Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 15;93(21):11482–11486. doi: 10.1073/pnas.93.21.11482

Structure and function in rhodopsin: expression of functional mammalian opsin in Saccharomyces cerevisiae.

R Mollaaghababa 1, F F Davidson 1, C Kaiser 1, H G Khorana 1
PMCID: PMC56636  PMID: 8876161

Abstract

The yeast Saccharomyces cerevisiae has been investigated for expression of mammalian opsin as an alternative to the currently used expression in COS-1 mammalian cells. The synthetic opsin gene was placed under the control of the inducible promoter GAL1 in the multicopy yeast/ Escherichia coli shuttle vector YEpRF1. Transformation of a GAL+ S. cerevisiae strain with the vector and growth of galactose-induced cultures to saturation showed the production of 2.0 +/- 0.5 mg of opsin from about 10(10) cells by ELISA. The addition of 11-cis-retinal to either cell spheroplasts or lysed cells showed that a fraction (2-4%) of the total expressed opsin reconstituted to rhodopsin. This fraction was purified to homogeneity and was shown to be fully functional and indistinguishable from bovine rhodopsin by the following criteria: (i) UV-visible absorption spectra, (ii) the formation of metarhodopsin II and its rate of decay, and (iii) initial rate of transducin activation as measured by the formation of a complex between transducin (alpha subunit) and guanosine 5'-[gamma-[35S]thio]triphosphate. The purified fraction was homogeneously glycosylated. However, glycosylation was distinct from that of bovine rhodopsin as judged by mobility on SDS/PAGE and endoglycosidase H sensitivity.

Full text

PDF
11482

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Davidson F. F., Loewen P. C., Khorana H. G. Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4029–4033. doi: 10.1073/pnas.91.9.4029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Farrens D. L., Khorana H. G. Structure and function in rhodopsin. Measurement of the rate of metarhodopsin II decay by fluorescence spectroscopy. J Biol Chem. 1995 Mar 10;270(10):5073–5076. doi: 10.1074/jbc.270.10.5073. [DOI] [PubMed] [Google Scholar]
  3. Franke R. R., Sakmar T. P., Oprian D. D., Khorana H. G. A single amino acid substitution in rhodopsin (lysine 248----leucine) prevents activation of transducin. J Biol Chem. 1988 Feb 15;263(5):2119–2122. [PubMed] [Google Scholar]
  4. Fridovich-Keil J. L., Jinks-Robertson S. A yeast expression system for human galactose-1-phosphate uridylyltransferase. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):398–402. doi: 10.1073/pnas.90.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fujita N., Nelson N., Fox T. D., Claudio T., Lindstrom J., Riezman H., Hess G. P. Biosynthesis of the Torpedo californica acetylcholine receptor alpha subunit in yeast. Science. 1986 Mar 14;231(4743):1284–1287. doi: 10.1126/science.3511531. [DOI] [PubMed] [Google Scholar]
  6. Hill J. E., Myers A. M., Koerner T. J., Tzagoloff A. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast. 1986 Sep;2(3):163–167. doi: 10.1002/yea.320020304. [DOI] [PubMed] [Google Scholar]
  7. Hitzeman R. A., Hagie F. E., Levine H. L., Goeddel D. V., Ammerer G., Hall B. D. Expression of a human gene for interferon in yeast. Nature. 1981 Oct 29;293(5835):717–722. doi: 10.1038/293717a0. [DOI] [PubMed] [Google Scholar]
  8. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kuchler K., Thorner J. Functional expression of human mdr1 in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2302–2306. doi: 10.1073/pnas.89.6.2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kukuruzinska M. A., Bergh M. L., Jackson B. J. Protein glycosylation in yeast. Annu Rev Biochem. 1987;56:915–944. doi: 10.1146/annurev.bi.56.070187.004411. [DOI] [PubMed] [Google Scholar]
  11. Nathans J., Weitz C. J., Agarwal N., Nir I., Papermaster D. S. Production of bovine rhodopsin by mammalian cell lines expressing cloned cDNA: spectrophotometry and subcellular localization. Vision Res. 1989;29(8):907–914. doi: 10.1016/0042-6989(89)90105-3. [DOI] [PubMed] [Google Scholar]
  12. Oprian D. D., Molday R. S., Kaufman R. J., Khorana H. G. Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8874–8878. doi: 10.1073/pnas.84.24.8874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rothblatt J., Schekman R. A hitchhiker's guide to analysis of the secretory pathway in yeast. Methods Cell Biol. 1989;32:3–36. doi: 10.1016/s0091-679x(08)61165-6. [DOI] [PubMed] [Google Scholar]
  14. Sakmar T. P., Franke R. R., Khorana H. G. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8309–8313. doi: 10.1073/pnas.86.21.8309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sentenac H., Bonneaud N., Minet M., Lacroute F., Salmon J. M., Gaymard F., Grignon C. Cloning and expression in yeast of a plant potassium ion transport system. Science. 1992 May 1;256(5057):663–665. doi: 10.1126/science.1585180. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES