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Therapeutic implications of bioactive sphingolipids: A focus on colorectal cancer
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ABSTRACT
Therapy of colorectal cancer (CRC), especially a subset known as locally advanced rectal cancer, is challenged
by progression and recurrence. Sphingolipids, a lipid subtype with vital roles in cellular function, play an
important role in CRC and impact on therapeutic outcomes. In this review we discuss how dietary
sphingolipids or the gut microbiome via alterations in sphingolipids influence CRC carcinogenesis. In
addition, we discuss the expression of sphingolipid enzymes in the gastro-intestinal tract, their alterations in
CRC, and the implications for therapy responsiveness. Lastly, we highlight some novel therapeutics that
target sphingolipid signaling and have potential applications in the treatment of CRC. Understanding how
sphingolipid metabolism impacts cell death susceptibility and drug resistance will be critical toward
improving therapeutic outcomes.
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Treatment challenges in colorectal cancer

As of 2016, colorectal cancer (CRC) remains the third most fre-
quently diagnosed cancer with an estimated 140,000 new cases
per year.1 Of concern are the findings of a recent study by the
American Cancer Society that the incidence of CRC is rapidly
increasing among younger adults.2 The incidence of rectal can-
cer, a subset of CRC located in the pelvis within 12 cm from the
anus, has doubled between 1989–90 to 2012–13 in adults under
55 year old.2 Locally advanced rectal cancer (LARC), either a
muscle-invasive primary tumor (AJCC Stage 2) or involved
lymph nodes (AJCC Stage 3), is particularly challenging to treat
and has high rates of disease recurrence. Neoadjuvant 5-fluoro-
uracil (5FU) chemoradiation (5FU/RT) is the most effective
treatment approach for patients with LARC. The landmark ran-
domized German Rectal Cancer Trial (CAO/ARO/AIO-94)
showed that LARC patients treated with neoadjuvant 5FU/RT
had fewer treatment-associated complications and less local dis-
ease recurrence compared with patients receiving surgery fol-
lowed by 5FU/RT.3 Tumor 5FU/RT pathologic response (AJCC
tumor regression grading (TRG)) has since become an estab-
lished surrogate marker of long-term survival and a useful onco-
logic benchmark.4,5 Approximately 20% of the LARC patients
have a pathologic complete response (TRG0) to 5FU/RT, with
exceptional long-term outcomes.5,6 Unfortunately in »80% of
cases, therapeutic resistance is evident and contributes to surgical
failure, disease recurrence, and ultimately, death of the patient.
Further, while additional agents have shown promise in cancer
cell lines, therapies combining these agents with 5FU/RT have
significantly increased toxicity in patients without improvement
in clinical response.7-10 To change the therapeutic paradigm,

LARC inter-patient heterogeneity must be integrated into
clinical algorithms tailoring therapy for individual patients
by either identifying more effective strategies or by omit-
ting ineffective treatments to avoid unnecessary toxicity.
Improving therapeutic response rates to preoperative ther-
apy should ultimately translate into better outcomes asso-
ciated with CRC. Given the high rate of resistance,
highlighted by the lack of complete response in the major-
ity of rectal cancer patients, exploring novel molecular
strategies to enhance conventional therapy for CRC is des-
perately needed.

Molecular mechanisms of therapeutic resistance in CRC
continue to be under intense investigation. Recently, investiga-
tions have demonstrated that bioactive sphingolipids play an
important role in CRC and impact oncologic therapies such as
chemotherapy and radiation. Therefore, dissecting the relation-
ship between bioactive sphingolipids and chemoradiation resis-
tance should provide insight into tumor survival mechanisms
and suggest potential novel targets to improve CRC treatment
strategies.

