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Abstract

We consider how to represent sigmoid-type regression relationships in a practical and 

parsimonious way. A pure sigmoid relationship has an asymptote at both ends of the range of a 

continuous covariate. Curves with a single asymptote are also important in practice. Many 

smoothers, such as fractional polynomials and restricted cubic regression splines, cannot 

accurately represent doubly asymptotic curves. Such smoothers may struggle even with singly 

asymptotic curves. Our approach to modeling sigmoid relationships involves applying a 

preliminary scaled rank transformation to compress the tails of the observed distribution of a 

continuous covariate. We include a step that provides a smooth approximation to the empirical 

cumulative distribution function of the covariate via the scaled ranks. The procedure defines the 

approximate cumulative distribution transformation of the covariate. To fit the substantive model, 

we apply fractional polynomial regression to the outcome with the smoothed, scaled ranks as the 

covariate. When the resulting fractional polynomial function is monotone, we have a sigmoid 

function. We demonstrate several practical applications of the approximate cumulative distribution 

transformation while also illustrating its ability to model some unusual functional forms. We 

describe a command, acd, that implements it.
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1 Introduction

Selecting “good” models to represent the effect of continuous covariates in regression 

models is challenging. We do not intend to review these challenges and possible solutions 

here. Instead, we focus on a particular issue: how to represent sigmoid-type regression 

relationships in a practical and parsimonious way.

Pure sigmoid relationships have an asymptote at both ends of the range of a continuous 

covariate, x, notionally as x → ±∞. Curves with a single asymptote, usually as x → +∞, 

are also important in practice (for example, the relationship between body height and age 

from infancy to adulthood). Popular general smoothers, such as fractional polynomials (FPs) 

(Royston and Sauerbrei 2008) and restricted cubic regression splines (RCS), cannot 

accurately represent doubly asymptotic curves. Such smoothers may struggle even with 

singly asymptotic curves. Specialized “growth curve” types of models, such as logistic or 
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Gaussian functions, have been developed to model asymptotic relationships; they are often 

used, for example, in laboratory assay systems. However, because the latter models are 

nonlinear in some of their parameters, they require nonlinear optimization tools to fit them 

and often need specially written software specific to each model. Even then, their functional 

forms may be insufficiently flexible to provide an adequate fit to a range of singly or doubly 

asymptotic relationships that may be found in practice. Furthermore, we envisage not only 

univariable but multivariable settings, where more than one continuous x is modeled 

simultaneously.

Our approach to modeling sigmoid relationships is to apply a preliminary rank 

transformation, scaled by the sample size, to compress the tails of the observed distribution 

of a continuous x. We then apply FP regression to the scaled ranks as a covariate. When the 

FP model is monotone, the result is a sigmoid function. However, because the rank 

transformation is specific to the observed distribution of x, the resulting function is not very 

useful because it cannot be easily transported to other settings. For example, it cannot be 

directly applied to an identical covariate in a different dataset. For this reason, we 

incorporate an additional step that provides a smooth approximation to the empirical 

cumulative distribution function (ECDF) of x via the scaled ranks. This approach is described 

in section 2, The ACD transformation. We illustrate our proposal in a simple simulation 

example and in the analyses of three real datasets, all of which feature time-to-event 

(survival) response variables.

2 The ACD transformation

2.1 Method

Let X be a continuous random variable to appear as a covariate in some regression model of 

interest. Instead of modeling X directly, we first approximate its ECDF. We thereby obtain a 

smooth function called ACD (X). The approximate cumulative distribution (ACD) is included 

in the regression model instead of X. We define ACD (·) as follows. Let x1,…,xn be a sample 

of size n from the distribution of X and rank(xi) be its rank within the sample, with ranks 1 

and n denoting the lowest and highest values, respectively. Define

(1)

where Φ (·) is the standard normal cumulative distribution function (normal() in Stata), 

Φ−1 (·) is its inverse (invnormal() in Stata), and p is the best-fitting power in a one-term FP 

regression model zi = β0 + β1 (xi + shift)p. Ordinary least-squares regression of the zi on the 

(xi + shift)p is used to fit the latter model. By convention, p = 0 means log transformation. If 

any of the original xi values is ≤ 0, all the xi are shifted by a constant, shift, chosen to ensure 

that (xi + shift) > 0 for all i; otherwise, shift = 0. See, for example, Royston and Sauerbrei 

(2008, 84–85) for details of how shift may be determined. See also the scale() option of 

the fp command in Stata 13. If desired, users can supply their own value of shift in the 

shift() option of the acd command (see section 3.1).
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An explanation of the three-step approach is as follows. In the first step, zi = Φ−1 [{rank (xi) 

