
RESEARCH ARTICLE

Parallel and costly changes to cellular

immunity underlie the evolution of parasitoid

resistance in three Drosophila species

John E. McGonigle☯, Alexandre B. Leitão☯, Sarah Ommeslag¤, Sophie Smith, Jonathan

P. Day, Francis M. Jiggins*

Department of Genetics, University of Cambridge, Cambridge, United Kingdom

☯ These authors contributed equally to this work.

¤ Current address: Faculteit Mens en Welzijn, Hogeschool Gent, Gent, Belgium

* fmj1001@cam.ac.uk

Abstract

A priority for biomedical research is to understand the causes of variation in susceptibility to

infection. To investigate genetic variation in a model system, we used flies collected from

single populations of three different species of Drosophila and artificially selected them for

resistance to the parasitoid wasp Leptopilina boulardi, and found that survival rates

increased 3 to 30 fold within 6 generations. Resistance in all three species involves a large

increase in the number of the circulating hemocytes that kill parasitoids. However, the differ-

ent species achieve this in different ways, with D. melanogaster moving sessile hemocytes

into circulation while the other species simply produce more cells. Therefore, the convergent

evolution of the immune phenotype has different developmental bases. These changes are

costly, as resistant populations of all three species had greatly reduced larval survival. In all

three species resistance is only costly when food is in short supply, and resistance was rap-

idly lost from D. melanogaster populations when food is restricted. Furthermore, evolving

resistance to L. boulardi resulted in cross-resistance against other parasitoids. Therefore,

whether a population evolves resistance will depend on ecological conditions including food

availability and the presence of different parasite species.

Author summary

We have found that three species of fruit fly evolve resistance to parasitic wasps (parasit-

oids) by increasing investment in their immune defences but they achieve this in different

ways. Resistance always involved increases in the number of the circulating hemocytes,

which are the blood cells that kill parasitoids. However, one species moved sessile hemo-

cytes into circulation while the other species simply produce more cells. These changes

are extremely costly, which explains why these species are susceptible to parasitism in

nature. Whether a population evolves resistance depends on ecological conditions, as

resistance is only costly when food is in short supply, and evolving resistance to one para-

site can have the added benefit of providing resistance to other parasites.
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Introduction

Considerable genetic variation in susceptibility to infection exists both within and between

populations [1]. This variation determines the burden of disease within populations, and rep-

resents the raw material from which populations can evolve resistance in nature and during

the selective breeding of plants and animals. Insects are no exception to this pattern, and it is

common to find highly resistant and susceptible genotypes within the same population [2,3].

Here, resistance can increase the survival of beneficial species like bees and make disease vec-

tors less likely to transmit infection, or cause biological control programs to fail if insect pests

evolve resistance. Aside from its economic and health impact, this variation provides a power-

ful tool for evolutionary biologists to understand the coevolution of hosts and parasites, and

immunologists to understand the functioning of immune systems.

A priority for infectious disease research is therefore to understand why variation in disease

susceptibility is maintained in populations and what the physiological basis of this variation is.

In cases where parasites act as a strong selective pressure on populations, natural selection is

expected to eliminate susceptible alleles, reducing genetic variation for resistance [4–7]. How-

ever, genetic variation can be maintained if there is a cost to possessing and maintaining the

machinery of resistance [8]. There are two types of resistance cost. Inducible costs are caused

when a successful immune response is mounted, and therefore only affect infected individuals.

Constitutive costs are associated with possessing and maintaining resistance machinery, and

are therefore borne even by uninfected individuals [4].

Constitutive costs associated with resistance have been identified in many taxa, includ-

ing plants [9], insects [3,8,10–12] and mammals [13]. In times or places where the parasite

pressure is low, constitutive costs can result in susceptible alleles being favoured [4,14].

This balance of costs and benefits can maintain variation in resistance within and between

populations, via extrinsic ecological factors that cause variation in parasitism rates. Fur-

thermore, because the prevalence of infection may decline in resistant populations, consti-

tutive costs can also result in negative frequency-dependent selection (NFDS) where the

fitness of an allele declines as its frequency increases. This can maintain genetic variation

in populations and potentially cause resistance alleles to rise and fall in frequency as they

‘chase’ changes in the parasite population [6,9,15].