Sphingolipid metabolism

Sphingolipids represent a lipid subtype with vital roles in
cellular function.11 As structural components, sphingolipids
influence the physical properties of membranes, which impacts
on cellular signaling.12 In addition, sphingolipids affect cellular
signaling by acting as secondary messengers. An increasing
body of literature supports the role of sphingolipids in regulat-
ing biologically critical processes such as cell growth and death,
autophagy, migration and invasion, and angiogenesis.13,14
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Central to sphingolipid metabolism is ceramide, which can be
generated de novo, through hydrolysis of complex sphingoli-
pids, or via the salvage pathway (Fig. 1). De novo synthesis of
ceramide occurs in the endoplasmic reticulum, where serine
palmitoyl transferase (SPT) mediates the condensation of ser-
ine and palmitoyl-CoA to generate 3-ketosphinganine, which is
then reduced to dihydrosphingosine. Next, ceramide synthases
(CerS) add a fatty acid moiety generating dihydroceramide and
lastly dihydroceramide desaturase (DEGS) introduces a double
bond to generate ceramide. Ceramide serves as a building block
for complex sphingolipids such as sphingomyelin and glyco-
sphingolipids. Hydrolysis of these complex sphingolipids is the
second metabolic pathway by which ceramide can be generated.
Ceramide can also be hydrolyzed by ceramidases into sphingo-
sine. In the salvage pathway, ceramide synthases utilize sphin-
gosine and fatty acids as substrates to regenerate ceramide.
Thus ceramide can be generated through 3 metabolic pathways,
an apparent redundancy that may be necessary since lipid
molecules do not freely diffuse throughout the cytoplasm. Dis-
tribution of sphingolipid enzymes across various subcellular
compartments can thus fulfill the need for site-specific
generation of ceramide. Ceramide can also be shuttled between
compartments by ceramide transporters, such as CERT.

In contrast to ceramide, sphingosine and sphingosine-1-
phosphate are soluble mediators. Sphingosine is generated by
hydrolysis of ceramide by ceramidases and serves as a substrate
for sphingosine kinases, which through the addition of a phos-
pho-group generate sphingosine-1-phosphate (S1P). The phos-
pho-group of S1P can be removed by S1P phosphatase or S1P
lyase, which results in regeneration of sphingosine or irrevers-
ible degradation into ethanolamine-1-P and palmitaldehyde,
respectively. The latter step constitutes the exit from sphingoli-
pid metabolism. As shown in Fig 1, the majority of enzymatic
reactions in the sphingolipid pathway are reversible, which
endows cells with flexibility in responding to cellular stimuli.
Consequently, cellular stimuli can induce a flux in sphingoli-
pids that involve rapid conversion between ceramide, complex
sphingolipids, sphingosine and S1P.

Additional complexity derives from multiple isoforms of
sphingolipid enzymes that can vary in subcellular location and
pH requirements. For example, there are at least 3 ceramidases
and sphingomyelinases with different pH requirements and 2
sphingosine kinases with different subcellular locations. Fur-
thermore, the 6 ceramide synthases (CerS1-CerS6) have prefer-
ential substrate utilization and can generate ceramides that
vary in acyl chain length ranging from 14–30 (or more)

Figure 1. Sphingolipid metabolism. Central to sphingolipid metabolism is ceramide, which can be generated de novo and is used as a building block for complex sphingo-
lipids. It can also be phosphorylated or further metabolized into sphingosine-1-phosphate. See text for more details. Abbreviations: SPT D serine palmityoltransferase;
CerS D ceramide synthase; DEGS D dihydroceramide desaturase; SMS D sphingomyelin synthase; SMase D sphingomyelinase; GCS D glucosylceramide synthase; CDase
D ceramidase; CK D ceramide kinase.
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carbons.15 CerS1 preferentially generates ceramide with 18-car-
bon fatty acids (C18-Cer) while CerS5 or CerS6 primarily
generate ceramide with 16-carbon fatty acids (C16-Cer). Pheno-
types observed in CerS-deficient mice suggest that ceramides
with different fatty acid chain lengths have distinct biologic
roles. For example, CerS3 or CerS4-deficient mice develop
problems with skin barrier function and alopecia, respec-
tively,16,17 while CerS1- and CerS2-deficient mice exhibit
abnormalities in the central nervous system.18 In addition,
CerS2-deficiency (inability to generate C24-Cer) results in a
compensatory generation of C16-Cer, which in the liver leads to
apoptosis and subsequent development of hepatocellular can-
cer.19,20 Similarly, shifting ceramide composition in cancer cell
lines through targeting specific CerS changes cellular signaling
and responses.21 The tissue distribution of CerS varies and
likely reflects the need of specific ceramide species for proper
signaling and sphingolipid homeostasis in any given tissue. Sev-
eral comprehensive reviews on CerS are available.18,21,22

