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Abstract

A quantum-chemistry based protocol, termed MOSS-DFT, is presented for the prediction of 13C 

and 1H NMR chemical shifts of a wide range of organic molecules in aqueous solution, including 

metabolites. Molecular motif-specific linear scaling parameters are reported for five different 

density functional theory (DFT) methods (B97-2/pcS-1, B97-2/pcS-2, B97-2/pcS-3, B3LYP/pcS-2 

and BLYP/pcS-2), which were applied to a large set of 176 metabolite molecules. The chemical 

shift root-mean-square deviations (RMSD) for the best method, B97-2/pcS-3, are 1.93 ppm and 

0.154 ppm for 13C and 1H chemical shifts, respectively. Excellent results have been obtained for 

chemical shifts of methyl and aromatic 13C and 1H that are not directly bonded to a heteroatom 

(O, N, S, or P) with RMSD values of 1.15/0.079 ppm and 1.31/0.118 ppm, respectively. This study 

not only demonstrates how NMR chemical shift predictions in aqueous environment can be 

improved over the commonly used global linear scaling approach, but also allows for motif-

specific error estimates, which are useful for an improved chemical shift-based verification of 

metabolite candidates of metabolomics samples containing unknown components.
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1. Introduction

The analysis of complex metabolic mixtures of a wide range of biological systems using 

NMR spectroscopy has become increasingly popular over the past decade in the context of 

the rapidly growing field of metabolomics.1–4 This is in part due to the ability to 

simultaneously provide detailed spectroscopic information on many different metabolites in 

the same sample. In that way, new insights into the state of biological systems as well as into 

metabolic pathways are possible.5–8

The concomitant development of databases and web-based query tools, like the Complex 

Mixture Analysis by NMR (COLMAR) database9, The Human Metabolome Database 

(HMDB)10 and the Biological Magnetic Resonance Data Bank (BMRB)11, has further 

increased the usefulness of NMR spectroscopy and enabled the automated assignment of 

metabolites. However, the identification of unknown metabolites, which are metabolites that 

give rise to signals in the NMR spectra, but that have not been identified previously or are 

not part of commonly accessible NMR databases, remains a key challenge. In this regard, 

empirical chemical shift predictors, such as NMRPredict12 as used by the MNova 

software,13 or the ACD/NMR predictor14 are useful to efficiently compare experimental 

chemical shift information with predicted chemical shifts of a large number of candidate 

structures, but their accuracy is determined by the nature and size of the underlying 

database.

As a consequence, one often encounters excellent prediction results for structures that are 

part of the underlying database, but structures (or substructures) that have not been 

considered during the fitting procedure are usually predicted with significantly reduced 

accuracy. Therefore, predictors that are less dependent on or even entirely independent of 

databases, potentially allow for the more balanced and more accurate chemical shift 

prediction for both known and unknown structures. In this context, quantum-chemical (QC) 

methods offer a promising alternative. However, their computational cost is in most cases 

several orders of magnitude larger and they require the use of high performance computing 

resources when a large number of predictions is needed. To keep the computational costs 

manageable, several approximations are usually employed, both regarding the system under 

study and the QC method itself. Although other procedures have been put forward in the 

literature,15–16 a widely-used approach is to calculate shielding constants only for a limited 

number of relevant conformers and to account for solvent effects implicitly. Among the 
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various QC methods, density functional theory (DFT) has been shown to yield both the 

accuracy and numerical efficiency to allow for NMR chemical shift calculations on a routine 

basis.17–24 Nevertheless, recent developments in wave function-based methods, especially 

MP2, offer potentially useful alternatives for small to medium-sized molecules.25–27

The calculated shielding constants can be converted to chemical shifts in three ways: (i) by 

subtracting them from the shielding constant of an internal reference, such as 

tetramethylsilane (TMS) or 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS), (ii) by 

intermediate references or multi-standards, and (iii) by means of (linear) regression. 