What physiological processes underlie constitutive costs to resistance? The production of

resistance machinery may require the investment of limited resources [16,17]. Therefore, in

the absence of a parasite, resistant individuals who pay upkeep on increased arsenals are at a

selective disadvantage [18]. Moreover, immune effectors can cause collateral damage to self

[19,20]. Here, resistant individuals, who are likely to possess larger immune arsenals, may be

more likely to suffer auto-immune damage as they have more weaponry capable of misfiring

[21,22]. Additionally, there is a myriad of other potential pleiotropic effects, where a genetic

change that increases resistance has deleterious effects on some other physiological or develop-

mental process [23–25]. If the selective pressure is sustained for long enough the cost to resis-

tance might be lost [25]. For instance, in a number of cases insects that evolved costly

insecticide resistance later lost these costs when either resistance alleles which were less costly

spread through populations, or modifiers that reduced the cost spread [25,26].

One example where resistance has been associated with constitutive costs comes from Dro-
sophila melanogaster and its parasitoid wasps [3,27]. Parasitoids are insects that lay their eggs

inside or on the body of other arthropods. If the host cannot mount a successful immune

response, the parasitoid larva feeds on it and ultimately kills it [28,29]. Parasitoid wasps are of

great ecological importance in Drosophila [30–37], with mean parasitoid infection rates reach-

ing 75% in some localities [38]. One parasitoid species from the Braconidae family—Asobara
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tabida—and two from the Figitidae family—Leptopilina boulardi and L. heterotoma—are held

to be the most ecologically important larval parasitoids of Drosophila melanogaster [33], and

exert a tremendous selective pressure on Drosophila larvae to avoid and combat parasitism

[39]. In the D.melanogaster sub-group there is considerable variation in parasitoid resistance

within and between populations [40] and species [41]. This variation has been used to select

populations for higher resistance to A. tabida and L. boulardi [3,27]. In these populations resis-

tance increased rapidly, but this gain came with a trade-off of reduced larval competitive ability

when parasitoids are absent [3,27]. Selected populations also had reduced feeding rates relative

to controls, suggesting an association between the ability to obtain resources and the cost of

resistance [12].

Drosophila’s immune defence against parasites consists of a specialised cellular response

called encapsulation. This response is dependent on the three mature hemocyte (blood cell)

types found in Drosophila: plasmatocytes, crystal cells and lamellocytes [22]. Lamellocytes are

rarely found in healthy larvae but are induced in high numbers during parasitoid infection

[42,43]. In homeostasis, the majority of plasmatocytes and crystal cells are adherent to the lar-

val epidermis in sessile patches but they can also be found in circulation in the hemolymph

and in a specialized hematopoietic organ called the lymph gland [44]. During encapsulation

plasmatocytes detect and form a first layer of cells around the parasitoid egg that is then fully

enclosed by lamellocytes [45]. This capsule is then melanised by a phenol-oxidase protein cas-

cade, dependent on crystal cells and lamellocytes, killing the unhatched wasp larva [46]. If the

encapsulation response is not quick enough or if the response is disrupted or overwhelmed,

the developing wasp larva kills the host [47,48].

A positive correlation between circulating hemocyte numbers and resistance to A. tabida
between different species suggests that hemocyte concentration is a crucial factor for resis-

tance [41]. Moreover, artificial selection for A. tabida resistance results in populations hav-

ing twice the number of hemocytes in circulation [49]. However, resistance strategies to

different parasitoids appear to vary. D. melanogaster populations selected for resistance to

L. boulardi showed increased ability to encapsulate both L. boulardi and A. tabida [50]. In

contrast, populations selected for resistance to A. tabida showed no significant increase in

their capability to encapsulate L. boulardi. A possible explanation for this is that L. boulardi
injects fly larvae with venoms that sabotage the immune response, and thus requires resis-

tance to these venoms. As such, there may be both specific and common components of

parasitoid resistance [50].

We have selected three species from the Drosophila melanogaster sub-group (D. melano-
gaster, D. simulans, D. mauritiana) for resistance to the parasitoid wasp L. boulardi. Each

species was collected from a single geographical location. In all three species there was a

rapid increase in the rate at which parasitoids were encapsulated in response to selection

that was accompanied by increases in the number of circulating hemocytes and cross-resis-

tance to A. tabida. This result suggests that higher circulating hemocyte numbers is the

common component for parasitoid resistance. However, the physiological basis of this

increase was different—in D. melanogaster sessile hemocytes had moved into circulation,

while in the other species the total number of hemocytes was increased. In all three species

resistance was extremely costly, with resistant populations suffering a considerable drop in

their competitive ability. We conclude that across multiple species evolving resistance to

parasitoid wasps requires costly investment in cellular immunity, and this is likely the rea-

son why in nature many species have remained susceptible and suffer high levels of mortal-

ity due to parasitoid attack.
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Results

Artificial selection results in rapid increases in the resistance of three

Drosophila species to parasitoid wasps

To understand how different species evolve resistance to parasitism, we artificially selected

three species of Drosophila for resistance to the parasitoid wasp L. boulardi. We only sampled a

single population of each species—the population of D.melanogaster was from England, D.