The two isoforms of sphingosine kinase, SK1 and SK2, both
utilize sphingosine and generate S1P, but have significant dif-
ferences in subcellular localization and function.23 Upon activa-
tion, SK1 migrates to the plasma membrane where it releases
S1P extracellularly. Extracellular S1P exert its actions in an
autocrine or paracrine fashion by binding to 5 different S1P-
receptors that via G-proteins regulate a broad range of cellular
functions. In contrast to SK1, SK2 appears to have both pro-
and anti-apoptotic functions depending on cell type, stimuli,
and subcellular localization.23 Targeting SK2 in malignancies
reduces tumor growth and suggests an anti-apoptotic role for
this enzyme in cancer.23

Ceramide has been associated with cell death, growth inhibi-
tion and differentiation whereas S1P regulates proliferation,
motility, angiogenesis and inflammation. Sphingolipid homeo-
stasis is critical for normal cellular function, which it evident
from rare mutations that result in lipid storage diseases as well
as phenotypes of various sphingolipid gene knockout mice.
Alterations in bioactive sphingolipids have been associated
with a variety of human diseases, including cancer.

The role of dietary sphingolipids in CRC carcinogenesis

The per capita consumption in the United States from sources
rich in sphingolipids such as dairy products or soy is estimated
at 0.3–0.4 g/day.24 Considering this significant intake of dietary
sphingolipids, the impact of dietary sphingolipids on intestinal
carcinogenesis has been investigated in different animal mod-
els. Models of intestinal carcinogenesis include treatment with
chemical carcinogens such as 1,2-dimethylhydrazine (DMH)
or azoxymethane (AOM) and APCmin mice, which serve as
genetic model for inactivating mutations of the Adenomatous
Polyposis Coli (APC) gene. Inactivation of APC, a negative reg-
ulator of the Wnt signaling pathway is the most common gene
abnormality in CRC and mutations are found in 81% of the
CRC cases in the Cancer Genome Atlas. Mutation of APC
results in accumulation of b-catenin, which acts as a transcrip-
tional co-activator of TCF/LEF gene family and promotion of
CRC.25 APCmin mice, which express a truncation mutation of
the APC gene, develop up to 100 polyps in the small intestine
as well as colon tumors. Multiple studies have confirmed that

dietary sphingolipids, including sphingodienes, glucosylcera-
mide, and sphingomyelin reduce carcinogenesis in both
APCmin mice as well as in DMH treated mice.26-29 Adding soy
glucosylceramide to the diet of DMH treated mice reduced
colonic cell proliferation by about 50% and significantly
diminished the number of aberrant colonic crypt foci.27 Simi-
larly, sphingomyelin supplementation reduced the number of
aberrant crypt foci by 70% and diminished the number of
colonic adenocarcinomas.30 These studies suggested a role for
intestinal metabolism of dietary sphingolipids as a critical step
in protection from colon carcinogenesis and supported the
hypothesis that elucidating signaling events may provide a
foundation for possible therapeutic approaches in CRC.

Dietary sphingolipids are metabolized throughout the intes-
tinal tract.31 The metabolism of dietary sphingomyelin, which
is found in dairy products,30 is initiated by the release of chole-
cystokinin from intestinal endocrine cells, which stimulates the
release of alkaline sphingomyelinase from the gallbladder and
the secretion of trypsin from the pancreas. Trypsin cleaves alka-
line sphingomyelinase releasing it from the intestinal mucosa
and enhancing enzymatic activity in the lumen.32 Ceramide
generated by the activity of alkaline sphingomyelinase is then
further hydrolyzed by neutral ceramidase into sphingosine,
which is absorbed into enterocytes, where it can be converted
into S1P. In the DMH model, dietary sphingomyelin resulted
in increased mRNA, protein expression and activity of alkaline
sphingomyelinase,33 which presumably increases the genera-
tion of ceramide, although this was not directly evaluated in
the study. In the APCmin model, 3 types of sphingolipid-supple-
mented diets (ceramide, milk sphingolipids similar to
proportions found in dairy products, and a mixture of 60%
complex sphingolipids and 40% ceramide) were compared with
the control diet. While all sphingolipid-supplemented diets sig-
nificantly reduced the tumor burden per animal, the mixture of
complex sphingolipid and ceramide was the most effective and
resulted in the redistribution of b-catenin from a diffuse pat-
tern into localization to intercellular junctions between intesti-
nal epithelial cells.29 Moreover, when CRC cell lines that
harbor APC mutations (SW480 and T84) were treated with
sphingosine or ceramide, cytosolic and nuclear b-catenin levels
were reduced, which ultimately lead to cell death.29 In the
APCmin model, sphingodienes reduce Wnt signaling via a pro-
tein phosphatase 2A/Akt/GSK3b-dependent mechanism.26

