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ABSTRACT

The mammalian target of rapamycin complex 1 (mTORC1) is an attractive target 
for HER-2 positive breast cancer therapy because of its key role in protein translation 
regulation, cell growth and metabolism. We present here a metabolomic investigation 
exploring the impact of mTOR inhibition on serum metabolic profiles from patients 
with non-metastatic breast cancer overexpressing HER-2.

Baseline, treatment-related and post-treatment serum samples were analyzed 
for 79 patients participating in the French clinical trial RADHER, in which randomized 
patients with HER-2 positive breast cancer received either trastuzumab alone (arm 
T) or a trastuzumab and everolimus combination (arm T+E). Longitudinal series of 
NMR serum metabolic profiles were exploited to investigate treatment effects on the 
patients metabolism over time, in both group.

Trastuzumab and everolimus combination induces faster changes in patients 
metabolism than trastuzumab alone, visible after only one week of treatment as 
well as a residual effect detectable up to three weeks after ending the treatment. 
These metabolic fingerprints highlight the involvement of several metabolic pathways 
reflecting a systemic effect, particularly on the liver and visceral fat. Comparison of 
serum metabolic profiles between the two arms shows that everolimus, an mTORC1 
inhibitor, is responsible for host metabolism modifications observed in arm T+E.
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In HER-2 positive breast cancer, our metabolomic approach confirms a fast and 
persistent host metabolism modification caused by mTOR inhibition.

INTRODUCTION

For about 20-30% of patients with breast cancer, 
cancer cells overexpress a growth-promoting HER/neu 
protein on their surface. This cancer, known as HER-
2 positive breast cancer (HER-2+) is characterized by 
an aggressive disease progression and poor prognosis 
[1]. Many advances in recent years, such as the use 
of targeted therapies, have enabled improvement in 
the management of HER-2+ breast cancer patients. 
Administration of trastuzumab, a recombinant 
monoclonal antibody against HER-2, proved as a truly 
appropriate treatment for patients with HER-2+ breast 
cancer and has improved their prognosis. Numerous 
clinical trials have positively evaluated the activity of 
trastuzumab, in combination with various chemotherapy 
agents, in terms of response rate, overall survival 
and risk of relapse [2, 3]. Moreover, in recent years, 
several targeted therapies for HER-2+ tumors including 
pertuzumab, lapatinib and trastuzumab emtansine have 
been approved for treatment of metastatic HER-2+ 
breast cancer. Others agents targeting several molecular 
pathways implicated in trastuzumab resistance have also 
shown encouraging results in advanced HER-2+ disease 
[1], notably the mammalian target of rapamycin (mTOR) 
inhibitor everolimus [4-6].

mTOR is an attractive target for cancer therapeutic 
intervention. The mTOR protein is a serine/threonine 
kinase that plays a crucial role in regulating various 
signaling pathways (PI3K/Akt, TSC, Ras, protein and 
lipid biosynthesis), and as such serves as a central 
regulator of cell growth, proliferation, survival and 
metabolism. Deregulation of the mTOR-signaling 
pathway (PIK3CA amplification/mutation, PTEN loss 
of function, Akt overexpression, and S6K1, 4EBP1 and 
eIF4E overexpression) is associated with several human 
disorders such as diabetes, obesity and cancer. Upstream 
regulators and downstream effectors of the mTOR 
pathway have been widely described in recent reviews 
[7-9]. In this context, the RADHER trial was set up to 
evaluate the effectiveness of combining trastuzumab and 
everolimus in pre-operative treatment of early breast 
cancer (EBC), as compared with trastuzumab treatment 
alone.

Metabolomics investigations are increasingly used 
in breast cancer research. Initial studies primarily intended 
to identify biomarkers discriminating benign vs. malignant 
tissue samples [10, 11] and subtypes of breast cancer 
[12, 13]. More recently, a growing number of studies on 
human biological fluids (blood and urine) have aimed 
at highlighting biomarkers distinguishing early breast 
cancer and relapses [14-16] or subclasses linked to cancer 
treatment response [17-20]. Miolo and coworkers [19] 

have highlighted predictive biomarkers associated with 
response to neoadjuvant therapy (trastuzumab-paclitaxel) 
in HER-2+ breast cancer.

In this work, we present a metabolomic investigation 
exploring the impact of mTOR inhibition on the serum 
metabolic profiles of patients with EBC overexpressing 
HER-2. We detail the metabolic signatures associated with 
response to trastuzumab, or a combination of trastuzumab 
and everolimus.

RESULTS

Patients characteristics

To investigate the metabolic changes associated 
with targeted therapies, 79 patients with HER-2+ EBC 
from the RADHER clinical trial, treated with either 
trastuzumab alone (arm T: 40 patients) or a combination 
of trastuzumab and everolimus (arm T+E: 39 patients) 
were included in our metabolomics analysis. Principal 
characteristics of these patients are summarized in Table 
1. Biological and clinico-pathological data evaluation 
reveals no significant differences between arms T 
and T+E, excluding bias related to patients’ selection. 
According to the Sataloff classification, 48.7% of 
patients who were administered the everolimus and 
trastuzumab combination display partial or complete 
response to treatment while only 42.5% show similar 
response within arm T.