Whereas the first two approaches usually rely on (often fortuitous) error cancellation 

between shielding constants calculated for the query and reference atom, linear regression 

allows for the correction of systematic errors as a function of the shielding constant. Several 

studies have reported excellent agreements with experimental shifts by using DFT together 

with linear regression and provided fitting parameters for several exchange-correlation/basis 

set combinations20, 28–30, where some of them used multiple motif-dependent standards.31 

However, most of them were conducted in organic solvents, such as chloroform, for a 

relatively small number of molecules. While these results are helpful in the field of general 

organic chemistry, they are somewhat less practical for metabolomics studies, because NMR 

chemical shifts are usually measured in aqueous solution. Naturally, the presence of water 

poses additional challenges for the prediction of NMR chemical shifts of metabolites, 

especially if combined with implicit solvent models. For example, chemical shifts of atoms 

in close proximity to hydrogen bond donors or acceptors will have different systematic 

errors than shifts of those atoms that are further away.32 Moreover, molecules that allow for 

intramolecular hydrogen bonding often exhibit large chemical shift deviations when implicit 

solvent models are employed. This is because conformational search and geometry 

optimization in implicit solvent favor geometries that are stabilized by intramolecular 

hydrogen bonds, which often leads to a biased conformational ensemble compared to the 

one in explicit water. As a result, atoms in different microscopic solvation environments will 

have different systematic errors.

In the present work, we report a DFT-based protocol, termed MOlecular motif-Specific 

Scaling of Density-Functional-Theory-based chemical shifts (MOSS-DFT), for NMR 

chemical shift predictions, which is based on a set of 176 molecules that are relevant for 

metabolomics studies. Chemical shielding constants are converted to chemical shifts by a 

motif-specific linear regression approach of calculated shielding constants to experimental 

chemical shift measured with 2D 1H-13C HSQC spectroscopy. In the first part, details about 

the MOSS-DFT database construction and the computational methods are given. Thereafter, 

we provide the definition of motifs and compare our prediction results with those from 

earlier studies that employ global linear regressions. In the last part, we discuss the influence 

of basis set size and the exchange-correlation functional by comparing the results to various 

functional-basis set combinations.

2. Methods

For the MOSS-DFT database construction, a number of molecules were randomly picked 

from the COLMAR database. We used Open Babel33 to generate 3D coordinates from 2D 
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structures and to adjust the protonation state of ionizable groups to pH 7, that is, all 

carboxylic, phosphonic and sulfonic acid groups were deprotonated and all amino groups 

were protonated. For the calculation of the chemical shifts we largely follow the approach 

described previously.21 All molecules were subjected to a conformational search, which was 

conducted with the MacroModel program34 that is part of the Schrödinger suite. The OPLS 

2005 force field35 was used together with an implicit solvent model for water.34 For 

sampling, the Monte Carlo Multiple Minimum (MCMM) algorithm was chosen36–37 with 

the maximum step number set to 5000. Other program options have been set to their default 

values or set automatically by MacroModel, which is part of the automatic setup. To avoid 

unphysical conformational ensembles due to the implicit solvation model, the resulting 

conformers were checked for intramolecular hydrogen bonds, defined by a donor (D) – 

acceptor (A) distance of less than 3.5 3 and a D-H-A angle of 180° ± 30°. In the case of 

intramolecular hydrogen bonding in at least one of the conformers, the compound was 

removed from the database. In addition, molecules with long carbon hydride chains were 

excluded, if the conformational search yielded a large number (>100) of similarly low 

energy structures. The conformers obtained from the conformational search were further 

optimized at the DFT level using the Gaussian 09 program.38 The B3LYP39 exchange 

correlation functional was used together with the D3 dispersion correction40 and the def2-

TZVP basis set.41 In order to capture solvation effects, the conductor polarized continuum 

model (CPCM) was adopted using water as solvent.42–43 To ensure well-converged local 

minimum geometries, extremely tight convergence criteria have been used along with an 

ultrafine integration grid.

Convergence to local minimum structures has been additionally monitored by normal mode 

analysis at the same level of theory. In cases where two initially different conformers had 

essentially identical total energies (ΔE ≤ 10−9 Hartree), it was assumed that the DFT 

optimization led to the same minimum structure and calculations were continued only for 

one of the structures. The conformer population pi at 298.15 K was estimated from a 

Boltzmann analysis

(1)

where Ei denotes the relative free energy (electronic + thermal free energy) of conformer i as 

estimated from the thermochemical analysis in Gaussian 09 with respect to the most stable 

conformer. RT is the product of the ideal gas constant and the absolute temperature, 

respectively, and N is the total number of distinct conformers as obtained from geometry 

optimization. NMR shielding constants were calculated based on the gauge-independent 

atomic orbitals (GIAO) approach as implemented in Gaussian 09.44–48 We calculated NMR 

shielding constants at the DFT level employing 5 different functional-basis set combinations 

