifiable distributions are modeled as follows. The week one distributions fd;1(yi1) 

have the form N2(ζd;1, Ωd;1) (d = 1, …, T), where ζd;1 is a 2-vector and Ωd;1 is 2 × 2 positive 

definite. Recall that the first component of Yi1 is Zi1, the latent quit propensity. As its scale 

is unidentified, the variance is constrained to be 1. For the identified distributions at time t > 

1, fd;t(yit|ȳit) (d ≥ t), we choose N2 (ζd;t + (Φd;1t, …, Φd;t−1,t)ȳit, Ωd;t); ζd;t is a 2-vector, 

each Φd;jt is a 2 × 2 matrix, and Ωd;t is 2 × 2 positive definite. The Φd;jt matrix contains 

regression coefficients for the patient’s history at time j, controlling the longitudinal 

dependence on the earlier observations. ζd;t is called the conditional intercept, the intercept 

for the condition regression of Ȳit onto Yit. Ωd;t is the covariance matrix for this conditional 

regression, and as with t = 1 the leading variance is constrained to 1. We parametrize this 

matrix as  and Ωd;t[2, 2] = ωd;t. Positive definiteness is guaranteed by 

ρd;t ∈ (−1, 1) and ωd;t > 0. We refer to the elements of the Φd;jt matrices as generalized auto-

regressive parameters (GARPs) and Ωd;t as the innovation covariance matrix, treating our 

model as a multivariate extension of the modified Cholesky parametrization of the 

covariance matrix (Pourahmadi, 1999). This model is also related to the vector 

autoregressive model (VAR) from time series analysis (Lütkepohl, 1991), but we do not 

require stationarity. Allowing Ωd;t to be constant across t, ζd;t to be zero for t > 1, and Φd;jt 

to be constant in t − j would lead to the stationary VAR model.

For a particular pattern d, let  be the vector of identified conditional 

intercepts and Ωd be the block diagonal matrix of Ωd;1, …, Ωd;d. Further define Φd to be the 

2d × 2d block lower triangular matrix with (t, t) block as the 2 × 2 identity matrix, I2, and 

the (t, j) block −Φd;jt for j < t. The joint distribution of the observed data 

 given the pattern Di = d is  (see the 

Web Appendix for derivation).

Under partial ignorability the distribution p(ȳi,d+1|Di = d) is the identifiable piece of the 

response model p(yi|Di = d) from factorization (1), and if d ≠ T the distribution of the 

unobserved variables p(yi,d+1, …, yiT|ȳi,d+1, Di = d) is the unidentified extrapolation 

distribution. As mentioned previously, this transparency of the extrapolation is an important 

benefit to using PMMs. Furthermore, it provides intuitive choices for specifying the 

unidentifiable distributions, which we explore in Section 6. For now we consider the 

bivariate PMM in the context of the MAR assumption, so that we have a fully defined 

model. The MAR restriction uniquely specifies the unidentified distributions (d < t) to be

(2)

(Molenberghs et al., 1998), which is a mixture over the distributions at time t for the 

identified patterns s = t, …, T. The terms in braces are the mixing coefficients, which are 
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equal to P (D = s|ȳit, D ≥ t). Note that this distribution fd;t(yit|ȳit) is constant in d (d < t), and 

hence, fd;t(yit|ȳit) = fd′;t(yit|ȳit) for all d, d′ < t at each time t.

We remind the reader that we have specified our model in terms of the full data Y which 

contains both Zobs, the unobserved latent variables corresponding to the observed smoking 

statuses Qobs, and (Qmis, Wmis), the values that are missing either intermittently or due to 

dropout. We obtain the observed data likelihood by integrating the identified model p(d, 

ȳd+1) with respect to the latent variables and the intermittently missed responses:

(3)

where z has length di, wint = {wit : t ≤ di, rit = 0} denotes the intermittently missed weight 

changes, and (qi,obs) represents the set of latent variables consistent with the sign 

restrictions of the observed smoking statuses. We obtain parameter samples from our model 

using MCMC with data augmentation that draws (zi, wi,int) given (di, qi,obs, wi,obs) during 

each iteration.

The identified distributions from p(yi|Di = d) are  which contain a 

large number of parameters. In the next two sections, we formulate the prior distributions in 

such a way as to effectively reduce the number of parameters that must be estimated from 

the data.

3.2.1. Priors to induce sharing information across patterns—A common issue 

when using a PMM is that some of the patterns contain relatively few observations, leading 

to instability in the parameter estimates of the pattern-specific distributions. Our model as 

presented thus far estimates 2 conditional intercepts, 4(t − 1) GARPs, and 2 covariance 

parameters for each d and t with d ≥ t. In the CTQ2 data only the completer pattern (d = T) 

has more than ten patients (Table 1), so we must develop methodology to handle these 

sparsely observed patterns.

An obvious solution is to set the parameters equal across patterns, yielding fd;t(yit|ȳit) = 

fd′;t(yit|ȳit) for all d, d′ ≥ t. However, together with (2) this will imply p(y|d, ψ) = p(y|ψ), 

which is the missing completely at random (MCAR) assumption. While requiring fewer 

parameters, assuming y and d are independent seems unlikely to hold in most practical 

settings, particularly in the context of smoking cessation. Other parameter reduction choices 

include grouping the dropout times into a smaller number of patterns (Hogan et al., 2004) or 

assuming the distribution of Yi differs across a small number of latent classes Ci whose 

distribution depends on dropout Di (Roy, 2003; Roy and Daniels, 2008).