Untargeted 1H NMR-based metabolomics 
analysis

Serum samples collected for each patient at 
different time points before (W0), during targeted therapy 
(W1 and W4), and after drug intervention (W7, W9 and 
W13) were analyzed by 1H NMR spectroscopy. The 
global study design is summarized in Figure 1. 1H NMR 
metabolic profiles were thus obtained for a total of 341 
serum samples (W0: 39, W1: 70, W4: 67, W7: 57, W9: 
52 and W13: 56), corresponding to 168 samples from 40 
patients in group T (W0: 16, W1: 36, W4: 36, W7: 27, 
W9: 24 and W13: 29) and 172 samples from 39 patients 
following treatment T+E (W0: 23, W1: 34, W4: 31, W7: 
30, W9: 28 and W13: 26), and further evaluated using 
multivariate statistical analyses. Supervised analyses of 
the metabolic profiles carried out in relation with tumor’s 
characteristics (tumor type, hormone receptors, size 
tumor residue, SBR grade, Sataloff classification and 
toxicity) showed an absence of significant associations 
(Supplementary Table 1), allowing to neglect in the 
following the specific impact of tumor characteristics on 
serum profiles.
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Table 1: Clinicopathological characteristics of the RADHER trial patients

Characteristics Arm T Arm T+E p-value a

No. of subjects 40 (50.6%) 39 (49.4%)

Age (median/SD) 50 (±13.3) 51 (±12.2) 0.48

No. of serum samples

W0 16 23

W1 36 34

W4 36 31

W7 27 30

W9 24 28

W13 29 26

Menopausal status 0.65

Pre-Menopausal 22 (55%) 19 (48.7%)

Post-Menopausal 18 (45%) 20 (51.3%)

BMI (body mass index) 1

≤ 25 24 (60%) 23 (59%)

> 25 15 (37.5%) 16 (41%)

Unknown 1 (2.5%) 0 (0%)

Hormone receptors b 0.65

HR + 18 (45%) 15 (38.5%)

HR - 22 (55%) 24 (61.5%)

Size tumor residue 0.30

≤ 2 cm 18 (45%) 24 (61.5%)

> 2 cm 13 (32.5%) 10 (25.7%)

Unknown 9 (22.5%) 5 (12.8%)

Tumor type 0.39

Ductal 33 (82.5%) 36 (92.3%)

Lobular 1 (2.5%) 0 (0%)

Others 6 (15%) 3 (7.7%)

SBR grade c 0.05

1 0 (0%) 1 (2.6%)

2 12 (30%) 22 (56.4%)

3 20 (50%) 11 (28.2%)

Unknown 8 (20%) 5 (12.8%)

Sataloff classification d 0.23

Complete Response 6 (15%) 3 (7.7%)

Partial Response 11 (27.5%) 16 (41%)

No Response 21(52.5%) 20 (51.3%)

No information 2 (5%) 0 (0%)

(Continued )
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Metabolic profiles associated with treatments of 
HER-2+ EBC

To probe the specific metabolic response associated 
with trastuzumab alone or trastuzumab and everolimus 
treatments, NMR metabolic profiles were first evaluated 
within each arm of the study. Supervised multivariate 
statistics (O-PLS models) were built to compare 
metabolic profiles and derive robust statistical models 
discriminating pre- versus on-treatment metabolic serum 
profiles (Figure 2).

Regarding the group T, O-PLS score plots obtained 
from serum metabolic profiles between pre- and on-
treatment samples (W0 and W1, W0 and W4) revealed 
no significant separation (Figure 2A). In contrast, O-PLS 
models discriminate for group T+E serum metabolic 
profiles at W0 versus W1 (R2X = 0.497, R2Y = 0.404, Q2 
= 0.199, CV-ANOVA p-value = 0.019) and at W0 versus 
W4 (R2X = 0.581, R2Y = 0.603, Q2 = 0.301, CV-ANOVA 
p-value = 0.001 x 10-5). Statistical significance for these 
two models is assessed by high values of goodness-of-
fit parameters R2 and Q2, CV-ANOVA p-values < 0.05, 

Characteristics Arm T Arm T+E p-value a

Toxicity e at W4 0.01

Grade 1 & 2 35 (87.5%) 30 (76.9%)

Grade 3 & 4 0 (0%) 7 (17.9%)

No toxicity 2 (5%) 0 (0%)

No information 3 (7.5%) 2 (5.1%)

a p-value calculated using either the χ2 or Fisher exact tests for proportions or a Student test for median.
b Hormone receptors are receptors for estrogen and progesterone; HR-: at least one of the two receptors are negative; HR+: 
both receptors are positive.
c SBR (Scarff Bloom and Richardson) grade consists in three grades obtained by addition of three criteria: architecture, 
shape and size of the nuclei and number of dividing cells.
d Pathological response rate is centrally evaluated according to Sataloff classification (complete response: T-A; partial 
response: T-B; no response: T-C and T-D).
e Toxicity data was recorded after four weeks following NCI CTC criteria. The toxicity corresponds to the maximum 
intensity for all types of toxicities.

Figure 1: Study Design of the RADHER trial. Women patients with early breast cancer (EBC) overexpressing HER-2 were 
randomized using a 1:1 ratio. Group T was treated with trastuzumab alone; group T+E was administered a combination of trastuzumab and 
everolimus. Blood samples were collected under fasting conditions, at six different times: at baseline (W0) i.e. before the first therapy cure; 
one (W1) and four weeks (W4) after the beginning of the treatment; two weeks (W7), four weeks (W9) and eight weeks (W13) after the end 
of the treatment, i.e. after the last drip of trastuzumab. NMR analysis was performed once the trial completed.



Oncotarget83574www.impactjournals.com/oncotarget

and model resampling under the null hypothesis (Figure 
2B). Univariate analyses further identified significant 
changes in individual metabolite concentrations between 
baseline and on-treatment samples for group T+E. As 
illustrated in Figure 2C, administration of the everolimus 
and trastuzumab combination is correlated at W1 with 
an increase in fatty acids and acetone concentrations 
and a relative decrease in acetate, amino acids (alanine, 
histidine, lysine, phenylalanine, tyrosine and valine), 
albumin lysyl, betaine, creatine and creatinine (p < 0.05). 
All statistically relevant metabolites, corresponding fold-
changes and p-values are reported in Table 2.