Glucosylceramide, which reduced tumor burden in the APCmin

and DMH models, significantly alters the expression of 96
genes, including decreased expression of the TCF/LEF family
member TCF4.27 Taken together, these studies suggest that die-
tary sphingolipids may inhibit intestinal carcinogenesis
through negative regulation of Wnt pathway signaling. The
protective effects of sphingolipids in the setting of APC muta-
tions provide supportive evidence of targeting sphingolipid
metabolism for therapeutic intervention.

The role of the gut microbiome in CRC

Symbiosis between the host and the gut microbiome is critical
for intestinal health. Metagenomic studies show that patients
with CRC have altered gut microbiomes when compared with
healthy controls and some studies have linked specific microbes
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to increased tumorigenesis.34,35 While sphingolipids have been
primarily studied in eukaryotes, microbes such as the soil
dwelling Sphingomonas as well as human commensals includ-
ing Bacteroides, Porphyromonas, and Prevetella from the
Bacteroidetes family contain sphingolipids.36,37 Bacteroides fra-
gilis, a prevalent gram-negative microbe within the intestine,
encounters a significant amount of stress within the constantly
changing host environment. B. fragilis sphingolipids do not
seem to play a role in growth of the microbe but rather are
essential for survival under stressful conditions.38 Interestingly,
germ-free mice or mice colonized with B. fragilis lacking the
bacterial equivalent of SPT were found to have an increase in
invariant natural killer T cells (iNKT), which play a key role in
innate and adaptive immunity.39 This increase in iNKT cells
was unique to the gastro-intestinal niche and facilitated an
increased inflammatory response following induction of coli-
tis.39 B. fragilis sphingolipids were found to inhibit the prolifer-
ation of iNKT cells during neonatal development, which
suggested a potential role of these lipids in the maintenance of
gut homeostasis.39 A proof-of principle experiment demon-
strated that oral administration of bacterial glycosphingolipids
to young mice resulted in reduced iNKT cells and protection
from colitis into adulthood.39

A subset of B. fragilis known as enterotoxigenic B. fragilis
(ETBF) is distinguished by its ability to secrete a pathogenic
enterotoxin. ETBF are increased in patients with inflammatory
bowel disease and CRC.40,41 Recently it was shown that ETBF
induce the release of intestinal mouse derived exosome-like
nanoparticles (IDEN) that contain S1P and mediate tumor pro-
motion through induction of pro-inflammatory Th17 cells.42

Comparing the effect of secreted particles from nontoxigenic
(NTBF) and ETBF, researchers found that NTBF particles
induced immunosuppressive Treg cells (CD4CFoxP3C) and
exerted a protective effect in the DSS-induced colitis model,
whereas particles from ETBF induced inflammatory Th17
cells.42 The effect of ETBF was recapitulated with NTBF engi-
neered to express the enterotoxin. Further studies led to a
model in which particles from ETBF induced intestinal epithe-
lial cells to secrete S1P-containing IDENs. These IDENs then
had a 2-fold function in promoting the inflammatory response:
(i) IDENs recruit inflammatory T cells (CD4CIL17ACCCR6C)
from the periphery into the intestinal tissue and (ii) IDENs
were taken up by intestinal macrophages resulting in enhanced
production of prostaglandin E2, which promotes the prolifera-
tion of the recruited pro-inflammatory CD4CIL17ACCCR6C T
cells.42 Since the risk of CRC in patients with inflammatory
bowel disease is increased by approximately 2–3-fold,43 these
studies suggest that toxin-induced S1P release may contribute
to colon tumorigenesis.