Rather than reducing the number of patterns, Wang and Daniels (2011) consider equality 

constraints on subsets of model parameters across patterns. They show that for the full 

response distribution p(yi|Di = d) under MAR (2) to be multivariate normal for each pattern, 

the distribution of Yit given Ȳit must be the same across all patterns d for t > 1, that is, for t > 
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1, fd;t(yit|ȳit) = ft(yit|ȳit) for all d. Hence, the conditional intercepts, GARPs, and innovation 

covariances are equal across d for t > 1. The t = 1 means ζd;1 differ across patterns, and the 

covariances Ωd;1 may also differ across d but are generally assumed equal. This constraint 

results in a MDM that depends only on Yi1 (Wang and Daniels, 2011, Corollary 1).

A somewhat more flexible model would be to assume the dependence parameters are equal 

across identifiable patterns,  and  and to allow the conditional 

intercepts ζd;t to differ. Unlike the previous model where the extrapolation distributions 

fd;t(yit|ȳit) (d > t) are multivariate normal, the extrapolation distributions here will be a 

mixture of T − t + 1 normals as defined in (2).

While these types of equality assumptions can provide stable estimation, the resulting 

models may be a poor representations of the true response distribution. Hence, a middle 

ground between equality and independence through sharing information across patterns 

would be welcome. There is a growing literature on Bayesian estimation for multiple, 

potentially similar covariance matrices (e.g., Daniels, 2006; Pourahmadi et al., 2007; Hoff, 

2009; Gaskins and Daniels, 2013, 2015), but due to the constraint in the (1, 1) component of 

each Ωd;t and the unidentifiability of the extrapolation parameters, these methods cannot be 

directly implemented. Hence, we introduce a method that borrows strength in estimating the 

identifiable parameters across patterns.

To that end, we propose shrinking the pattern-specific parameters toward a global value for 

the distributions identified by the observed data. Let  be these global 

parameters, which are the shrinkage targets of the identified parameters ζd;t, Φd;jt, ρd;t, ωd;t 

(d ≥ t). While we suppress the notation, we use a distinct set of  for each 

treatment. These are connected through the following distributions for d ≥ t:

(4)

(5)

(6)

(7)

Here, vec(·) is the standard vector operator that stacks the columns of a matrix. This model 

assumes the identifiable parameters in each pattern are exchangeable and makes no use of 
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the temporal ordering of the patterns. Extensions along these lines are possible but not 

pursued here.

For each of the four sets of parameters, the shrinkage variance τ2 governs the amount of 

information shared across patterns. Large values of τ2 allow large differences between the 

parameters of different patterns, while the identified fd;t(yit|ȳit) (d ≥ t) will be similar under 

small τ2. Note that in the special case where , this shrinkage model goes to 

MCAR (assuming MAR for the extrapolation terms). Further with  and  not 

too small, this will be equivalent to the model that sets the dependence parameters equal and 

leaves the mean parameters flexible. Hence, our model allows the data to inform the 

appropriate level of information sharing.

To fully define our Bayesian model, we must choose prior distributions for the remaining 

parameters. For the (treatment-specific) shrinkage targets, we use

(8)

(9)

(10)

(11)

where pΦ(·) will be defined in the following section and 0k represents the k-vector of zeros. 

We use a half-Cauchy prior for the shrinkage standard deviations τζ, τϕ, τρ, τω. That is, for 

k ∈ {ζ, ϕ, ρ, ω}, , τk > 0. This is the Cauchy distribution with 

location zero and scale γk, restricted to positive half-line. Under the support restriction γk is 

both the scale and median of τk. The half-Cauchy distribution has found an important role in 

Bayesian variable shrinkage since it has non-zero density at 0 and heavy tails (Carvalho et 

al., 2010). Here, we choose γζ = γω = 0.1 and γϕ = γρ = 0.05 as the hyperparameter values 

to represent reasonable guesses at the prior median of the τ s. For the other hyperparameters 

the prior choices are  and λ1, λ2 ~ Gamma(1, 1). With the 

exception of the shrinkage targets, the other hyperparameters ( , λ1, λ2) are 

common across the two treatments.

3.2.2. Sparse prior models for GARP matrices—A well known issue in the modeling 

of a covariance matrix is the quadratic number of parameters. In our model this is 
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manifested in the 2(d − 1)(d − 2) GARPs defining Φd. One Bayesian solution is to use as the 

prior for the GARP shrinkage target in (9) a mixture of a point mass at zero and a normal 

distribution, known as the “spike-and-slab” prior (Smith and Kohn, 2002). A 

computationally faster alternative uses a prior that shrinks the GARPs toward zero. We 

explore this using a longitudinal extension of the normal-gamma model of Griffin and 

Brown (2010).

We define the prior pΦ(·) for  in (9) through the following hierarchical model, where 

is the kth component of  (k = 1, …, 4),

(12)

(13)

for λ, γ0 > 0 and ξ ∈ (0, 1). Here,  represents a GARP-specific shrinkage factor, 

showing that this model falls in the global-local shrinkage framework (Polson and Scott, 

2010). Marginally,  has mean zero, variance 2λγ0ξt−j, and excess kurtosis 3/λ (Griffin 

and Brown, 2010). The constraint on ξ implies the variance of  decreases in the lag t − j, 
that is, the regression coefficient of the responses at time j onto the time t measurement is 

more aggressively shrunk for j further back in time. This is consistent with the longitudinal 

nature of the history, as less recent responses will generally be less relevant for predicting 

the current measurement. Smaller values of λ give the distribution heavier tails, providing 

protection from over-shrinking large GARPs. As a special case, setting λ = 1 implies that 

(13) is an exponential distribution as in the Bayesian Lasso (Park and Casella, 2008) and a 

GARP-shrinkage model proposed in Gaskins and Daniels (2015). For hyperpriors we choose 

λ ~ Exp(1), γ0 ~ InvGamma(1, 1), and ξ ~ Unif(0, 1). The GARP shrinkage target  and 

its variance  are treatment specific, while the hyperparameters λ, γ0, ξ are common 

across treatments.

4. Simulation study to evaluate model performance

To assess the performance of our proposed methodology, we consider a simulation study 

based on the Commit to Quit II study. We compare our model to frequently-used choices. 