simulans from North America and D.mauritiana from Mauritius. The level of resistance ini-

tially varied greatly between species—only 1.1% of parasitised D.melanogaster larvae success-

fully encapsulated wasp eggs, compared to over 10% of D.mauritiana and D. simulans (Fig 1;

Table A in S1 Supporting Information). Over six generations we exposed populations of these

flies to parasitoids and retained only flies that mounted a successful immune response. As a

control we maintained similar-sized populations of unparasitised flies. In total we parasitized

approximately 3.5 million larvae in these experiments, and created three selected and three

control populations for D.mauritiana, and six selected and six control populations for D.mel-
anogaster and D. simulans.

In all three species, artificial selection resulted in a substantial increase in the ability of

flies to encapsulate invading L. boulardi eggs (Fig 1; Table A in S1 Supporting Information).

Fig 1. The proportion of parasitized larvae encapsulating the parasitoid wasp L. boulardi over six

generations of selection. Three species of the D. melanogaster sub-group were selected for resistance over

six generations and the encapsulation rate measured. Solid lines represent selected populations, while dotted

lines represent control populations. Points are means of 6 replicate populations of D. melanogaster and D.

simulans, and 3 replicate populations of D. mauritiana. Approximately 20 vials of flies were assayed per

replicate population. Encapsulation rates were estimated using Eq 2 and the bars are equal to ±1 standard

error (SE). The SE was calculated from the between replicate population variance for each species. This was

impossible for the source population and so instead the mean’s bootstrap standard error is shown. ‘Source’ is

the encapsulation rate of the population from which each set of the selection populations was founded, while

generation one is the encapsulation rate following one generation of selection. Note that the assays on

different species were carried out at different times; as such, precise comparisons between species should be

interpreted with care.

https://doi.org/10.1371/journal.ppat.1006683.g001
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Despite the initial susceptibilities of the three species varying widely (Fig 1), following six genera-

tions of selection all three species encapsulated between 35–38% of parasitoids (Fig 1; Table A in

S1 Supporting Information). Thus, encapsulation rates increased by approximately three fold in

D. simulans andD.mauritiana, and approximately thirty fold in D.melanogaster (Mean encapsu-

lation rates at generation 1 vs. 6.D.melanogaster: t = 32.7, d.f. = 10, p =<0.001;D. simulans:
t = 12.9, d.f. = 10, p =<0.001;D.mauritiana: t = 18.5, d.f. = 4, p =<0.001). In contrast, control

populations displayed no significant change in encapsulation rate over the six generations (Mean

encapsulation rates at generation 1 vs. 6:D.melanogaster: t = -0.4, d.f. = 10, p = 0.689;D. simulans:
t = -1.7, d.f. = 10, p = 0.126;D.mauritiana: t = 18.5, d.f. = 1.3, p = 0.272).

Parasitoid resistance is associated with an increase in circulating

hemocytes numbers

Populations of D.melanogaster, D.mauritiana and D. simulans that were selected for parasitoid

resistance were all found to possess more circulating hemocytes than control populations (Fig 2;

D.melanogaster: t = 4.1, d.f. = 1, 190, p = 0.001; D. simulans: t = 3.7, d.f. = 1, 132, p =<0.001; D.

mauritiana: t = 3.7, d.f. = 1, 88, p =<0.001). There was a 113% increase in circulating hemocyte

number in D. simulans, an 84% increase in D.melanogaster and an 88% increase in D.mauriti-
ana. This indicates a strong link between circulating hemocyte number and ability to resist

invasion by a parasitoid wasp egg in all three species.

Different physiological mechanisms underlie the increase in circulating

hemocytes in different species

In Drosophila a large proportion of hemocytes are found in sessile clusters [52], so the increase

in the number of circulating hemocytes seen in selected populations could either result from

an increase in the total number of hemocytes or from hemocytes moving from sessile clusters

Fig 2. Mean number of hemocytes in populations of three Drosophila species that had been selected for parasitoid resistance and

controls. The number of circulating hemocytes, the total number of hemocytes, and the number of sessile haemocytes under the dorsal cuticle.

Hemocytes were counted in single 2nd instar larvae. Estimates of total hemocyte numbers were achieved by agitating larvae to disrupt sessile

clusters of hemocytes into circulation prior to bleeding. The sessile hemocytes were counted in vivo by injecting E.coli BioParticles. These are

fluoresce when phagocytosed by hemocytes, allowing the cells to be seen under the cuticle of live larvae. This was done in a separate

experiment and at a different generation post-selection than the other data. Points are the mean number of hemocytes and bars are equal to 1

SE. The mean number of larvae contributing to each point on the plot is 145.

https://doi.org/10.1371/journal.ppat.1006683.g002
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into circulation. To distinguish between these hypotheses, we both estimated the total number

of hemocytes per larva and counted sessile hemocytes under the cuticle.