− 0.5} /n] yields the inverse normal (probit) transformation of the ECDF. If the xi are all 

distinct, the zi resemble expected standard normal statistics in a sample of size n. The second 

step approximates the zi as a power-linear function of the (xi + shift). If X is normally 

distributed, then the zi are linearly related to the xi (that is, p = 1). For other distributions of 

X, a different value of p is likely to be appropriate, for example, p = 0 if X is lognormally 

distributed. In the third step, the fitted values  are back-transformed to the interval (0, 1) so 

that ai approximates the ECDF of X at xi. Note that 0 < ai < 1. Also note that 

 no longer directly involves rank (xi); it is a smooth 

function of xi.

2.2 Interpretation

The ACD transformation smoothly maps the observed distribution of a continuous covariate 

onto one scale, namely, that of an approximate uniform distribution on the interval (0, 1). If 

the relationship between a response Y and ACD (X) is linear, say, E (Y) = β0 + β1ACD (X), the 

relationship between Y and X is nonlinear and is typically sigmoid in shape (see, for 

example, figure 1 in the next section). The parameters β0 and β0 + β1 in such a model are 

interpreted as the expected values of Y at the minimum and maximum of X, that is, at ACD 

(X) = 0 and 1, respectively. The parameter β1 represents the range of predictions of E(Y) 

across the whole observed distribution of X.

2.3 Example 1: Simulated distributions

Figure 1 shows the ECDF and ACD values for a normal distribution, X ~ N (4, 1), and a 

lognormal distribution, ln (X) ~ N (0, 0.52), in simulated samples of size n = 100. The 

positive skewness of the lognormal sample is apparent from the asymmetric shape of the 

ECDF curve. The upper-tail region of the lognormal distribution is compressed by the ACD 

transformation, and the lower-tail region is much less compressed.

2.4 Example 2: Kidney cancer data

RE04 is a large randomized, controlled trial in metastatic kidney cancer conducted by the UK 

Medical Research Council (Gore et al. 2010). Patients were randomized 1:1 to standard 

immunotherapy (interferon-α) or triple therapy (interferon-α, interleukin-2, 5-fluorouracil). 

The primary outcome measure was time to death from any cause (that is, overall survival). 

Of the 1,006 patients recruited to the trial, 691 died during the follow-up phase. Triple 

therapy did not improve survival compared with standard immunotherapy (hazard ratio = 

1.05, 95% confidence interval (CI) [0.90, 1.21]).

Several standard prognostic factors for the clinical course of the disease were measured at 

randomization. These included hemoglobin (haem), of which low values (suggesting 

anemia) tend to predict shorter survival times. The dataset that we analyze 

(re04_haem.dta) contains the 999 patients with follow-up at the time of analysis and is 

limited to the survival data and haem. As an example of ACD analysis, we investigate the 

functional form of the effect of haem on the log relative-hazard in univariate Cox models. 
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Because haem is only weakly correlated with other prognostic factors, we would expect little 

confounding when ignoring the other factors.

Figure 2 provides a rough guide to the shape of the functional form needed for haem. A 

running-line smoother (Sasieni, Royston, and Cox 2005) on haem of the martingale residuals 

from a null Cox model is shown. The plot was created as follows:

• stcox, estimate

• predict mg, mgale

• running mg haem, nopts span(0.5)

Because martingale residuals are generally “noisy”, the option span(0.5) was specified to 

increase the smoothness of the fitted line compared with the default span (for these data, of 

0.25).

The functional form appears distinctively sigmoid. Most of the prognostic effect of haem 

occurs between about 10 and 15 g/dl, which are the 5th and 86th centiles of the sample of 

haem values.

We now investigate the functional form according to recognized tools used with Cox and 

many other regression models: FPs (fracpoly, or in Stata 13, the fp command) and RCS (the 

uvrs command) (Royston and Sauerbrei 2007). Figure 3 shows the estimated log relative-

hazard, centered on the mean haem value of 13.0 g/dl, for the best-fitting two-term FP (FP2) 

curve and for an RCS with 4 degrees of freedom (d.f.) (3 interior knots).

The three functions were all estimated by Cox regression models. They agree closely in the 

region between 10 and 15 g/dl, where the data density is highest. They differ substantially at 

more extreme values of hemoglobin, where only the ACD approach gives a sigmoid curve that 

agrees qualitatively with the picture in figure 2. The Akaike information criterion values (−2 

× log partial likelihood + 2 × model dimension) for the three models are 8,508.3 (FP2), 

8,502.08 (RCS) and 8,497.8 (linear function of ACD-transformed haem). On this measure, the 

ACD-based model is preferred.