For the model on the conditional intercepts, let MVN-MAR denote the constraint  for d 
≥ t and t ≠ 1, which provides a multivariate normal distribution for the full response p(yi|Di = 

d) under MAR (assuming equality of GARPs and innovation covariance matrix) (Wang and 

Daniels, 2011). For modeling the intercepts distinctly across patterns, each ζd;t (d ≥ t) is 

drawn independently from the distribution in (8), and we call this model PATTERN. Our 

proposed model that shrinks ζd;t toward  given by (4) and (8) is SHRINK.
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With each of the three intercept models, we assume equality in the dependence structure 

across patterns (  and  for d ≥ t). With this EQUAL structure, the GARPs 

have the SPARSE prior in (12)–(13). We also consider the SHRINK dependence model from 

equations (5)–(7) and (9)–(11) with the SPARSE GARP model and the SHRINK intercept choice. 

Finally, we pair the PATTERN mean model with a PATTERN dependence model with no 

information sharing across dependence parameters and a NON-SPARSE (normal) prior for the 

GARPs. As a shorthand, we denote these five models by the triple that defines the mean 

structure, the dependence structure, and the prior on the GARPs.

We consider four data generating mechanism. Model (A) draws the data using the parameter 

estimates from SHRINK/EQUAL/SPARSE model fit to the CTQ2 data. Data generating model (B) 

is consistent with MVN-MAR assumption for the intercepts, and in model (C) the ζd;t differ 

more substantially across patterns than model (A). Model (C) should favor the PATTERN mean 

model or SHRINK with a large value of τζ. While choices (A)–(C) all assume common (EQUAL) 

dependence structures across patterns, model (D) allows the intercepts, GARPs, correlation, 

and innovation variances to each vary across patterns. Model (D) is consistent with SHRINK/

SHRINK and PATTERN/PATTERN mean/dependence models. Details about selection of parameter 

values can be found in the Section A.3 of the Web Appendix.

For each model specification considered, we run a Markov chain Monte Carlo (MCMC) 

algorithm to obtain a sample of the parameters from the posterior distribution. We run the 

chain for 75,000 iterations after a burn-in of 15,000 and retain every 50th iteration for 

inference. We use the data augmentation algorithm in Liu et al. (2009, Proposition 1) to 

sample the constrained latent variables Z, which is more efficient that one-at-a-time 

conditioning (Robert, 1995). Many of the model parameters are updated conjugately (πa, Zit 

for t ≤ di, any missing Wit for t ≤ di, ζd;t, , Φd;jt, , λ2, , γ0). For those 

parameters whose distributions are non-conjugate (ρd;t, , ωd;t, , λ1, λ, ξ), 

we update using the slice sampler (Neal, 2003). See the Web Appendix, Section A.2 for the 

form of the full conditional (sampling) distributions. Depending on the complexity of the 

model involved, the MCMC algorithm takes between 10 and 18 hours to run on a desktop 

computer per data set. R code is available at the website of the second author, *****.

For each of the true models, we generate 100 data sets, maintaining the same dropout and 

intermittent missingness patterns from the original CTQ2 data. For each of data sets, we run 

MCMC chains to compare five model specifications. To evaluate the estimation accuracy, 

we compute the risk for estimating the conditional intercepts, the mean functions, and the 

covariance matrices using the following loss functions: 

, where  is the marginal mean 
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vector and  is the (2d) × (2d) marginal covariance matrix. Results are in 

Table 2.

Generating models (A)–(C) have the same dependence structure for each pattern, and we 

find that the SHRINK/EQUAL/SPARSE is found to be the best in each case. It is perhaps surprising 

that using the shrinkage framework produces better estimation than the correct MVN-MAR 

choice in model (B). This is, in part, a consequence of the unbalanced pattern memberships. 

All of the non-completer patterns have fewer than 10 subjects, implying that there is very 

little information from the data about ζd;1 for d < T. This leads to large sampling variability 

(and higher risk) in these intercept estimates and the resulting marginal means. Even though 

the SHRINK models are biased toward the population—not pattern—mean, the stability it 

imposes yields better estimation. For data generating model (C), there are large differences 

in the conditional intercept across patterns that should favor the PATTERN or SHRINK with large 

τζ, but by introducing a small amount of shrinkage, SHRINK/EQUAL/SPARSE has slightly lower 

risk. In the SHRINK-mean model the average value of τ̂ζ is 1.18 (80% of τ̂ζ ’s are between 

1.10 and 1.26) compared to 0.09 (0.06, 0.15) and 0.13 (0.07, 0.24) in scenarios (A) and (B), 

respectively. Clearly, our shrinkage framework is flexible enough to adapt to the situation 

when there is little similarity across patterns. In scenario (C), the MVN-MAR assumption 

produces highly biased mean estimates as expected.

Simulation (D) has distinct covariance structures across the patterns, and we find that 

shrinkage on both the mean and dependence parameters produces the minimum risk. 

Estimation using a pattern-specific dependence structure also leads to low risk for Σ but 

poorer performance for the mean parameters. The risk in estimation of the covariance 

matrices and the conditional intercepts is much higher when common dependence is 

imposed, although estimation of mean structure (and hence, treatment effects) is impacted 

less.

Typically, one would fit the data to multiple models, and choose the best model using a 

selection method such as deviance information criterion (DIC; Spiegelhalter et al., 2002). 

However, evaluation of the DIC statistic demonstrated mixed performance in data such as 

ours. DIC tends to systematically favor simpler models: SHRINK mean to MVN-MAR and PATTERN 

mean structures and EQUAL dependence to the SHRINK and PATTERN choices. Further simulation 

experiments also indicate poor performance with other model selection criteria: log psuedo-

marginal likelihood (Geisser and Eddy, 1979) and posterior predictive loss based criteria 

(Ibrahim and Laud, 1994; Daniels et al., 2012). Details about DIC simulation studies can be 

found in Section A.3 of the Web Appendix.