To count the total number of hemocytes in each larva (sessile + circulating), we physically

disrupted the sessile hemocytes before bleeding larvae. Populations of D.mauritiana and D.

simulans selected for parasitoid resistance both had approximately 40% more total hemocytes

than control populations (D. simulans: t = 3.7, d.f. = 1, 94, p =<0.001; D.mauritiana: t = 3.5, d.

f. = 1, 86, p =<0.001). This increase indicates that resistance in these species may be achieved

by increasing the pool of immune cells on which the body can draw. In contrast, larvae from

the selected and control populations of D.melanogaster had very similar total numbers of

hemocytes (D. melanogaster: t = 0.3, d.f. = 1, 254, p = 0.738). This is confirmed by examining

the interaction between whether a population was selected or not and the number of total ver-

sus sessile hemocytes. In D.melanogaster this interaction was significant, indicating that the

proportion of hemocytes in circulation had increased in the resistant populations (Fig 2; D.

melanogaster: t = 2.7, d.f. = 1, 444, p = 0.007). In the other two species, there was no evidence

that hemocytes were more likely to be in circulation in resistant populations (Fig 2; D. simu-
lans: t = 0.2, d.f. = 1, 174, p = 0.319; D.mauritiana: t = 1.4, d.f. = 1,226, p = 0.173). Therefore,

while an increase in circulating hemocytes underlies resistance in all three species, D.mauriti-
ana and D. simulans appear to achieve this by producing more hemocytes, whereas D.melano-
gaster appears to mobilise sessile hemocytes into circulation.

To confirm this result we directly counted the number of sessile hemocytes below the cuti-

cle of larvae. We injected the larvae with E. coli particles that fluoresce when phagocytosed by

hemocytes, and 20 minutes later counted the number of hemocytes under the dorsal cuticle

(excluding the 8th abdominal segment). In D.melanogaster we found a significantly fewer ses-

sile hemocytes in the resistant populations (Fig 2; t = 5.7, p = 4x10-8). This contrasts with the

increase in circulating hemocytes seen in these populations, and confirms that hemocytes have

moved from sessile clusters into circulation. In D. simulans there was no difference in the

number of sessile hemocytes (Fig 2; t = 0.1, p = 0.89). This confirms that the additional circu-

lating hemocytes in this species result from increased hemocyte production rather than mobi-

lising sessile hemocytes.

Populations selected for resistance to L. boulardi are more resistant to

other species of parasitoid wasps

Compared to controls, populations of all three species selected for resistance to the parasitoid

L. boulardi were better able to encapsulate the eggs of the distantly parasitoid wasp A. tabida
(Fig 3; D.melanogaster: t = 5.4, d.f. = 10, p = 0.0002; D.mauritiana: t = 3.5, d.f. = 4, p = 0.03; D.

simulans: t = 2.68, d.f. = 9, p = 0.03). This implies a potentially general mechanism for resisting

invasion by a parasitoid egg, despite the two parasitoids adopting different strategies to escape

the immune response—A. tabida passively avoids the cellular immune response by attaching

to host tissues while L. boulardi actively sabotages the immune system with venoms and VLPs

[53].

In contrast to the assays with A. tabida, neither control nor selected populations of D.maur-
itiana or D. simulans were able to encapsulate the parasitoid wasp L. heterotoma (Fig 3; D.

mauritiana: t = -1.0, d.f. = 4, p =<0.37). This is notable because D.melanogaster selected popu-

lations encapsulated a significantly larger proportion of L. heterotoma eggs than control popu-

lations (Fig 3; D.melanogaster: t = 13.4, d.f. = 10, p =<0.001), a finding in keeping with

previous studies [50]. L. heterotoma is rarely encapsulated due to venoms that sabotage the cel-

lular immune response [51].
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Evolving resistance is costly in three Drosophila species

To examine whether a cost is associated with parasitoid resistance across the three species, we

measured the competitive ability of larvae from the control and selected populations. To do

this we reared larvae from the population of interest with the same number of larvae from a

white-eyed tester strain, and compared their larva-to-adult survival. In a high resource envi-

ronment with an excess of food there was no difference in the competitive ability of flies from

the selected and control populations (Fig4; D.melanogaster: F = 0.5, d.f. = 1, 10, p =<0.504; D.