After four weeks of treatment (W4), a metabolic 
pattern similar to the one observed at W1 discriminates 
treatment-related metabolic profiles from baseline in arm 
T+E (Figure 2D). In addition to the metabolites identified 
as statistically significant after one week of treatment, 
univariate testing highlights a significant increase in the 
levels of lipids (glycerol backbone of phosphoglycerides 
(PGLYs) and triacylglycerides (TAGs), lipoproteins 
mainly very low density (VLDL) and low density (LDL)) 
at W4, whereas acetoacetate, citrate, choline, glucose, 
glycerophosphocholine, myo-inositol and methanol 
concentrations decreased with respect to baseline. This 
longitudinal follow-up therefore consistently reveal 
that metabolic changes associated with the combined 
trastuzumab and everolimus treatment can be detected in 

sera as soon as one week after beginning the treatment 
(W1) and subsequently provide at W4 a stronger 
discrimination from baseline metabolic profiles.

Post-treatment evolution of the metabolic 
profiles

Metabolomic profiles of pre- and post-treatment 
serum samples were compared to explore the metabolism 
recovery after the end of the drug intervention. As 
concerns treatment T, no significant discrimination was 
found between pre- and post-treatment serum metabolic 
profiles, as evaluated at W7, W9 or W13 (Figure 3A). For 
arm T+E, a clear discrimination of the serum metabolic 
profiles is observed between W0 and W7 (R2X = 0.625, 
R2Y = 0.734, Q2 = 0.569, CV-ANOVA p-value = 4.01 
x 10-7) and between W0 and W9 (R2X = 0.660, R2Y = 
0.767, Q2 = 0.493, CV-ANOVA p-value = 0.0001), as 
illustrated in Figure 3B, while the sera of patients recover 
to baseline metabolic profiles within seven weeks after 
ending the treatment, as highlighted by the absence of 
discrimination between W13 and W0 samples (R2X = 
0.515, R2Y = 0.483, Q2 = -0.03, CV-ANOVA p-value = 
1). Metabolic fingerprints taken one or three weeks after 
the end of treatment T+E (W7 and W9 respectively) are 
very close to the pattern detected during treatment at W1 
and W4. In addition to the metabolites variations identified 

Figure 2: Discrimination between pre- and on-treatment serum samples. (A) O-PLS models score plots for group T evaluating 
samples discrimination at W0 vs. W1 (1+1 components, R2X = 0.457, R2Y = 0.398, Q2 = 0.061, CV-ANOVA p-value = 0.55) and W0 vs. 
W4 (1+1 components, R2X = 0.487, R2Y = 0.39, Q2 = -0.230, CV-ANOVA p-value = 1). (B) O-PLS models score plots for group T+E, 
discriminating samples at W0 vs. W1 (1+1 components, R2X = 0.497, R2Y = 0.404, Q2 = 0.199, CV-ANOVA p-value = 0.019) and W0 vs. 
W4 (1+2 components, R2X = 0.602, R2Y = 0.605, Q2 = 0.301, CV-ANOVA p-value = 0.007). O-PLS model validations by re-sampling 1000 
times the model under the null hypothesis for the treatment T+E. (C) and (D) O-PLS loadings plots represented for group T+E: W0 vs. W1 
and W0 vs. W4, respectively. Statistically significant individual signals correspond to the colored spectral regions. Highlighted candidate 
markers are: 1) Acetate, 2) Acetoacetate, 3) Acetone, 4) Alanine, 5) Albumin Lysyl, 6) Betaine, 7) Choline, 8) Citrate, 9) Creatine, 10) 
Creatinine, 11) Fatty acids, 12) Fatty acids (mainly LDL), 13) Fatty acids (mainly VLDL), 14) Glucose, 15) Glycerol backbone of PGLYs 
and TAGs, 16) Glycerophosphocholine, 17) Histidine, 18) Lysine, 19) Methanol, 20) Myo-inositol, 21) Phenylalanine, 22) Tyrosine, 23) 
Valine.
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at W1 and W4, concentrations of N-aceytylglycoprotein 
and mannose are significantly higher in sera at W7, 

while a decrease in levels of isoleucine and proline is 
observed with respect to baseline. We note that citrate, 