Based on the results from risk simulations and the unsatisfactory performance of several 

model selection criteria, we recommend using the shrinkage framework for the mean 

structure and either the EQUAL or SHRINK model for the dependence, with the sparse GARP 

prior. The choice between EQUAL and SHRINK dependence will be guided by the level of 

balance between dropout patterns. When patterns are unbalanced or sample sizes are small, 

the EQUAL model should be favored to stabilize estimation of the covariance matrix; SHRINK 

can be used with large sample sizes and more balanced dropout times. Consequently, we 

base our analysis of the CTQ2 data in Sections 5 and 6 on the model formed by using the 
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SHRINK framework for the conditional intercepts, EQUAL for the dependence, and SPARSE for 

the GARPs.

5. CTQ2 data analysis under non-ignorable MAR

We now turn to the analysis of the CTQ2 data using the SHRINK/EQUAL/SPARSE model under the 

MAR assumption. As in the simulation, our MCMC chain runs for 90,000 iterations, and we 

throw out the first 15,000 and retain every 50th sample.

The main targets of inference are the probability of abstaining at the final time point T = 8 

for each treatment (marginally over patterns) and the expected weight change over the 

course of the study, as well as significance tests for a treatment effect due to exercise. As a 

key concern of this study is the interaction between smoking and weight change, we also 

consider the correlation between QiT and WiT. To obtain estimates of these quantities, we 

draw 5000 fully-observed responses  from p(di, yi) at each parameter value in the 

posterior sample and compute sample means. Details of the algorithm are found in the Web 

Appendix, Section A.4.

The estimated probability that a patient abstains in the final week, P(QiT = 1), is 0.47 for the 

exercise treatment and 0.53 for the control with a posterior probability of 0.25 that the 

exercise treatment is superior. For the weight measurements, we find an expected weight 

change of 3.0% from baseline for both the wellness and exercise treatments, and the 

posterior probability that patients gain less under exercise is 0.51. For the exercise treatment 

the correlation between QiT and WiT is 0.13, and it is 0.18 for the control group. These 

positive values support the study motivation that women who successfully abstain tend to 

gain weight and that the exercise treatment may reduce this interaction as seen by the 

smaller correlation, although the 95% credible interval covers zero (see Table 4). Overall, 

under MAR we fail to find evidence that the exercise treatment produces better results than 

wellness in terms of quit rates, weight changes, or their relationship. Credible intervals for 

these quantities can be found in Table 4.

Comparing our results under non-ignorable MAR to the previous analysis under ignorable 

MAR in Liu et al. (2009), we note that our estimates of the quit probabilities are 7 to 9 

percentage points higher, although their estimates are contained within our credible 

intervals. By allowing the response distribution to vary across dropout times, our model is 

more flexible whereas their model implicitly assumes a common distribution across Di. 

However, this increased flexibility does come at a cost of wider credible intervals.

We additionally run MCMC chains using the CTQ2 data with changes to hyperparameter 

values in the priors to test the sensitivity of our prior choices. The models with PATTERN 

dependence are somewhat sensitive to the priors, but this is expected as inference for the 

sparsely observed patterns will be more influenced by the prior. The parameter estimates and 

conclusions are relatively unchanged for the EQUAL and SHRINK dependence structures, 

including the selected model.
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6. Missing not at random PMM

6.1. Specifying the extrapolation distribution

To this point we have considered missingness to be MAR by using (2) to define the 

extrapolation distribution. As stated earlier, this is a questionable assumption, if not wholly 

unreasonable, as we expect patients who leave the study are more likely to smoke than those 

that continue on, even after conditioning on their history. Hence, we need to extend the 

model of Section 3 to allow informative missingness by considering alternative 

specifications of the extrapolation distributions fd;t(yit|ȳit) (d < t) through sensitivity 

parameters.

To do this, we consider non-future dependent missing data mechanisms. An MDM is said to 

satisfy non-future dependence (NFD) if P(D = d|y) = P(D = d|y1, …, yd+1), that is, the 

probability a patient’s last observation occurs at time d depends on her observed 

measurements Y1, …, Yd and the first missed observation Yd+1 but is independent of all 

future missed measurements (Kenward et al., 2003). Clearly, if the extrapolation 

distributions are chosen through MAR, it will satisfy NFD (MDM is also independent of 

Yd+1), but other choices of the extrapolation distributions generally will not. NFD only 

impacts the form of p(ymis|yobs, θE) and thus, cannot be tested from the data. However, it 

provides a realistic and intuitive starting point for defining the extrapolation distribution 

under MNAR. Kenward et al. (2003) show that for a PMM with NFD the distributions for 

patterns d < t − 1 have the form

(14)

In comparison with MAR (2), we are now conditioning on the observed patterns as well as 

the d = t − 1 first missed observation pattern. In particular, (14) depends on the unidentified 

ft−1;t(yit|ȳit), the model for the first missed observation. A further benefit to the NFD 

assumption is that the number of extrapolation distributions to define decreases from (T − 1)

(T − 2)/2 to T − 1.

To specify these first post-dropout distributions ft−1;t(yit|ȳit), we apply a location shift to the 

MAR mixture distribution which will allow a sensitivity parameter specification. This idea 

was previously considered in the univariate context by Wang and Daniels (2011, with 

correction). To that end we rewrite the MAR distribution (2) as , 

letting α(s, ȳit) be the mixing weight P(D = s|ȳit, D ≥ t). The location shift on the MAR 

distribution implies
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that is, the mean of the mixture is shifted by Δt = (Δt1, Δt2)⊤. This is accomplished by 

choosing , where f̃d;t(yit|ȳit) is multivariate 

normal with mean ζd;t + Δt + (Φd;1t, …, Φd;t−1,t)⊤ȳit and covariance matrix Ωd;t. The choice 

Δt = 02 produces ft−1;t(yit|ȳit) as the MAR distribution (2), and plugging that into (14) gives 

the MAR distribution (2) for all terms in the extrapolation (d < t − 1). It is also possible to 

introduce sensitivity parameters for the GARP coefficients Φ and/or the variance Ω, but in 

the interest of model parsimony, we do not pursue such models here. Also, note 

incorporating a location shift for missing data is closely related to the exponential tilting 

model (e.g., Birmingham et al., 2003; Kim and Yu, 2011).