Certain probiotic bacteria can also influence host sphingoli-
pids and/or their enzymes. Lactobacillus rhamnosus GG
reduces levels of lysophosphatidylcholines, sphingomyelins,
and glycerophosphatidylcholines, whereas Lactobacillus brevis
and Streptococcus thermophilus increase neutral sphingomyeli-
nase levels, which may be involved in ceramide induced
immune cell apoptosis.44,45 Taken together these studies show
that microbes can either directly, through their own sphingoli-
pids, or indirectly, through modulation of host sphingolipids,
impact intestinal inflammation, which has been associated with

CRC carcinogenesis. These findings suggest novel opportunities
to utilize microbes or nano-particle mediated delivery as pre-
ventative or possibly as therapeutic strategies in CRC.

Expression of sphingolipid enzymes in the gastro-intestinal
tract and alterations in CRC

Ceramide synthases
Ceramide synthases (CerS1-CerS6) vary in mRNA distribution
across tissues and preferentially generate ceramides with spe-
cific chain lengths. The first mammalian ceramide synthase
was discovered in 2002 and subsequent overexpression and
knockout experiments have indicating that altering the compo-
sition of ceramide species influences cell physiology and
pathology.21,46 CerS-deficient mice are viable and do not have
any obvious defects in the gastrointestinal tract, suggesting that
CerS family members have the ability to functionally compen-
sate under normal physiologic conditions.21,46

CerS mRNA expression varies among tissues but is not
necessarily reflective of protein expression or activity. The bis-
cistronic mRNA for CerS1, a CerS that preferentially generates
C18-Cer, is detected in the small and large intestine.47 CerS1
protein however was only detected in CRC cell lines and not in
colonic biopsies,47 which is consistent with data in the protein
atlas http://www.proteinatlas.org/ENSG00000223802-CERS1/
tissue. CerS2, which preferentially generates very long chain
ceramides such as C24-ceramide, is ubiquitously expressed and
has been suggested to function as a housekeeping gene.48,49

CerS3 appears to primarily play a role in the skin and testis and
although its mRNA has been detected in the gastrointestinal
tract, it is unclear whether the protein is expressed. CerS4 has
been implicated in folate stress, yet RNAi targeting of this pro-
tein did not protect cells (including HCT116 colon cancer cells)
from methotrexate toxicity nor did it noticeably affect prolifer-
ation.50 Similar to CerS2, CerS5 and CerS6, which both prefer-
entially generate C16-Cer, are ubiquitously expressed.51 CerS5
and CerS6 appear to be involved in cell stress responses.21

CerS6 mRNA is highly expressed in the intestinal tract and the
C16-Cer content in CerS6-deficient mice is reduced to 25%.22,52

Reduced CerS6 expression has been associated with epithelial
to mesenchymal transition in a panel of cancer cells that
included several CRC cell lines.53

Sphingomyelinases
In healthy human colon tissue sphingomyelinase activity is
detected at acidic, neutral, and alkaline pH, indicating that 3
sphingomyelinases (SMase) known as acid SMase (aSMase),
neutral SMase (nSMase) and alkSMase, are expressed.
AlkSMase plays an important role in digestion with expression
highest in the ascending colon and lowest in the rectum.54

A similar gradient was found for nSMase but not for aSMase.54

In comparison to surrounding normal tissue, SMase activity in
colorectal cancer is reduced by 75%, 50%, and 30% for
alkSMase, nSMase and aSMase, respectively.54 These results are
consistent with immunohistochemical staining for alkSMase
described in the protein atlas, although results are considered
uncertain as they are based on only one antibody (http://www.
proteinatlas.org/ENSG00000182156-ENPP7/tissue#gene_infor
mation).
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Ceramidases
Five different ceramidase genes encode enzymes that hydrolyze
ceramide at different pH optimums. Little is known about alka-
line ceramidases but interestingly ACER3-deficiency has
recently been associated with colitis-induced colon cancer in
mice due to an increase in C18:1-Cer and increased expression
of proinflammatory cytokines.55 Acid (ASAH1) and neutral
ceramidase (ASAH2) have been more extensively studied and
both have been identified as potential therapeutic targets in
malignancies.

ASAH1 is primarily found in the lysosomal compartment
and mutations in its gene result in rare genetic disorders as
well as other diseases.56,57 Knockout of ASAH1 results in
death early during embryonic development, indicating that
other ceramidases are unable to compensate for its enzymatic
activity.58 Although ASAH1 expression is essential for devel-
opment, expression in the normal colon is relatively low.59

Ceramide has been shown to transcriptionally induce ASAH1
expression either in response to radiation or as a consequence
of CerS6 (and possibly CerS3–5) overexpression.60,61 Thus it
is possible that expression of ASAH1 increases in response to
cell stresses that elevate intracellular ceramide within the
intestinal system.