Table 2: Metabolites significantly associated with treatment T+E

ID Name W0 vs. W1 W0 vs. W4 W0 vs. W7 W0 vs. W9 Variation

p-valuea q-
value 
BHb

Fold 
Change

p-valuea q-value 
BHb

Fold 
Change

p-valuea q-value 
BHb

Fold 
Change

p-valuea q-
value 
BHb

Fold 
Change

1 Acetate 0.003 0.038 0.73 0.003 0.019 0.71 0.001 0.006 0.66 ↓

2 Acetoacetate 0.009 0.042 0.84 0.001 0.009 0.79 0.001 0.023 0.83 ↓

3 Acetone 0.0006 0.025 1.27 0.0001 0.002 1.44 0.0001 0.002 1.39 ↑

4 Alanine 0.001 0.032 0.83 0.001 0.010 0.80 0.001 0.006 0.81 ↓

5 Albumin Lysyl 0.002 0.038 0.83 0.00004 0.002 0.77 0.0006 0.006 0.81 ↓

6 Betaine 0.004 0.038 0.82 0.0003 0.005 0.76 0.002 0.012 0.77 ↓

7 Choline 0.007 0.040 0.88 0.003 0.016 0.86 ↓

8 Citrate 0.002 0.015 0.80 ↓

9 Creatine 0.001 0.032 0.83 0.00001 0.001 0.78 0.000001 0.00001 0.76 ↓

10 Creatinine 0.00002 0.002 0.86 0.000002 0.0003 0.78 0.000001 0.00001 0.76 ↓

11 Fatty acids 0.0006 0.025 1.27 0.010 0.046 1.23 0.001 0.009 1.32 0.003 0.041 1.12 ↑

12 Fatty acids 
(mainly LDL)

0.002 0.015 1.32 0.001 0.006 1.37 ↑

13 Fatty acids 
(mainly 
VLDL)

0.002 0.015 1.35 0.002 0.012 1.35 ↑

14 Glucose 0.002 0.018 0.86 0.0002 0.004 0.82 0.0003 0.013 0.84 ↓

15 Glycerol 
backbone 
of PGLYs & 
TAGs

0.003 0.019 1.15 0.001 0.006 1.21 0.0001 0.013 1.20 ↑

16 Glycero
phosphocholine

0.007 0.040 0.82 0.001 0.006 0.79 ↓

17 Histidine 0.004 0.040 0.85 0.0003 0.005 0.82 0.0004 0.006 0.78 ↓

18 Isoleucine 0.008 0.035 0.85 ↓

19 Lysine 0.001 0.032 0.85 0.001 0.008 0.81 0.0001 0.002 0.79 ↓

20 Mannose 0.009 0.036 1.30 ↑

21 Methanol 0.002 0.016 0.80 0.001 0.008 0.78 ↓

22 Myo-inositol 0.0001 0.003 0.78 0.0001 0.002 0.75 ↓

23 NAC 1 0.002 0.011 1.10 0.0003 0.013 1.15 ↑

24 Phenylalanine 0.0003 0.019 0.64 0.0003 0.005 0.58 0.001 0.008 0.63 0.002 0.037 0.59 ↓

25 Proline 0.001 0.008 0.78 ↓

26 Tyrosine 0.002 0.038 0.83 0.00001 0.001 0.74 3 x 10 -8 0.00001 0.67 0.0002 0.012 0.78 ↓

27 Valine 0.004 0.038 0.81 0.010 0.046 0.89 0.00002 0.0008 0.70 0.004 0.044 0.86 ↓

a p-value without multiple testing correction.
b q-value BH: p-value after Benjamini-Hochberg false discovery rate multiple testing correction. Variation: ↑ corresponds to 
higher concentration in W1, W4, W7 or W9 serum metabolic profiles than at baseline; ↓ to lower concentration in W1, W4, 
W7 or W9 serum metabolic profiles than at baseline.
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Figure 3: Discrimination between pre- and post-treatment serum samples. (A) O-PLS models score plots for group T. 
evaluating samples at W0 vs. W7 (1+4 components, R2X = 0.715, R2Y = 0.787, Q2 = 0.075, CV-ANOVA p-value = 0.98), W0 vs. W9 
(1+1 components, R2X = 0.531, R2Y = 0.334, Q2 = -0.361, CV-ANOVA p-value = 1) and W0 vs. W13 (1+1 components, R2X = 0.524, 
R2Y = 0.358, Q2 = -0.077, CV-ANOVA p-value = 1). (B) O-PLS models score plots for group T+E, discriminating samples at W0 vs. 
W7 (1+2 components, R2X = 0.625, R2Y = 0.734, Q2 = 0.569, CV-ANOVA p-value = 4.01 x 10-7), W0 vs. W9 (1+3 components, R2X 
= 0.660, R2Y = 0.767, Q2 = 0.493, CV-ANOVA p-value = 0.0001) and W0 vs. W13 (1+1 components, R2X = 0.515, R2Y = 0.483, Q2 = 
-0.03, CV-ANOVA p-value = 1). O-PLS model validations by re-sampling 1000 times the model under the null hypothesis for treatment 
B. (C) and (D) O-PLS loadings plots are represented for group T+E: W0 vs. W7 and W0 vs. W9, respectively. Statistically significant 
individual signals correspond to the colored spectral regions after Benjamini-Hochberg multiple testing correction. Highlighted candidate 
markers are: 1) Acetate, 2) Acetoacetate, 3) Acetone, 4) Alanine, 5) Albumin Lysyl, 6) Betaine, 7) Choline, 8) Creatine, 9) Creatinine, 10) 
Fatty acids, 11) Fatty acids (mainly LDL), 12) Fatty acids (mainly VLDL), 13) Glucose, 14) Glycerol backbone of PGLYs and TAGs, 15) 
Glycerophosphocholine, 16) Histidine, 17) Isoleucine, 18) Lysine, 19) Mannose, 20) Methanol, 21) Myo-inositol, 22) N-acetylglycoprotein 
(NAC1), 23) Phenylalanine, 24) Proline, 25) Tyrosine, 26) Valine.
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which showed significant variation at W4, does no longer 
contribute to the discrimination at W7 (Figure 3C). 
Three weeks after ending the treatment (Figure 3D), a 
smaller number of metabolites reach individual statistical 
significance. Overall, our results show that a residual 
effect of everolimus and trastuzumab combined treatment 
can be observed on the metabolic profiles of patients 
several weeks after the drug intervention (up to 3 weeks). 
These residual perturbations of the metabolism of the host 
are shown to disappear within seven weeks after the end 
of treatment.

Differential impact on serum metabolic profiles 
between treatment arms

To further compare metabolic responses associated 
with T and T+E treatments, further supervised analyses 
were carried out between T and T+E groups at the 
different sampling times (Supplementary Table 2). 
Starting from a lack of separation at baseline, a robust 
discrimination between treatment T and T+E-related 
metabolic profiles is only observed at W4 and W7, i.e. 
three weeks after beginning the treatment and one week 
after its end (Supplementary Figure 1A and 1B). As 
expected, corresponding metabolic patterns are very 
similar to those established for longitudinal evolution 
within group T+E (W0 vs. W1, W4, W7 or W9) in the 
previous section (Figure 2). Finally, metabolic profiles do 
no longer distinguish between arms T and T+E at W9 and 
W13.