If the functional form is simplified by removing terms that are statistically insignificant at 

the 5% level, the FP2 function is replaced by a straight line, and the spline function is 

replaced by another line of similar shape to that in figure 3 but with one fewer knot. The 

deviance (−2 × log partial likelihood) of the ACD function is 9.5 lower than that of the linear 

function. Nonnested model analysis shows that the ACD function fits significantly better (P < 

0.001) than a straight line.

For the ACD transformation, the best-fitting power p in (1) is 1, and the corresponding 

parameters β0 and β1 are estimated to be −6.98 and 0.536, respectively. In this example, no 

FP transformation of the resulting ai is needed to provide a good fit in the Cox regression 

model, but this is not always the case. Figure 4 shows smoothed martingale residuals from 

Cox models with linear, reduced RCS (3 d.f.), and ACD models for haem. The linear function 

is a poor fit. The other two fits are good, but as we noted in figure 3, the spline function is 

not sigmoid, which on substantive grounds may be unsatisfactory here.
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In the Cox regression on ACD(haem), the estimated regression coefficient is −1.44 (95% CI 

[−1.70, −1.18]). Thus the model-based estimate of the hazard ratio between the minimum 

and maximum values of haem is 0.24 (CI [0.18, 0.31]). That represents about a fourfold 

range.

2.5 Example 3: Melanoma thickness

The next example is more challenging than the others. Cutaneous malignant melanoma is a 

type of skin cancer that is most prevalent in sunny countries with a substantial proportion of 

fair-skinned people, such as Australia. The depth of invasion of the tumor is the dominant 

prognostic factor determining the long-term survival chances of the patient.

We consider a large dataset (n = 28656) of melanoma patients from the Queensland Cancer 

Registry in northeastern Australia. Cancer-specific survival time and (among several other 

known prognostic variables) tumor thickness (thick) in mm were recorded in patients 

diagnosed from 1995 to 2008 (Baade et al. 2013). The 10-year cancer-specific survival 

probability was 92.6%. For reasons of confidentiality, 5% of the observations we analyze 

here have been slightly perturbed at random.

We analyze the univariate relationship between tumor thickness and survival. Following 

preliminary investigation of the appropriate scaling for covariate effects, we chose a class of 

flexible parametric models (Royston and Lambert 2011) with a probit link. The models are 

implemented through the scale(normal) option of the stpm2 command (Lambert and 

Royston 2009).

Logically, because a thicker tumor is more dangerous, we expect the relationship between 

thickness and mortality to be monotone increasing. To ensure monotonicity, we start by 

restricting ourselves to one-term FP (FP1) models for thickness. Figure 5 shows a running-line 

smooth of the relationship between thick and the martingale residuals from the null 

flexible parametric model with probit link. Because the distribution of thick is a highly 

positively skew (coefficient of skewness = 8.5), we truncate thick at 20 mm (the 99.92 

percentile) for better visualization of the lower values.

The functional form appears to be something like a straight line superimposed on a doubly 

asymptotic curve. Clearly, no simple FP model can represent it accurately. Instead, we 

construct an FP model comprising thick and its ACD transformation, athick. These 

variables are highly correlated. To reduce overfitting and instability, we allow at most FP1 

transformations. The two variables thick and athick need to be modeled simultaneously. 

For this purpose, we apply the mfp command for multivariable FP modeling to the variables, 

restricting each predictor to FP1 through the dfdefault(2) option of mfp:

• use melanoma

• (Queensland melanoma data (5%, random perturbation))

• acd athick=thick

• mfp, dfdefault(2): stpm2 thick athick, df(3) scale(normal)
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• Deviance for model with all terms untransformed = 12153.785, 

28027 observations

• (output omitted)

• Final multivariable fractional polynomial model for _t

Variable ——Initial—— ——Final——

df Select Alpha Status df Powers

thickness 2 1.0000 0.0500 in 1 1

athick 2 1.0000 0.0500 in 2 3

Log likelihood = -6001.0779           Number of obs =   28027

Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb

      Ithic__1 .0383586 .0060483 6.34 0.000 .0265042 .050213

      Iathi__1 2.174268 .0600696 36.20 0.000 2.056534 2.292003

      _rcs1 .3733268 .0078263 47.70 0.000 .3579876 .3886661

      _rcs2 .0567674 .0070334 8.07 0.000 .0429823 .0705525

      _rcs3 .0403051 .0051965 7.76 0.000 .0301202 .0504901

      _cons -2.279906 .0235895 -96.65 0.000 -2.326141 -2.233671

Deviance:12002.156.