ASAH2 is the enzyme that hydrolyses ceramide generated
by alkSMase during digestion of dietary sphingolipids. ASAH2-
deficient mice develop normally but tissues have elevated cer-
amide and reduced levels of sphingosine.62 RNAi targeting of
ASAH2 in HT29 and HCT116 colon cancer cell lines increases
ceramide, leading to 50% loss in viability in vitro and delayed
xenograft growth in vivo.63 In the AOM carcinogenesis model,
ASAH2-deficient mice developed significantly fewer tumors
with a 93% reduction in adenocarcinomas and an 82% decrease
in total colon tumors compared with wild type mice.63

Sphingosine kinases
Both sphingosine kinases play important roles in CRC and are
potential therapeutic targets. The SK1/S1P pathway was found
to positively regulate cyclooxygenase-2 (COX-2), an enzyme
involved in inflammatory pathways that is overexpressed in
several epithelial cancers. SK1 expression is elevated in the
majority of human CRC specimen (78–89%).64,65 A similar
increase in SK1 expression was detected in the AOM carcino-
genesis model.64 Elevated expression of SK1 also increases the
susceptibility to colitis-associated cancer.66 Conversely, SK1-
deficient mice had significantly less aberrant crypt foci forma-
tion and reduced colon cancer development.64 Recently, it was
shown that targeting SK1 with RNAi in CRC cell lines SW480
and HCT116 increases E-cadherin expression, decreases
vimentin expression and reduces viability and migration.65

These observations suggest a role of SK1 in epithelial to mesen-
chymal transition, proliferation, and migration in the absence
of inflammatory signaling.

SK2 also increases in CRC (51/64; 80%), although 21/64
apparently normal tissues also stained positive for SK2.67 In
serum-free cultures of HCT116 CRC cells, SK2 has been sug-
gested to function as a survival factor.68 Recently targeting of
SK2 by RNAi was shown to decrease expression of cMyc in the
CRC cell line LoVo, which is consistent with cMyc as a down-
stream target of SK2.67,69 cMyc plays an important role as a

target gene of TCF-4 during aberrant signaling of mutated
APC,70 which highlights SK2 as a potential novel target in CRC.

Sphingolipids and radiation sensitivity

With the central role of sphingolipids in mediating apoptosis, a
growing body of evidence implicates sphingolipids as critical
mediators of anti-neoplastic treatment approaches such as che-
motherapy and radiation. Given the importance of radiation in
the therapeutic armamentarium for LARC, understanding the
close association between sphingolipid metabolism and radia-
tion may open opportunities to define novel therapeutic
strategies for the future.

Early studies supported a direct link between radiation sen-
sitivity and sphingolipids by demonstrating that radiation
activates aSMase to generate ceramide with resultant formation
of ceramide-rich domains in the plasma and mitochondrial
membranes.71-73 Investigations definitively demonstrated that
endothelial derived aSMase was a central mediator of the radia-
tion efficacy highlighting the importance of the tumor stromal
compartment in mediating the ceramide response.73 An elegant
study using a model of radiation-induced apoptosis in
Caenorhabditis elegans germ cells confirmed a central role of
ceramide in the radiation response.74 Investigators demon-
strated that loss-of-function mutations in CerS genes, hyl-1 and
lagr-1, completely inhibited the apoptotic response that could
be rescued with exogenous delivery of C16-Cer.

74

Recent investigations have demonstrated that radiation effi-
cacy is driven in part by the resulting accumulation of ceram-
ides to enhance apoptosis mediated by multiple pathways
including protein phosphatases PP1 and PP2A, cathepsin D
and protein kinase Cz.75 Studies in cancer cell lines demon-
strated the complex regulation of radiation-induced ceramide
generation and apoptosis.76 In contrast to CerS2 overexpression
that resulted in partial protection from apoptosis, CerS5 and 6
enhanced radiation-induced apoptosis and increased
C16-Cer.