DISCUSSION

In this investigation, an untargeted metabolomics 
approach was applied to evaluate the impact of targeted 
therapies and in particular of everolimus, inhibitor of 
mTORC1, on the metabolism of HER-2+ breast cancer 
patients.

Our results first highlighted a significant serum 
metabolic signature associated with the combined 
trastuzumab and everolimus treatment, while these 
metabolic changes are not detected under trastuzumab 
intervention alone. Secondly, we showed that post-
treatment residual metabolic perturbations associated 
with co-administration of everolimus and trastuzumab are 
noticeable up to 3 weeks after ending the treatment, with 
a gradual return to baseline profiles.

Metabolomic investigation of peripheral blood 
provides a snapshot of the patients’ global physiological 
state that reflects metabolic composition of several tissues 
and organs. Our work focuses on the complex interaction 
between host and tumor, as well as on systemic effects of 
the drugs on organs such as liver, muscle and visceral fat, 
all well-described for their important role in the control of 
human energetic balance and growth. Here, the metabolic 
signature highlighted during and after the end of treatment 

seems mainly associated with effects of mTOR inhibition 
by everolimus treatment. The metabolic response is also 
consistent with everolimus pharmacokinetics, which has 
a biological half-life of about 30 hours, i.e. is completely 
eliminated from the organism in about one week after 
ending the treatment.

The mTOR is a conserved phosphatidylinositol 
3-kinase (PI3K)-like serine/threonine kinase protein 
that exists within two structurally and functionally 
distinct complexes named mTORC1 and mTORC2 [21-
25]. mTORC1 promotes cell growth, proliferation and 
anabolism in response to nutrients (e.g. amino acids, 
glucose and oxygen), growth factors, cytokines and 
hormones (e.g. insulin/IGF-1) and cellular energy [8, 22, 
25, 26]. It is found in all tissues but plays a critical role 
in metabolic organs (liver, muscle, and adipose tissue) 
to control whole body energy homeostasis leading to 
metabolic disorders such as obesity, type 2 diabetes and 
cancer. Everolimus is a rapamycin analog (rapalog) and 
works similarly to Rapamycin as a mTOR inhibitor. 
Everolimus impacts only the mTORC1 complex, and 
not mTORC2. However, mTORC2 can be disrupted by 
chronic mTOR inhibitor treatment in tissue culture as well 
as in vivo [24, 25]. Everolimus binds with high affinity 
to the intracellular FK506-binding protein-12 (FKBP-12) 
and forms a drug complex that inhibits the activation of 
mTORC1 complex, as illustrated in Figure 4 [27]. mTOR 
inhibition results in reduced cell proliferation and glucose 
uptake [28, 29]. Meanwhile, trastuzumab, a recombinant 
humanized monoclonal antibody, binds to the extracellular 
domain of HER-2 with high affinity, inhibiting the 
proliferation of human tumor cells overexpressing HER-2 
(Figure 4) [30].

According to the literature, the mTORC1 complex 
plays a central role in lipids homeostasis notably by 
promoting lipids synthesis and storage, and by inhibiting 
lipids release and consumption [9, 23-25]. In addition to 
its role in the regulation of several transcription factors 
(SREBPs and Lipin1) that promote lipogenesis, mTORC1 
controls adipocyte functions related to the capture of 
free fatty acids and storage as TAGs (Figure 5). In the 
presence of mTOR inhibitor, free fatty acids are not 
stored and remain in the bloodstream [9, 21, 23-25], 
which is consistent with an observed higher concentration 
of free fatty acids and glycerol backbone of PGLYs & 
TAGs in sera of patients treated with T+E. On the other 
hand, high levels of LDL and VLDL lipoproteins during 
treatment reflect the role of mTOR in the control of lipid 
mobilization and transport [31, 32]. A correlation between 
increased levels of circulating TAGs and increased 
levels of VLDL lipoproteins was already observed in the 
presence of mTOR inhibitor by Aggarwal et al [33].

Furthermore, mTORC1 is known to inhibit 
β-oxidation and ketogenesis in the liver, adipose and 
perhaps muscle, while instead promoting the use and 
storage of glucose in these tissues [21, 25]. mTOR 
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inhibition by rapalogs highly activates β-oxidation, 
i.e. lipolysis, which induces the release of Acetyl-CoA 
that can either enter the TCA (tricarboxylic acid) cycle, 
or ketogenesis when the TCA cycle is stopped (e.g. in 

fasting conditions) [34, 35]. Ketogenesis activation by 
mTORC1 inhibition induces the release of ketones bodies, 
here acetone and acetoacetate, in the serum metabolic 
profiles for patients treated with T+E (Figure 5). The high 