(see Table 3). The computed NMR shielding values have been averaged according to the 

weights of the Boltzmann analysis. Because calculated shielding constants have been 

referenced to chemical shifts obtained from 1H-13C HSQC experiments, the MOSS-DFT 

database only contains 13C-1H pairs of covalently bonded atoms. The calculated shielding 
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constants of methyl and methylene protons have been averaged to reduce misassignments in 

the case of magnetically inequivalent protons. In our calculations, about 4% of the atoms 

had chemical shift deviations larger than 7 ppm and 0.6 ppm for 13C and 1H, respectively. A 

closer inspection of the problematic compounds suggests in some cases misassignments in 

the experimental spectra or obvious problems in conformational sampling, such as errors in 

dihedral angles, especially for some tertiary carbon atoms. However, for the majority of 

outliers it was not easily possible to identify the specific cause for the deviation, such as less 

common functional groups. To prevent biased linear regression parameters, the molecules 

containing those atoms have been removed from the database, and the linear fit was repeated 

for the remaining 176 molecules. Finally, to convert the shielding constants to chemical 

shifts, a motif-specific linear regression approach was used according to

(2)

where σiso denotes the shielding constant; ai and bi are model parameters for motif i (details 

on motifs are given below) and δ is the chemical shift value.

3. Results and Discussion

3.1 Motif-Specific Linear Regressions for the More Accurate Chemical Shift Prediction

Table 1 shows the definition and names of motifs that are used to convert the calculated 

shielding constants to chemical shifts. We assigned each 13C-1H pair to one of the motifs 

based on the chemical environment of its carbon atom. That is, we determined in a first step 

whether the carbon atom is sp3 or sp2 hybridized, and subsequently, whether it is bonded to 

any element other than carbon or hydrogen. For sp2 carbons, we further discriminated 

between aromatic and aliphatic carbons, where we assigned aromatic atoms to arhet and 

arnonhet depending on whether they are bonded to a hetero atom or not. Aliphatic sp2 atoms 

were assigned to the sp2 motif. Due to the relatively small number of atoms within this 

motif, it was not further divided into hetero or non-hetero bonded carbons. Note, these 

definitions are mutually exclusive, that is, every 13C-1H pair is assigned to only one of the 

motifs. Our motivation for the present classification is threefold: we aim (I) to correct for 

errors due to the implicit modeling of solute-water interactions that will affect carbons 

bonded to heteroatoms differently than carbon atoms bonded to other carbon atoms, (II) to 

identify and obtain groups of atoms with superior or inferior prediction accuracy, and 

optimize their scaling parameters to further reduce errors within these groups, and (III) to 

account for slightly different slopes of aliphatic and aromatic carbons and protons. As part 

of the fitting process, we carried out a quadratic fit for each of the motifs and found no 

significant improvements.

The RMSD values and slopes of the linear regressions for the best performing method, B97- 

2/pcS-3, are reported in Table 2, where the considered RMSD intervals were limited to 0–7 

ppm (13C) and 0–0.6 ppm (1H), respectively. Our findings show a good overall performance 

of the MOSS-DFT approach as indicated by RMSD values of 1.93 and 0.154 ppm for 13C 

and 1H, respectively. A particularly good prediction is achieved for motif sp3
nonhet,met with 
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RMSD values of 1.15 and 0.079 for 13C and 1H, respectively. Therefore, the chemical shift 

prediction of methyls that are not bonded to any heteroatom should be given a higher weight 

when such information is used for the identification and validation of unknown metabolites.

As a general trend, a higher prediction accuracy is achieved for 13C-1H pairs that are not 

directly bonded to a heteroatom, with carbons in the group arhet being a notable exception. 

The worst prediction results are found for sp2 carbons and protons, as well as for protons 

within the arhet group. Nevertheless, with the MOSS-DFT prediction approach we obtained 

an accuracy that is comparable to earlier studies of organic solvents using global scaling 

factors and intercepts.20, 24, 28–30 We also note that in our case the RMSD values for global 

scaling are 2.36 and 0.170 ppm for 13C and 1H, respectively, and thus significantly larger 

than those for the motif-specific scaling. To cross-validate our approach, a new training set 

was created by randomly excluding 20% of the compounds from the original MOSS-DFT 

training set and assigning them to a test set. The obtained linear regression parameters for 

the new training set and the RMSD values of the test set are reported in Table S3. We find 

overall RMSD values of 1.94 ppm and 0.133 ppm for 13C and 1H, respectively, which are 

well comparable to the ones reported above. In addition, a comparison of the linear 

regression parameters in Table S3 with the original MOSS-DFT parameters shows only 

marginal differences, which confirms that the MOSS-DFT parameters are robust, i.e. they 

are insensitive to the exact choice of the database. As a result, a good prediction accuracy 

can be expected when applying the MOSS-DFT parameters to targets outside of the training 

set, provided that the conformational ensemble of the query compound has been obtained in 

a similar way.