As we are only making adjustments to the extrapolation term, the observed data distribution 

remain the same as under MAR. In fact, running a new MCMC chain for the MNAR 

analysis is not even needed. Letting π(Δ|θO) be a prior distribution for the sensitivity 

parameters potentially depending on the observed data distribution parameter θO, we can 

draw the MNAR posterior sample by first drawing θO from the observed data posterior (as 

sampled using non-ignorable MAR) and drawing Δ from π(Δ|θO); we provide details in the 

Web Appendix, Section A.4. In contrast, selection and shared parameter models typically do 

not exhibit a sensitivity parametrization; this implies that the observed data likelihood will 

depend on the assumptions made about the missing data mechanism. In such cases it will be 

necessary to refit the data and repeat any model selection procedure for each new MNAR 

assumption.

Using NFD and sensitivity parameters, we have reduced the problem of specifying (T − 1)(T 
− 2)/2 extrapolation distributions to that of choosing a distribution for T − 1 Δts. We further 

assume the distribution of the sensitivity parameters is independent of t, leaving 

specification of a single Δ for each treatment. Next, we introduce a strategy to elicit expert 

opinion about their distribution.

6.2. Elicitation of distribution for sensitivity parameters

Elicitation of prior distributions from (non-statistician) subject-matter experts can be a 

challenging task. The best strategy is typically to ask for expected values or quantiles of 

observable measurements, and for the statistician to translate this into a distribution for the 

parameter (Bedrick et al., 1996; Chaloner, 1996). In the context of this smoking cessation 

trial, we do not explicitly ask about a distribution for Δ, but instead we inquire about the 

anticipated behavior of a dropout patient relative to a non-dropout patient (similar to Daniels 

and Hogan (2008), Section 10.2). To that end, our collaborator Dr. Marcus filled in the form 

in Table 3 with her beliefs about the status of the unobserved patients. Her answers are 

depicted in bold, and we use them to form our distribution for Δ as follows.

Translating the information in Table 3 into a prior for the sensitivity parameter Δ2 = E [Wit|

ȳit, D = t − 1] − E [Wit|ȳit, D ≥ t] is relatively straightforward as Δ2 represents the difference 

in the expected weight change between patient A in pattern D = t − 1 and patient B with 

pattern D ≥ t. For each treatment we let δk (k = med, LB, UB) be the difference between the 

elicited value for patient A and the provided value for patient B at percentile k (median, 

lower bound/minimum, upper bound/maximum). The assumed prior for Δ2 is a 50-50 
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mixture of Unif(δLB, δmed) and Unif(δmed, δUB) which will match the elicited percentiles 

(Wang et al., 2010). For example,  for the exercise 

treatment.

Dealing with Δ1 = E [Zit|ȳit, D = t − 1] − E [Zit|ȳit, D ≥ t] is more challenging because we 

elicit the expert opinion not in terms of the (fictional) latent variables Z on which the 

sensitivity parameter is defined, but in terms of the smoking status Q. This choice is 

consistent with our previous observation that we obtain higher quality information when we 

elicit in terms of potential measurements. From Table 3, let ψLB(p), ψmed(p), ψUB(p) denote 

the lower bound, median, and upper bound for p̃ = P (Qit = 0|ȳit, D = t − 1) (patient A’s 

smoking probability) given p = P (Qit = 0|ȳit, D ≥ t − 1) (patient B’s smoking probability) at 

the elicited values p = 0.25, 0.50, 0.75. We obtain the functions ψLB(p), ψmed(p), ψUB(p) 

that cover the full range of p ∈ [0, 1] by linear interpolation as in Figure 2. Similarly to Δ2 

the implied distribution for p̃, the probability of smoking for a dropout patient with history 

ȳit, is the mixture , where p̂ = P (Qit = 0|

ȳit, D ≥ t − 1) is the smoking probability for the observed counterpart. From our choice 

, this distribution on p̃ implies a distribution on 

Δ1 through

(15)

where F{·} is the standard normal cumulative distribution function. This model can be 

viewed in a similar spirit to the marginalized models of Heagerty (1999). In practice to 

obtain a sample value of Δ1, we calculate p̂, draw p̃ from the mixture distribution, and 

numerically solve (15) for Δ1. In the special case where the MAR distribution is a single 

component (not a mixture), as in the MCAR and MVN-MAR models, a simpler log-odds 

approximation exists that avoids to the need to numerically solve (15); see Section A.5 of 

the Web Appendix for details.

Also note that we have assumed that the distribution of Δ2 = E [Wit|ȳit, D = t − 1] − E [Wit|

ȳit, D ≥ t] is constant in the expected weight change of the observed patient w = E [Wit|ȳit, 

D ≥ t]. This assumption could be easily relaxed by eliciting δk for a few values of w and 

interpolating functions δk(w). Given ŵ = E [Wit|ȳit, D ≥ t], Δ2 would be drawn from the 

mixture defined by δk(ŵ).

6.3. Estimation of treatment effects under MNAR

Having specified a prior distribution for the sensitivity parameters, we may now estimate the 

main quantities of interest under MNAR. Recall that our inferential focus is the probability 

of smoking, the percentage weight change from baseline, and the correlation between 

smoking and weight change at the final week for each treatment. With only about 60% of 
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patients completing the study, we also want to consider how the MAR/MNAR assumptions 

and the choice of priors on Δ affect our conclusions about these quantities.