Figure 4: Schematic representation of the mechanisms of action for everolimus and trastuzumab. Trastuzumab, a 
recombinant humanized monoclonal antibody, binds to the HER-2 (or c-erbB2) proto-oncogene, an extracellular domain of the human 
epidermal growth factor (EGF) receptor protein found on 20-30% of breast cancer cells. The binding leads to antibody-mediated killing of 
the HER2 positive cells. Trastuzumab inhibits the proliferation of human tumor cells that overexpress HER-2. It is a mediator of antibody 
dependent cellular cytotoxicity, in that the binding of the antibody to HER2 overexpressing cells leads to preferential cell death. Everolimus 
is a derivative of Rapamycin, and works similarly to Rapamycin as an mTOR (mammalian target of Rapamycin) inhibitor. Everolimus 
effect is solely on the mTORC1 protein, and not on mTORC2. Everolimus is a mTOR inhibitor that binds directly to a low-molecular-weight 
intracellular FKBP12 protein, thereby forming a drug complex that inhibits the activation of mTORC1. mTORC1 is a central regulator 
of protein synthesis, autophagy, mitochondrial function, lipogenesis, ketogenesis and glucose homeostasis in response to nutritional and 
environmental conditions. In a similar fashion to other mTOR inhibitors, the result of everolimus inhibition of mTOR is a reduction in 
cell proliferation, angiogenesis, and glucose uptake. AKT: anaplastic lymphoma kinase; CAD: CAD trifunctional protein; EGF: epidermal 
growth factor; FKBP12: FK506-binding protein of 12 kDa; IRS-1 : insulin receptor substrate 1; MAPK : mitogen-activating protein kinase 
1; MEK : mitogen-activated protein kinase ; mTOR: mammalian target of rapamycin; LARP1: la-related protein 1; Lipin1 : lipin-1 protein; 
PDK1 : 3-phosphoinositide dependent protein kinase-1; PI3K: phosphatidylinositol-4,5-biphosphate-3-kinase; PTEN : phosphatase and 
tensin homolog; RAS : ras protein ; RAF : raf protein kinase; Rheb : ras homolog enriched in brain; RSK1 : ribosomal s6 kinase 1; S6K1 : 
ribosomal protein S6 beta -1; SGK1 : serum and glucorticoid-regulated kinase 1; TFEB : transcription factor EB; TSC : tuberous sclerosis 
complex ; ULK1: serine/threonine protein ULK1.
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Figure 5: Schematic representation of the metabolic pathways linked to everolimus treatment. The administration of 
the everolimus and trastuzumab combination, particularly of the mTOR inhibitor, in patients with HER-2+ breast cancer alters the serum 
host metabolome. Everolimus activates the lysis of TAGs in the adipocytes and the release of free FAs in the bloodstream. In addition, 
the inhibitor of mTOR promotes β-oxidationand ketogenesis. These different metabolic processes are amplified by the fasting status of 
patients at the time of sampling. The discussion details evidence underlying this model. The therapy empties the liver and muscle glycogen 
stores resulting in the decrease of glycogenolysis and gluconeogenesis. In fasting conditions, HER-2+ breast cancer patients are no longer 
able to maintain their blood glucose levels to reference values. The continued use of amino acids, during and after treatment, leads to a 
decreased gluconeogenesis. Black arrows represent the chemical reactions activated by everolimus. Red circles correspond to metabolites 
whose concentration are higher at W4 than at baseline. Blue circles represent metabolites with lower concentrations at W4 compared 
to W0, while white circles correspond to metabolites that do not vary over the intervention. 1,3BPG: 1,3-biphosphoglycerate; 3-HDB: 
3-hydroxybutyrate; 2PG: 2-phosphoglycerate; 3PG: 3-phosphoglycerate; Ala: alanine; Arg: arginine; Asn: asparagine; Asp: aspartate; 
Creatine P: creatine phosphate; Cys: cysteine; DHAP: dihydroxyacetone phosphate; FA: fatty acid; F1,6BP: fructose-1,6-bisphosphate; F6P: 
fructose-6-phosphate; GAP: glyceraldehyde-3-phosphate; G3P: glycerate-3-phosphate; GlyceroPcholine: glycerophosphocholine; G6P: 
glucose-6-phosphate; G6Phosphatase: glucose-6-phosphatase; Gln: glutamine; Glu: glutamate; His: histidine; HMG-CoA: 3-hydroxy-3-
methylglutaryl-coenzyme A; Ile: isoleucine; M6P: mannose-6-phosphate; Met: methionine; Leu: leucine; Lys: lysine; OAA: oxaloacetate; 
Orn: ornithine; PEP: phosphoenolpyruvate; PGLY: phosphoglyceride; Phe: phenylalanine; Pro: proline; Ser: serine; TAG: triacylglyceride; 
Trp: tryptophan, Tyr: tyrosine; Val: valine.
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production of ketone bodies during and after treatment 
explains the lower amounts of ketogenic amino acids 
(isoleucine, lysine, phenylalanine, tyrosine) as compared 
to baseline. Altogether, these results suggest that 
mTOR inhibition leads to a systemic catabolic response 
mimicking fasting condition. We can expect that a similar 
response taking place in the tumor could have therapeutic 
benefits by reducing cancer cell anabolism necessary for 
their proliferation. The different metabolic perturbations 
described above are likely accentuated by the fact that 
serum samples were collected in fasting conditions. 
Several studies suggest that mTORC1 signaling is 
respectively activated and inhibited by feeding and fasting 
[24, 25]. Upon fasting, stored lipids in adipose cells are 
released in the form of fatty acids in the bloodstream.

Meanwhile, an impaired concentration of glucose 
is observed for patients treated with everolimus 
as compared to baseline. Glucose intolerance and 
hyperglycemia are common side effects of mTOR 
inhibitors used to treat cancer, due to their critical role in 
glucose homeostasis [7, 36, 37]. In our study, 23.4% of 
the patients treated with everolimus were hyperglycemic 
(Supplementary Table 3), a condition likely created 
by the fasting-mimicking action of rapalogs known to 
activate liver gluconeogenesis and glycogen breakdown 
[22, 27]. Yet, our observations also show reduced levels 
of glucose for patients under everolimus treatment, with 
a statistically significant variation only observed at 
W9. Our hypothesis here is that the observed metabolic 
response is again largely influenced by the fasting 
status of the patients at the time of blood collection. 
Glycogenolysis is amplified by the needs, upon fasting, 
to maintain glucoses homeostasis in the blood and 
meet energy consumption in the organism. However, 
glycogen reserves being limited, other substrates such as 
gluconeogenic amino acids are progressively recruited 
to synthesize glucose through gluconeogenesis. After 
several weeks of treatment, depletion of both glycogen 
and gluconeogenic substrates reserves prevent patients 
from maintaining their blood glucose concentrations to 
reference levels under fasting conditions (Figure 5 and 
Table 2).