76 Further, many agents and stimuli that lead to cell
death require CerS, particularly CerS6, activity for effect,
suggesting a critical role in radiation response.77-84

The generation of ceramide following therapy induces apo-
ptosis but can also transcriptionally activate ASAH1. In pros-
tate cancer cells, ceramide generated following radiation
therapy transcriptionally activates ASAH1 expression via an
AP-1 mediated mechanism.61 The increase in ASAH1 resulted
in elevation of S1P and therapy resistance and was also associ-
ated with relapse following radiation therapy.61 These results
are consistent with several other studies that have associated
elevated expression of ASAH1 with proliferation and drug
resistance.85-87 In colon cancer cells, overexpression of CerS6,
which shifts the cellular ceramide profile toward C16-Cer, also
results in transcriptional activation of ASAH1.60 However, in
contrast to prostate cancer cells, the increase in ASAH1 as a
consequence of CerS6 overexpression resulted in increased sus-
ceptibility to 5FU chemotherapy, despite transcriptional activa-
tion of ASAH1.60 Interestingly, ASAH1 expression has been
positively correlated with a better prognosis in luminal sub-
types of breast cancer and epithelial ovarian cancer.88,89 Thus
elevated ASAH1 may not be exclusively associated with resis-
tance. The key difference between the prostate and colon cancer
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models appears to be the metabolic flux of the ASAH1 product
sphingosine. While S1P levels increased in prostate cancer cells,
analysis of metabolic flux in HT29 cells overexpressing CerS6
yielded minimal generation of S1P compared with HT-GFP
control cells.60,61 This suggests that in cells with high levels of
CerS6, the ASAH1 product sphingosine may be preferentially
used in the salvage pathway to regenerate ceramide whereas in
cells where ASAH1 is associated with resistance, sphingosine
maybe preferentially used by SK to generate S1P. The influence
sphingolipid metabolic flux may have on cell death susceptibil-
ity is illustrated in Fig. 2.

Sphingolipid metabolism as a therapeutic target

As ceramide has emerged as an important mediator of cell
death responses, therapies to directly target sphingolipid
metabolism have been developed. Strategies include antibodies
that bind S1P, inhibitors of enzymes involved in driving sphin-
golipid metabolism toward S1P, and the use of ceramide or cer-
amide analogs.90-93 The S1P antibody Sphingomab slowed
tumor growth in a preclinical study of renal cell cancer and
appeared to exert this effect by targeting the vasculature, since
blood flow to tumors was reduced when measured by MRI.94

The humanized S1P antibody ASONEP was well tolerated but
overall progression-free survival in patients with advanced
renal cell carcinoma was less than 2 months (http://www.
prnewswire.com/news-releases/lpath-reports-results-for-aso
nep-phase-2a-study-in-renal-cell-carcinoma-300053872.html).

Inhibitors that interfere with generation of S1P include
inhibitors of ceramidases and sphingosine kinases. Ceramidase
inhibitors have been developed for ASAH1 and ASAH2.63,95

The ASAH1 inhibitor LCL-521 has shown promising results in
head and neck squamous carcinoma and prostate cancer mod-
els61,96 but has not been evaluated in CRC. The ASAH2 inhibi-
tor C6-urea ceramide preferentially reduced viability in a panel
of human colon cancer cell lines compared with non-malignant
rat intestinal epithelial cells.63 C6-urea ceramide did not signifi-
cantly impact on levels of sphingosine or S1P but increased cer-
amide, which enhanced apoptosis and increased autophagic
flux.63 Neither LCL-521 nor C6-urea ceramide have yet been
evaluated in clinical trials.

SK are also a key targets in cancer therapy and both SK1 and
SK2 inhibitors have been developed.97-99 Of particular interest
to CRC is the SK2 inhibitor ABC294640, which protects from

colitis-driven CRC in the AOM/DSS model.100 ABC294640
also enhances the efficacy of 5FU and significantly reduced the
growth of HT29 xenografts.101 The Phase I trial for
ABC294640 was successfully completed102 and additional clini-
cal trials in hematological malignancies (NCT02229981,
NCT02757326) and hepatocellular carcinoma (NCT02939807)
have been initiated. As an inhibitor of SK2, treatment with
ABC294640 decreases cMyc, which is a target gene of TCF-4
during aberrant signaling of mutated APC, and may therefore
be a promising agent in the treatment of CRC.69,70,103-105