To that end, we consider three MNAR missing data assumptions in addition to the MAR 

analysis of Section 5. First, we apply the elicited prior on the sensitivity parameters. Next, 

we consider a prior for Δ that uses the elicited prior for Δ1 but sets Δ2 = 0. This choice is 

motivated by the fact that the expert has strong intuition about the probability of smoking for 

the dropouts but may be less clear about how their weight will behave due to the competing 

factors that the patient is no longer attending exercise sessions (if ai = 1) and has likely 

relapsed to smoking. Hence, we use the MNAR assumption on Z but treat the weight 

measurements as partially ignorable. Finally, we make the assumption that all unobserved 

smoking statuses are 0 (smoke) as has been previously used in the smoking cessation 

literature (Marcus et al., 2005). This extreme assumption falls outside of the framework of 

PMMs, partial ignorability, and sensitivity parameters, and it requires a new MCMC chain to 

fit a single pattern model to this augmented data with the SPARSE prior on the GARPs, 

assuming the missing weight changes are ignorable.

As in the MAR case, we estimate treatment effects by drawing full data for 5000 patients at 

each parameter value in the posterior sample. For the MNAR-PMMs this is the same 

MCMC sample used in Section 5 for the MAR analysis. Pseudo-code for the algorithm may 

be found in the Web Appendix, Section A.4. Table 4 contains the estimated quantities and 

95% credible intervals.

When accounting for the informativeness of the study dropout on cessation in the PMM, we 

observe slightly lower quit probabilities whether we assume the post-dropout weight 

changes to be informative or not. The posterior probability of improved cessation rates under 

exercise is relatively unchanged, which is not surprising as our elicited prior assumes an 

equal change in smoking rates for both arms relative to the patients that remain under 

observation (Table 3 and Figure 2). When we consider the strong assumption that all missing 

Qits are smoking, we see a more dramatic change in the estimated cessation rates. However, 

this assumption sets all missing cessation values to zero and will necessarily be biased low 

for the true cessation probability. For the expected weight change during the study period, 

estimates are stable across our three PMMs, and somewhat lower under the Qit = 0 

assumption due to the positive correlation between Q and W and the additional zeros in Q. 

The substantive conclusions for the relationship between smoking status and weight change 

do not differ from the MAR results. This is not surprising since our sensitivity prior assumes 

dropouts are less likely to abstain and have lower weight changes, agreeing with our MAR 

results. Overall, all conclusions are unchanged as there continues to be no evidence of a 

treatment difference. Further, our cessation rate and weight change estimates differ from the 

MAR results relatively little across the PMMs, indicating that the results are insensitive to 

small-to-moderate departures from MAR.

In Section A.6 of the Web Appendix, we consider the estimation error and efficiency of 

using our framework in a simulation study designed to mimic the CTQ2 data. When the 

missingness is MNAR in the true model, we find reduced bias and mean squared error in the 

quit rate and mean weight change estimates when using our modeling framework versus the 
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MAR assumption or complete case analysis. In Section A.7, we also explore additional 

analyses of the CTQ2 data to better understand the sensitivity of our conclusions to the 

assumptions of non-future dependence and partial ignorability of the intermittent 

missingness. Additionally, we consider alternative choices of the distribution on the 

sensitivity parameters Δ including a dispersed version of our expert-elicited choice and a 

more extreme prior. We conclude that partial ignorability has the least impact on inference, 

followed by the choice of distribution on Δ, and the NFD assumption has the largest impact 

of the three.

7. Discussion

In this work we have proposed methodology to analyze mixed longitudinal data with 

informative dropout, which was motivated by a smoking cessation study. We consider 

pattern mixture models to allow the MNAR distributions to be defined through sensitivity 

parameters. As many patterns contain few observations, Bayesian shrinkage on the mean 

and dependence parameters is incorporated to share information across potentially similar 

patterns. Distributions for the sensitivity parameters are elicited from a subject-matter 

expert. Based on careful analysis of the CTQ2 data, we conclude that the exercise 

intervention has no effect on cessation rates or weight changes and that the conclusions are 

robust to post-dropout departures from missing at random.

One issue deserving additional consideration is that the sensitivity parameters for the MNAR 

model is defined in terms of the history Ȳit, which include not the smoking statuses Qobs but 

the latent variables Zobs. While it may be reasonable to compare the unobserved and 

observed patients with common weight changes and inclinations to smoke each week (richer 

information than just whether or not she smoked), this is a distinction likely to be lost on the 

clinician from whom the sensitivity parameter distribution is elicited. It is unclear how to 

avoid this issue when using a model with latent variables for the discrete process nor is it 

apparent what modeling scheme without latent variables would be appropriate for a 

longitudinal, mixed binary-continuous process with dropout. Defining the assumptions 

through Z leads to more accessible models and can be viewed as reasonably close to the 

assumptions in terms of Q, but further exploration of this issue is warranted. Similar issues 

arise with the definition of partial ignorability through Z instead of Q.

As noted in Section 4, model selection in this context proved particularly challenging. None 

of the usual methods (deviance information criteria, log psuedo-marginal likelihood, 

posterior predictive loss criteria) were able to discriminate between models in our simulation 

study. More research in this area is needed but beyond the scope of this paper.

While our model has considered the case of a single binary and continuous response at each 

time point, this methodology can easily be extended beyond the bivariate case and to allow 

alternative data types such as ordinal responses. Important considerations will include the 

necessary identifiability constraints in Ωd;t for the latent variables corresponding to binary 

and ordinal responses, elicitation of sensitivity parameters or their distribution, and the 

potential need for sparsity in Ωd;t or its inverse if many responses are observed at each time 

point.
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Although exploratory analysis of covariates indicated little predictive value for the CTQ2 

data, it is also possible to extend our model to adjust for covariates. The model for dropout 

time can easily be adapted by specifying π as a function of covariates. To allow the response 

model to depend on predictors, we add a β′xit term to the mean of fd;t(yit|ȳit), although the 

interpretation of these regression parameters may be challenging due to the sequential nature 

of the distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by NIH grants CA-85295, CA-183854, and CA-77249. The authors also wish to thank Dr. 
Shira Dunsiger for her helpful comments.