The selected model is linear in thick (variable Ithic__1, created by mfp) and FP1 with 

power 3 in athick (variable Iathi__1, also created by mfp). The resulting linear predictor 

quantifies the difference in the probit of the cumulative probability of dying from melanoma 

up to any given time point. The linear predictor and the smoothed martingale residuals are 

shown in figure 6. In figure 6(a), a linear predictor value of 0 corresponds to patients with 

the smallest tumors and hence the lowest mortality.

The shape of the fitted linear predictor resembles that of the null-model martingale residuals 

in figure 5. Because the two estimated curves are on different scales, they are not 

numerically comparable. As shown in figure 6(b), the martingale residuals from the model 

comprising thick and ACD(thick)3 show no discernible pattern or trend, which suggests 

that we have an excellent fit to the data.

2.6 Example 4: Approximating an unusual functional form

Primary biliary cirrhosis (PBC) is a serious liver disease that usually results in liver failure 

and death. A particular PBC dataset has been reanalyzed several times in the literature to 

illustrate aspects of survival analysis. We use data on 312 patients (125 deaths from any 

cause, 187 censored observations) obtained in a randomized controlled trial of two 

treatments for PBC that was performed at the Mayo Clinic between 1974 and 1984.
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Several potentially prognostic variables were measured at baseline. Figure 7(a) shows raw 

and smoothed martingale residuals from a null Cox model for one of the variables, chol 

(serum cholesterol, mg/dl). The trench-shaped functional form shown in figure 7(a) is rather 

unusual and is not easy to model convincingly, for example, using FPs. Figure 7(b) shows the 

same relation, except the residuals have been smoothed on the ACD transformation of chol 

instead of on the untransformed chol. The shape is now roughly quadratic and is much 

easier to model using FPs (results not shown).

3 The acd command

3.1 Syntax

The syntax of acd is as follows:

acd newvar = exp [if] [in] [, all b (#1 #2) power(#) shift(#) ]

3.2 Description

acd transforms a variable or expression exp to newvar, a smooth approximation to its 

cumulative distribution function. Such transformed covariates may be useful in representing 

sigmoid relationships in regression models.

3.3 Options

all computes the ACD transformation over all available observations by using parameter 

estimates derived only from observations in the if and in qualifiers.

b(#1 #2) specifies #1 to be the intercept (β0) and #2 to be the slope (β1) in the model 

. #1 and #2 are both required. If b() is not specified (default 

case), #1 and #2 are determined from the data by fracpoly.

power(#) specifies p = # in the regression of the transformed ranks, z, on (exp + shift)p. 

By default, p is determined automatically by fracpoly from the data. If power() is 

specified, then shift() must also be specified. A linear function is specified by power(1) 

and a logarithmic function by power(0).

shift(#) specifies shift = # in the regression of the transformed ranks, z, on (exp + 

shift)p. By default, shift is determined automatically by fracpoly from the data. If 

shift() is specified, then power() must also be specified. The default is shift(0).

4 Conclusion

The acd program may provide a solution to the need for flexible parametric modeling of a 

covariate effect whose functional form is singly or doubly asymptotic or which has a 

sigmoid shape or component, as in the melanoma and PBC examples. We have illustrated its 

use mainly in models with one predictor, but it is also appropriate to use within multivariable 

modeling. More generally, the ACD transformation may play a role in improving the accuracy 

of predictions from models that include covariates with a markedly skew distribution.
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Figure 1. 
ECDF and ACD values for samples from a normal and a lognormal distribution, n = 100. Solid 

line: fitted ACD curve; dots, ECDF.
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Figure 2. 
Running-line smoother fit to the martingale residuals from a null Cox model for the RE04 trial 

data
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Figure 3. 
The fitted values (log relative-hazard) for three functions of haem. Vertical lines delineate a 

region with the highest data density. See text for details.
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Figure 4. 
Smoothed martingale residuals from three Cox models for the covariate haem. (a) Linear; 

(b) RCS with 3 d.f.; (c) linear function of ACD(haem).
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Figure 5. 
Smoothed martingale residuals for a null flexible parametric model on truncated tumor 

thickness
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Figure 6. 
(a) Linear predictor from flexible parametric model; (b) smoothed martingale residuals from 

the same model. Shaded areas represent 95% pointwise CIs. Tumor thickness has been 

truncated at 20 mm.
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Figure 7. 
Raw and smoothed martingale residuals for chol in the PBC dataset: (a) on the original scale 

of chol; (b) on ACD-transformed chol.
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