Cationic ceramides, developed based on structure-function
and targeting properties, induce anti-proliferative responses,
including autophagic cell death, apoptosis and growth inhibi-
tion.93,106,107 Among the cationic ceramides, LCL-30 has been
investigated in CRC.108,109 Due to the cationic charge LCL-30
preferentially localizes to the mitochondria and triggers the
apoptotic pathway.109 Treatment of mice bearing CT26 tumors
with LCL-30 mono-therapy resulted in a highly significant
reduction in tumor burden.108 The anti-tumor efficacy of LCL-
30 was greater than doxorubicin although combination
of LCL-30 and doxorubicin did not result in a benefit over
LCL-30 alone.108

Another approach to utilize ceramides as therapeutics
involves the encapsulation within non-toxic, non-aggregating,
nanoscale (<100 nm) vehicles. Nanotechnology has the poten-
tial to improve the pharmacokinetics, biodistribution, and toxi-
cological profiles of exogenously administered bioactive
ceramide. In addition, drug encapsulation within nanotechnol-
ogy can address inherent issues of poor solubility, precipitation,
non-tumor cell delivery (liver cells or macrophages) and immu-
nogenicity of bioactive lipids. Ceramide has been encapsulated
within nanoscale liposomes, calcium phosphosilicate nanocol-
loids, nanoemulsions, polyethyleneoxide-modified polyepsilon-
caprolactone nanoparticles (PEO-PCL) and linear-dendritic
nanoparticles.110,111 One of these preclinical approaches, the
C6-ceramide nanoliposome (CNL) has just entered the clinic
for solid tumors under FDA IND 109471 (NCT 02834611).
CNL is a homogeneous 85nM, ¡8mV, nanotechnology that
intercalates 30 molar percent C6-ceramide within a 12 molar
percent pegylated liposome.112 Compared to positively charged
ceramide analogs or vehicles, these anionic particles intrave-
nously deliver therapeutic doses of ceramide to tumors, without
inducing liver or renal toxicities in rodent and canine models.
Biological efficacy has been observed in models of CRC, hepa-
tocellular carcinoma, head and neck squamous cell carcinoma,

Figure 2. Cell death susceptibility. Cells with increased expression of acid cerami-
dase (ASAH1) may remain susceptible to death stimuli, if ceramide synthases
activity prevails over activity of sphingosine kinases.

Figure 3. Sphingolipid therapeutics under clinical investigation. ASONEP is an anti-
body designed to target S1P. ABC294640 is an inhibitor of sphingosine kinase 2.
Ceramide nanoliposomes are pegylated liposomes containing C6-ceramide.
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melanoma, breast cancer, pancreatic cancer as well as LGL,
BCLL and AML leukemias.112 Alluding to this efficacy, CNL is
engineered to exploit the enhanced permeability and retention
(EPR) properties of tumors, due to a calculated biologic half-
life of between 18–21 hours compared with just minutes for
free ceramide. Recently, CNL were shown to inhibit STAT3 sig-
naling in chronic lymphocytic leukemia (Doshi, et al. under
review). The STAT3 pathway is constitutively activated in
colon-cancer initiating cells (ALDHCCD133C subpopulation)
and targeting STAT3 through genetic (shRNA) or pharmaco-
logical (LLL12) approaches significantly inhibited tumor
growth.113 Thus incorporating CNL into therapeutic regimen
in notoriously difficult to treat LARC could be a powerful
approach. Moreover, second generation CNL or other nano-
scale approaches are already being developed that can be
actively targeted to cancer cells through bio-conjugation of
small molecules, antibody fragments or aptamers or that can
co-deliver synergistic drugs within the ceramide nanoscale
delivery platform.

Conclusions

In over a decade, since the landmark randomized German Rec-
tal Cancer Trial, neoadjuvant chemoradiation has remained the
gold standard approach for LARC. As our understanding and
appreciation of the complex sphingolipid regulatory pathways
grow in the context of cancer biology, we have learned that the
imbalance of bioactive sphingolipids can have a major impact
the therapeutic efficacy of chemotherapy and radiation. In the
future, harnessing these critical metabolic pathways through
novel therapies such as ABC294640 or CNL, which are cur-
rently under evaluation in clinical trials involving cancer
patients, holds significant potential to replace or synergize with
traditional therapies like radiation and to improve care for
patients with this devastating malignancy.
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