As the RADHER clinical trial focused on 
comparing the everolimus and trastuzumab combination 
to trastuzumab administration alone, its design did not 
include a subgroup of patients treated with everolimus 
alone. As a consequence, while available evidence 
correlate the observed metabolic perturbations with 
mTOR inhibition, we note that synergetic effects between 
trastuzumab and everolimus treatments cannot be 
completely excluded. Investigation of additional controls, 
including treated healthy patients, or individuals with 
untreated HER-2+ BC could also provide complementary 
assessment to our findings. Yet, these types of data are 
unlikely accessible within a clinical setting, and would 
rather require in vitro evaluation on a model system.

The RADHER trial overall showed successfully 
benefits as pre-operative treatment for HER-2+ breast 
cancer patients in terms of response rate [38], and 
combination of targeted therapies in this setting was 
not limited by toxicity (only 28.2% of patients in arm 
T+E had at least one side effect, 17.9% having a high-
grade toxicity). Yet, predictive metabolic signatures of 
treatments response or toxicity have not been highlighted 
in our metabolomics investigation (Supplementary Table 
1), most likely due to an insufficient population sample 
size. To support this hypothesis, we implemented the 
approach developed by Blaise et al. [39] to extrapolate 
the adequate size of a cohort suitable for detection of 
significant metabolite variations correlated with the 
response status (Supplementary Figure 2). This analysis 
illustrates that such predictive power could potentially be 
obtained from cohort sizes of hundreds to thousands of 
patients.

In conclusion, our work describes metabolic impacts 
of the everolimus and trastuzumab combination treatment 
for patient with HER-2+ breast cancer as pre-operative 
treatment. This combination induces a strong and rapid 
modification of the patient’s metabolism as compared with 
trastuzumab treatment alone, with residual effects detected 
up to several weeks after the end of the treatment. Our 
findings show that mTOR inhibitor is the main cause of 
metabolic changes in the host metabolism. The metabolic 
signature observed is credibly the result of a metabolic 
modification of the host and possibly of the tumor that 
may itself explain the anti-tumor effect of the treatment. 
Having highlighted the potential of metabolomics 
approaches to study metabolic changes associated with 
targeted therapies, the next challenge will be to refine 
metabolomics capacities to predict clinical response or 
toxicity, towards metabolic markers-driven tailor-made 
therapeutic care of cancer patients.

MATERIALS AND METHODS

RADHER trial design and serum samples 
collection

From July 2008 to April 2012, 82 patients with 
HER-2 positive early breast cancer and accessible to 
surgery were enrolled in the RADHER trial. The trial 
aimed at determining the efficiency of the everolimus 
and trastuzumab combination as pre-operative treatment 
of HER-2+ EBC, in comparison with trastuzumab 
treatment alone, and studying corresponding markers 
of prognosis. Patients were randomized (ratio 1:1) 
between two different groups: group T for trastuzumab 
(a drip every week, up to 6 therapy cures -1 loading 
dose 4mg/kg then 5 x 2 mg/kg/week); and group T+E 
for the combination of trastuzumab and everolimus 
(a drip of trastuzumab every week plus 2 tablets of 
everolimus daily for 6 weeks – 10 mg/day) [38]. The 
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study design is described in details in Figure 1. The 
local ethics committee approved the research protocol. 
Written informed consent was obtained for each patient 
before enrolment. For each patient, biological and 
clinicopathological data were collected including age, 
BMI, menopausal status, collection center, hormones 
receptors, size tumor residue, tumor type, SBR grade, 
an evaluation of the response to therapy according the 
Sataloff Classification [40] and toxicity (NCI CTCAE).

A series of venous blood samples were collected 
under fasting conditions for each patient during the 
RADHER trial: one before the first therapy cure (W0), 
two during the treatment phase i.e. after respectively 
one (W1) and four weeks (W4) after the beginning of 
treatment, and three after the 5-weeks phase of treatment, 
i.e. two weeks (W7), four weeks (W9) and seven weeks 
(W13) after the last drip of trastuzumab. Blood samples 
were recovered in dry tubes (5 ml) and centrifuged after 
30 min of sedimentation at 3,500 rpm for 10 min at 4°C. 
After centrifugation, the supernatant was collected and 
aliquoted in three cryotubes (1 ml). Cryotubes were stored 
at -80°C after collection.

1H NMR spectroscopy

For NMR analysis, sera were prepared according 
to the Bruker standard protocol. Serum samples were 
thawed at room temperature before use. 300 μl of each 
were diluted with 300 μl of a buffer solution (0.142 
Na2HPO4 wt/vol, NaN3 4% vol/vol, D2O 10% vol/vol) in 
a microtube. Then, samples were centrifuged for 5 min 
at 4°C at 12,000 g. Finally, 550 μl of supernatant was 
transferred into 5 mm NMR tubes. Samples were kept for 
less than 24h at 4°C until analysis.