References

Bedrick EJ, Christensen R, Johnson W. A new perspective on priors for generalized linear models. 
Journal of the American Statistical Association. 1996; 91(436):1450–1460.

Birmingham J, Rotnitzky A, Fitzmaurice GM. Pattern-mixture and selection models for analysing 
longitudinal data with monotone missing patterns. Journal of the Royal Statistical Society, Series B: 
Statistical Methodology. 2003; 65(1):275–297.

Carvalho CM, Polson NG, Scott J. The horseshoe prior for sparse signals. Biometrika. 2010; 97(2):
465–480.

Chaloner, K. Elicitation of prior distributions. In: Berry, DA., Stangl, DK., editors. Bayesian 
Biostatistics. Marcel Dekker Inc; 1996. p. 141-156.

Chib S, Greenberg E. Analysis of multivariate probit models. Biometrika. 1998; 85(2):347–361.

Cowles MK, Carlin BP, Connett JE. Bayesian tobit modeling of longitudinal ordinal clinical trial 
compliance data with nonignorable missingness. Journal of the American Statistical Association. 
1996; 91(433):86–98.

Daniels MJ. Bayesian modelling of several covariance matrices and some results on the propriety of 
the posterior for linear regression with correlated and/or heterogeneous errors. Journal of 
Multivariate Analysis. 2006; 97(5):1185–1207.

Daniels MJ, Chatterjee A, Wang C. Bayesian model selection for incomplete data using the posterior 
predictive distribution. Biometrics. 2012; 68:1055–1063. [PubMed: 22551040] 

Daniels, MJ., Gaskins, JT. Bayesian methods for the analysis of mixed categorical and continuous 
(incomplete) data. In: de Leon, AR., Carriére Chough, K., editors. Analysis of Mixed Data. 2013. 

Daniels MJ, Hogan JW. Reparameterizing the pattern mixture model for sensitivity analyses under 
informative dropout. Biometrics. 2000; 56(4):1241–1248. [PubMed: 11129486] 

Daniels, MJ., Hogan, JW. Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and 
Sensitivity Analysis. Chapman & Hall; 2008. 

Diggle P, Kenward MG. Informative drop-out in longitudinal data analysis (with discussion). Applied 
Statistics. 1994; 43:49–93.

Dunson DB, Perreault SD. Factor analytic models of clustered multivariate data with informative 
censoring. Biometrics. 2001; 57(1):302–308. [PubMed: 11252614] 

Gaskins JT, Daniels MJ. A nonparametric prior for simultaneous covariance estimation. Biometrika. 
2013; 100(1):125–138.

Gaskins JT, Daniels MJ. Covariance partition prior: A Bayesian approach to simultaneous covariance 
estimation for longitudinal data. Journal of Computation and Graphical Statistics. 2015 page 
Accepted. 

Gaskins et al. Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2018 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Geisser S, Eddy WF. A predictive approach to model selection. Journal of the American Statistical 
Association. 1979; 74(365):153–160.

Griffin JE, Brown PJ. Inference with normal-gamma prior distributions in regression problems. 
Bayesian Analysis. 2010; 5(1):171–188.

Gueorguieva RV, Agresti A. A correlated probit model for joint modeling of clustered binary and 
continuous responses. Journal of the American Statistical Association. 2001; 96(455):1102–1112.

Harel O, Schafer JL. Partial and latent ignorability in missing-data problems. Biometrika. 2009; 96(1):
37–50.

Heagerty PJ. Marginally specified logistic-normal models for longitudinal binary data. Biometrics. 
1999; 55(3):688–698. [PubMed: 11314994] 

Hoff PD. A hierarchical eigenmodel for pooled covariance estimation. Journal of the Royal Statistical 
Society, Series B. 2009; 71(5):971–992.

Hogan JW, Roy J, Korkontzelou C. Handling dropout in longitudinal studies. Statistics in Medicine. 
2004; 23(9):1455–1497. [PubMed: 15116353] 

Ibrahim JG, Laud PW. A predictive approach to the analysis of designed experiments. Journal of the 
American Statistical Association. 1994; 89(425):309–319.

Kenward M, Molenberghs G, Thijs H. Pattern-mixture models with proper time dependence. 
Biometrika. 2003; 90(1):53–71.

Kim JK, Yu CL. A semiparametric estimation of mean functionals with nonignorable missing data. 
Journal of the American Statistical Association. 2011; 106(493):157–165.

Little RJA. Pattern-mixture models for multivariate incomplete data. Journal of the American 
Statistical Association. 1993; 88(421):125–134.

Little RJA. A class of pattern-mixture models for normal incomplete data. Biometrika. 1994; 81(3):
471–483.

Little, RJA., Rubin, DB. Statistical Analysis with Missing Data. John Wiley & Sons; New York; 2002. 

Liu C, Rubin DB. Ellipsoidally symmetric extensions of the general location model for mixed 
categorical and continuous data. Biometrika. 1998; 85(3):673–688.

Liu X, Daniels MJ, Marcus B. Joint models for the association of longitudinal binary and continuous 
processes with application to a smoking cessation trial. Journal of the American Statistical 
Association. 2009; 104(486):429–438. [PubMed: 20161053] 

Lütkepohl, H. Introduction to Multiple Time Series Analysis. Springer-Verlag; 1991. 