Figures 1 and 2 show the correlation between shielding constants and experimental chemical 

shifts within the considered RMSD interval. The high R2 coefficients indicate very good 

correlations considering the narrow chemical shift ranges of most of the motifs. Usually, 

better correlations are found for 13C than for 1H. This is not unexpected, since the chemical 

shift ranges are much smaller in the latter case. Furthermore, there are significant differences 

between global and motif-specific fits. The largest discrepancies between global and motif-

specific slopes are found for arnonhet and arhet, indicating larger systematic errors in these 

cases. It has been previously proposed for Hartree-Fock that the larger degree of electron 

correlation in aromatic compounds is responsible for larger systematic errors,49 but this is 

still under debate for DFT. Nevertheless, Table 2 shows that the RMSD values of the 

aromatic groups are mostly lower than those for sp3nonhet, which illustrates the importance 

of the motif-specific corrections used here. Another interesting observation is found for 

motif sp3nonhet,met: the correlation plots for 13C and 1H show almost parallel ‘best fit’ lines 

for global and motif-specific regressions. At this point, it is unclear whether this result is 

intrinsic to our model (i.e. GIAO-DFT with implicit water model and the use of optimized 

geometries) or whether it is of purely statistical nature. The use of a larger sample size with 

a concomitant reduction of the spread of the error distribution might be able to resolve this 

issue.
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3.2 Choice of Basis Set and Exchange-Correlation Functional

The computational cost of chemical shift predictions is especially crucial in the field of 

metabolomics as often large sets of candidate compounds exist for which predictions are 

needed. Clearly, the computational time required for any QC method to calculate shielding 

constants will depend on the size of the basis set. To find an acceptable tradeoff between 

computational cost and prediction accuracy, the dependence of RMSD values for 13C and 1H 

chemical shifts on the basis set size has been examined. The results for the sequence pcS-1, 

pcS-2 and pcS-3 are shown in Table 3. Note that the average computational time for a single 

NMR shielding calculation increases from 1 minute for pcS-1 to around 4 hours for pcS-3 

on 12 cores. It is found that the RMSD value for 13C chemical shifts decreases by 0.09 ppm 

when the pcS-2 basis set is used instead of pcS-1. The use of pcS-3 only yields a marginal 

improvement of 0.03 ppm. Although, on an absolute scale, the differences between RMSD 

values of 1H are comparable to those of 13C, it is clear that changes in the second digit after 

the decimal point are already a major accuracy gain for 1H. Like for 13C, our results indicate 

a consistent improvement for 1H chemical shifts when going to larger basis sets, where the 

difference between pcS-1 and pcS-2 is as large as 0.058 ppm. However, unlike for 13C, the 

use of B97-2/pcS-3 still leads to a small improvement by 0.01 ppm compared to B97-2/

pcS-2. It is also interesting to note that there is no obvious relation between a scaling factor 

closer to one and a lower RMSD value (see Tables S1 and S2). Nevertheless, one observes 

convergence of the scaling factors in the case of 13C for pcS-2 to pcS-3. Thus, we can 

conclude that the accuracy gain results from an improved correlation between calculated 

shielding constants and experimental chemical shifts, but not from the reduction of the 

method’s systematic error as reflected by the scaling factor.

In addition to the basis set convergence, we compared the performances of two other 

exchange-correlation functionals. The results are reported in Table 3. The first functional, 

B3LYP, is one of the most widely used hybrid DFT functionals for organic molecules, 

whereas the second, BLYP, is a GGA functional often used in explicit solvent ab-initio 
molecular dynamics simulations and NMR shielding calculations due to its numerical 

efficiency. Compared to B97-2/pcS-2, both functionals perform slightly worse for 13C with 

RMSDs of 0.07 and 0.66 ppm for B3LYP and BLYP, respectively. Interestingly, the 

prediction performance of both functionals for 1H is consistent with that of B97-2. Unlike 

the basis set dependence, our findings show a correlation between a lower RMSD and a 

slope closer to one (see Tables S1 and S2), which indicates a smaller systematic error.