All NMR experiments were carried out on a 
Bruker Avance III spectrometer operating at 800.14 
MHz for proton, equipped with a 5 mm TXI probe, 
and automatic sample changer with a cooling rack 
at 4°C. The temperature was then regulated at 27°C 
(300 K) throughout the NMR experiments. Automatic 
3D shimming was performed once on a test serum 
sample. To ensure the good reproducibility of the data 
over time, additional spectra for QC serum samples 
were recorded. Serum QC samples were obtained by 
aliquoting serum from one healthy blood donor provided 
by the Etablissement Français du Sang. In practice, 
two QC serum samples were introduced respectively 
at the beginning and the end of each samples rack 
corresponding to one day of NMR throughput (~40 
samples/per day) to evaluate the variability between the 
first and the last sample of a rack, which corresponds to 
about 7% QC samples in the dataset. Prior to NMR data 
acquisition, automatic tuning and matching, frequency 
locking on D2O and 1D automatic gradient shimming 
were performed on each sample. Standard 1H 1D 
NMR pulse sequences, NOESY and CPMG with water 

presaturation, were applied for NMR data acquisition 
on each sample to obtain corresponding metabolic 
profiles. A total of 128 transient free induction decays 
(FID) were collected for each experiment into 48,074 
points over a spectral width of 16025.64 Hz (20 ppm). 
For both sequences, the acquisition time was 1.49 s, 
with a relaxation delay of 2 s, and the 90° pulse length 
was automatically calibrated for each sample at around 
8.9 μs at a power level of 26 W. The NOESY mixing 
time was set to 10 ms and the CPMG spin-echo delay 
to 300 μs (for a total T2 filter of 76.8 ms) allowing an 
efficient attenuation of the lipid NMR signals. All FIDs 
were multiplied by an exponential weighting function 
corresponding to a 0.3 Hz line broadening factor, prior 
Fourier transformation

All spectra were referenced to the α-glucose 
anomeric proton signal (δ = 5.23 ppm). 1H-NMR spectra 
were phased and corrected for baseline using Topspin 3.1 
(Bruker GmbH, Rheinstetten, Germany). After importing 
all 1D spectra into the AMIX software (Bruker GmbH, 
Rheinstetten, Germany), spectra were divided into 0.001 
ppm-wide buckets to obtain 8500 x 103 buckets over 
the chemical range of 0.5-9 ppm. Residual water signal 
(for NOESY spectra: 4.4 to 5.10 ppm and for CPMG 
spectra: 4.4 to 5.10 ppm) was excluded. Raw NMR data 
are available upon request to the authors. Spectra were 
normalized to their total intensity and Pareto scaled. We 
note that the normalization step was needed due to a small 
deviation (additional dilution) to the preparation protocol 
for a few samples (about 15% of the cohort), for which 
less than 300 μl of biological material was available. 
Prior to statistical analysis, spectra were aligned using the 
module Icoshift in Matlab (The Mathworks Inc., Natick, 
MA) [41].

In addition, 2D NMR experiments (1H-13C HSQC, 
1H-1H TOCSY and J-Resolved experiments) were recorded 
on a subset of samples to achieve structural assignment of 
the metabolic signals. Metabolite identification procedure 
exploited knowledge from academic spectral databases 
such as HMDB [42], as well as proprietary databases 
(Chenomx NMR Suite v. 7.1, Chenomx Inc, Edmonton, 
Canada; AMIX SpectraBase v. 1.1.2, Bruker GmbH, 
Rheinstetten, Germany). From analysis of 1D and 2D 
NMR data, identification of full spin systems allowed 
unambiguous annotation of 49 metabolites. A 1H NMR 
CPMG mean spectrum from patients with HER-2+ early 
breast cancer is presented in Supplementary Figure 3 and 
corresponding assignments are provided in Supplementary 
Table 4.

Population characterization

Descriptive statistical analysis was performed to 
describe the two arms, using analysis of variance for 
mean and χ2 and Fisher tests for qualitative data. The 
significance threshold was set up to 0.05 for all tests.
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Multivariate statistical analysis

Statistical analyses were performed on the CPMG 
dataset. To build models for sample classification and 
extract group-specific metabolic signatures, unsupervised 
and supervised statistical multivariate methods were 
conducted using SIMCA-P 13 (Umetrics, Umea, Sweden). 
Two types of graphs are used to visualize the data: the 
score and the loading plots. On the score plot, each point 
represents a NMR spectrum (i.e. a sample) on the main 
principal components, while the loading plot visualize the 
contribution of each NMR spectral bucket (i.e. metabolic 
variable) to the principal components.

Principal Component Analysis (PCA) was carried 
out to derive the main sources of variance and eventually 
identify potential outliers on the 1D 1H NMR datasets [43]. 
The high stability of the NMR setup and reproducibility of 
the experiments was attested by the clustered set of QC 
samples (data not shown).

Orthogonal partial least-squares (O-PLS) 
discriminant analyses were performed on the X NMR 
dataset matrix to discriminate samples classes by 
considering a supplementary data matrix Y, containing 
information about the sampling time (W0, W2, W4, W8, 
etc…) or the study arm (T or T+E) [44]. The goodness-
of-fit parameters R2 and Q2, which related respectively to 
the explained and predicted variance, evaluated the O-PLS 
model performance. For each O-PLS model, a model 
validation in MATLAB (The MathWorks Inc., Natick, 
NA), using homemade O-PLS routines, was performed, by 
resampling the model 1000 times under the null hypothesis 
through random permutations of the Y matrix. The decrease 
of goodness-of-fit R2 and Q2 parameters, when correlation 
between original model and random models decreased, 
indicated the good quality of our model. The statistical 
significance of the calculated model by CV-ANOVA was 
also assessed for each O-PLS model [45].

To derive statistically significant associations 
of individual metabolites, an univariate methodology, 
previously described [46], that couples an automatic 
binning procedure named statistical recoupling of 
variables (SRV) to subsequent ANOVA analysis and 
multiple testing correction of the p-values was used, 
implemented with MATLAB homemade routines.
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