Marcus B, Lewis B, King T, Albrecht A, Hogan J, Bock B, Parisi A, Abrams D. Rationale, design, and 
baseline data for Commit to Quit II: An evaluation of the efficacy of moderate-intensity physical 
activity as an aid to smoking cessation in women. Preventive Medicine. 2003; 36(4):479–492. 
[PubMed: 12649057] 

Marcus BH, Lewis B, Hogan J, King TK, Albrecht A, Bock B, Parisi A. The efficacy of moderate-
intensity exercise as an aid for smoking cessation in women: A randomized controlled trial. 
Nicotine and Tobacco Research. 2005; 7(6):871–880. [PubMed: 16298722] 

Molenberghs G, Michiels B, Kenward MG, Diggle PJ. Monotone missing data and pattern-mixture 
models. Statistica Neerlandica. 1998; 52:153–161.

Neal RM. Slice sampling. The Annals of Statistics. 2003; 31(3):705–767.

Nelsen, RB. An Introduction to Copulas. Springer-Verlag Inc; 1999. 

Olkin I, Tate RF. Multivariate correlation models with mixed discrete and continuous variables. The 
Annals of Mathematical Statistics. 1961; 32(2):448–465.

Park T, Casella G. The Bayesian lasso. Journal of the American Statitistical Association. 2008; 
103(482):681–686.

Polson, NG., Scott, J. Shrinkg globally, act locally: Sparse Bayesian regularization and prediction. In: 
Bernardo, JM.Bayarri, MJ.Berger, JO.Dawid, AP.Heckerman, D.Smith, AFM., West, M., editors. 
Bayesian Statistics. Vol. 9. 2010. p. 501-538.

Pourahmadi M. Joint mean-covariance models with applications to longitudinal data: Unconstrained 
parameterisation. Biometrika. 1999; 86(3):677–690.

Pourahmadi M, Daniels MJ, Park T. Simultaneous modelling of the Cholesky decomposition of several 
covariance matrices. Journal of Multivariate Analysis. 2007; 98(3):568–587.

Gaskins et al. Page 20

J Am Stat Assoc. Author manuscript; available in PMC 2018 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Robert CP. Simulation of truncated normal variables. Statistics and Computing. 1995; 5(2):121–125.

Roy J. Modeling longitudinal data with nonignorable dropouts using a latent dropout class model. 
Biometrics. 2003; 59(4):829–836. [PubMed: 14969461] 

Roy J, Daniels MJ. A general class of pattern mixture models for nonignorable dropout with many 
possible dropout times. Biometrics. 2008; 64(2):538–545. [PubMed: 17900312] 

Schafer, JL. Analysis of Incomplete Multivariate Data. Chapman & Hall Ltd; 1997. 

Smith M, Kohn R. Parsimonious covariance matrix estimation for longitudinal data. Journal of the 
American Statistical Association. 2002; 97(460):1141–1153.

Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and 
fit (with discussion). Journal of the Royal Statistical Society, Series B. 2002; 64(4):583–639.

Wang C, Daniels MJ. A note on MAR, identifying restrictions, model comparison, and sensitivity 
analysis in pattern mixture models with and without covariates for incomplete data (with 
correction). Biometrics. 2011; 67(3):810–818. [PubMed: 21361893] 

Wang C, Daniels MJ, Scharfstein DO, Land S. A Bayesian shrinkage model for incomplete 
longitudinal binary data with application to the breast cancer prevention trial. Journal of the 
American Statistical Association. 2010; 105(492):1333–1346. [PubMed: 21516191] 

Wu MC, Carroll RJ. Estimation and comparison of changes in the presence of informative right 
censoring by modeling the censoring process. Biometrics. 1988; 44(1):175–188.

Gaskins et al. Page 21

J Am Stat Assoc. Author manuscript; available in PMC 2018 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Depiction of smoking status and missingness values by treatment group. Each column 

represents a patient’s status at each of the T = 8 measurement occasions. Black represents an 

observed value with smoking in the given week, gray represents an observed value of no 

smoking in the given week, and white represents the patient was missing for the week.
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Figure 2. 
Prior distribution of P (Qit = 0|Ȳit, D = t − 1) given P (Qit = 0|Ȳit, D ≥ t) for each treatment. 

The bold line represents the median value, the solid lines the lower and upper bounds, and 

the dotted line is P (Qit = 0|Ȳit, D ≥ t). The points marked with the dot are elicited from 

Table 3, and the remainder of the prior is linearly interpolated.
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Table 3

Elicitation of distributions for the sensitivity parameter ∆. Our subject-matter expert was asked to fill out this 

form to elicit the values for the sensitivity parameters. Her responses are shown in bold.

Consider two women who have the same history of smoking and weight change and are receiving the same intervention (exercise or wellness). 
Patient A is observed at time t − 1 but drops out of the study and is not seen at time t, while patient B remains in the study and is observed at 

time t.

If the probability that patient B smoked during week t is p, what is your best guess (median) for the probability that patient A (who dropped out) 
smoked during week t? Also provide a lower bound and upper bound on reasonable values.

Treatment Prob. observed patient 
B smokes (p)

Best guess Lower bound Upper bound

for the probability that the unobserved Patient A smokes

Wellness 25 % 50 % 40 % 60 %

Wellness 50 % 70 % 60 % 80 %

Wellness 75 % 95 % 90 % 100 %

Exercise 25 % 50 % 40 % 60 %

Exercise 50 % 70 % 60 % 80 %

Exercise 75 % 95 % 90 % 100 %

If the observed patient B has an expected percentage weight change from baseline of w at week t, what is your best guess (median) for the 
expected percentage weight change from baseline at week t for patient A who dropped out? Also provide a lower bound and upper bound on 

reasonable values.

For reference, the average weight change was 2.4% and the standard deviation was 2.6%. Also, negative values are allowed if it is believed that 
the patient will have lost weight since baseline.

Treatment Weight change for
observed patient B (w)

Best guess Lower bound Upper bound

for the expected weight change of the unobserved Patient A

Wellness 2.5 % 2 % 0 % 5 %

Exercise 2.5 % 1.5 % 0 % 4 %
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