3.3 Comparison with Empirical Predictions

Since the time needed for QC predictions is typically orders of magnitudes larger than for 

empirical predictions, the former need to deliver a substantial accuracy increase to justify 

their use in metabolomics studies. To verify this, we compared the RMSD values of our 

MOSS-DFT method to empirical predictions in Table 4. Likewise, for the QC results above, 

all molecules that contained 13C/1H atoms, whose empirically predicted shifts deviated by 

more than 7 ppm / 0.6 ppm, have been omitted in the RMSD calculation. We note, however, 

that a completely unbiased comparison between both methods is not possible in our case, 

because it would require an independent validation set and therefore the knowledge of the 

training set of the NMRPredict program, which is not available. Our findings show an 
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improvement of more than 1.2 ppm for 13C and 0.1 ppm for 1H of the QC method in terms 

of RMSD over the empirical NMRPredict program. Even by using only a global correction, 

our QC predictor still outperforms the empirical predictor. However, predictions that are 

closely related to those in the training set are usually predicted by the empirical method with 

a very high accuracy, whereas structures that are dissimilar to the training set tend to be 

predicted significantly less accurately. We also investigated the correlation between the 

predictions by MOSS-DFT and NMRPredict (Figure 3) and find that there is no obvious 

correlation between the two. Nevertheless, both methods seem to be complementary in the 

sense that there are only few predictions that have large errors in both cases. The low 

probability of large errors for either method could be used as additional scoring information 

as part of the identification protocol. For example, if both predictors show a relatively large 

error for a candidate structure, it can be assigned a lower matching score.

4. Conclusion

In this work, we have presented a new DFT-based chemical shift prediction approach in 

aqueous solution, MOSS-DFT, that is specifically suited for the analysis of metabolites. To 

correct for systematic errors, a motif-specific model was introduced, which goes beyond a 

common global scaling correction. Our approach is based on a set of 176 molecules, 

where 13C-1H atom pairs have been classified into 6 motifs based on hybridization, 

aromaticity, and heteroatom bonding of the carbon atom. Subsequently, linear regression 

parameters have been derived separately for each of the motifs. We found a total RMSD 

value with respect to experimental data of 1.93/0.154 ppm for 13C/1H. This value is 

0.43/0.016 ppm lower than that of the global linear correction. As a general trend, 

predictions of atoms that are not bonded to a heteroatom exhibit a lower error. The best 

motif-specific RMSD values were obtained for sp3
nonhet,met and arnonhet with 1.15/0.079 

ppm and 1.31/0.118 ppm for 13C/1H atoms. The non-aromatic sp2 atoms have the highest 

RMSD (3.03 ppm) for 13C, whereas for 1H the highest RMSD of 0.239 ppm was found for 

arhet. A comparison of different functional/basis set combinations suggests that B97-2/pcS-2 

is most economical, although B97-2/pcS-3 is slightly more accurate for 1H. In the case 

of 1H, no significant improvement is found for B97-2 and B3LYP functionals over BLYP. A 

limitation of the MOSS-DFT approach is for molecules that form intramolecular hydrogen 

bonds. Therefore, future developments and applications of numerically efficient protocols 

should focus on the improved sampling and selection of relevant conformations for further 

improvements toward accurate calculations of chemical shifts of a growing spectrum of 

synthetic and naturally occurring molecules.
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Figure 1. 
Experimental chemical shifts versus computed isotropic shielding constants of 13C using the 

B97-2/pcS-3 method. The solid lines belong to the best fit for each motif, while the dashed 

lines correspond to the global fit.
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Figure 2. 
Experimental chemical shifts versus computed isotropic shielding constants of 1H using the 

B97-2/pcS-3 method. The solid lines belong to the best fit for each type, while the dashed 

lines correspond to the global fit.
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Figure 3. 
Absolute deviations of predictions by MOSS-DFT versus NMRPredict for 13C and 1H. The 

diagonal is shown to guide the eye. Points marked with the same color belong to the same 

molecule. Note that the chemical shift error ranges for 13C and 1H have been limited to the 

intervals indicated in the figure.
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Table 3

RMS Deviations of Chemical Shifts for Different Exchange-Correlation Functionals and Basis Sets.

XC Functional / Basis Set RMSD 13C (ppm) RMSD 1H (ppm)

B97-250 / pcS-151 2.05 0.222

B97-2 / pcS-251 1.96 0.164

B97-2 / pcS-351 1.93 0.154

B3LYP39 / pcS-2 2.03 0.165

BLYP52–54 / pcS-2 2.62 0.166
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Table 4

RMSD Values for MOSS-DFT (B97-2 / pcS-3) and NMRPredict Chemical Shift Predictions with respect to 

experiment.

13C RMSDMOSS-DFT 1.93 ppm

RMSDNMRPredict 3.15 ppm*

1H RMSDMOSS-DFT 0.154 ppm

RMSDNMRPredict 0.255 ppm*

*
Outliers above 7 ppm (13C) / 0.6 ppm (1H) have been excluded
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