simulans: F = 0.2, d.f. = 1, 10, p = 0.890; D.mauritiana: F = 1.0, d.f. = 1, 4, p = 0.370). To

increase the strength of competition we also reared the larvae in a low resource environment

with restricted food (1/10th of the food availability of the high resource environment), which

resulted in a>70% reduction in survival. In these conditions, the competitive ability of D.mel-
anogaster, D. mauritiana and D. simulans from the selected populations was dramatically

reduced relative to the control populations (Fig 4A–4C). Survival of selected populations

Fig 3. Mean encapsulation rates of selected and control populations challenged with three different

parasitoid wasp species. Stars denote the degree of significance of between selected and control

populations: * = p <0.05 and *** = p <0.001. Bars are equal to 1 SE. No. of replicate vials per replicate

population = 15 for each parasitoid assayed.

https://doi.org/10.1371/journal.ppat.1006683.g003
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under low resource conditions was less than half of that for control populations in both D.mel-
anogaster and D.mauritiana, and survival of D. simulans selected populations was 3x less than

control populations. This differential ability of selected and control populations to compete in

different environments is significant, such that there is an interaction between the resource

environment and whether the population was resistant or susceptible for all three species (D.

melanogaster: F = 245.3, d.f. = 3, 20, p =<0.001; D. simulans: F = 128.6, d.f. = 3, 20, p =<0.001;

D.mauritiana: F = 24.24, d.f. = 3, 8, p = 0.011).

This reduction in competitive ability also does not seem to be linked with a particular tester

strain, as in the case of D. simulans we repeated the experiment using a D. simulans tester strain

(w501) (Fig 4D). Once again, the selected populations suffered a reduction in survival in the low

resource environment (selection regime x environment interaction: D. simulans: F = 163.3, d.f. =

3, 20, p =<0.001) but not the high resource environment (D. simulans: F = 0.4, d.f. = 1, 10,

p = 0.542). The result is strikingly similar to the experiments using D.melanogaster as the tester

strain (Fig 4C & 4D).

Resistance is lost in selected populations under low resource conditions

In environments where resources are scarce and parasitism rates low, we would predict that

selection will favour susceptible genotypes. To test this prediction in D.melanogaster we split

each of our six selected and six control populations in two and maintained one copy of the 12

populations for five generations under ‘feast’ conditions and the other copy of the 12 popula-

tions in ‘famine’ conditions. Following five generations, these populations were then expanded

Fig 4. The competitive ability of selected (red) and control (blue) populations in high and low

resource environments. The competition index was calculated as a measure of the survival relative to a

white-eyed competitor strain (Eq 3). Points represent mean competitive index values of the replicate selected

and control populations, calculated from approximately 15 vials. The competitor strain for panels A-C was D.

melanogaster (w1118) and for panel D was D. simulans (w501). Bars are equal to 1 SE.

https://doi.org/10.1371/journal.ppat.1006683.g004
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for one generation on a standard cornmeal diet and then their encapsulation rates assessed the

following generation (Fig 5).

We found that selected populations maintained under a low resource regime displayed a

large reduction in their encapsulation rate relative to those maintained under high resources,

with encapsulation rate being four times greater in the populations raised on abundant

resources (Fig 5B). This interaction between resource availability and whether a population

was selected or control had a statistically significant effect on encapsulation rates (Two way

ANOVA Selection: Food Regime interaction: F = 52.3, d.f. = 3, 20, p = 0.001). This supports

the hypothesis that resource availability as well as parasitism rates will determine whether pop-

ulations evolve resistance.

The encapsulation rates of selected populations raised under a high resource regime

declined slightly over 5 generations (Fig 5A left panel versus Fig 5B left panel; Two way

ANOVA, Selection: Generation interaction: F = 198.4, d.f. = 3, 20, p = 0.017), suggesting that

resistance may have had a moderate cost in this environment as well as the low resource envi-

ronment. Encapsulation rates did not vary significantly between control populations prior to

and after the experiment on either food regime, nor was there difference between the selected

populations prior to experimentation (Fig 5; Two way ANOVA, Selection: Food Regime inter-

action: F = 21.8, d.f. = 3, 20, p = 0.446).

Discussion

We found that three species of Drosophila could all rapidly evolve increased resistance to the

parasitoid wasp L. boulardi. The gain in resistance and decline in competitive ability was asso-

ciated with a rise in the number of circulating hemocytes. However, the physiological basis of

this differed among species, with D. melanogaster moving sessile hemocytes into circulation

while the other species increased the total number of hemocytes produced.

In all species resistance was extremely costly, with large declines in the survival of flies in

competitive resource-poor environments. What’s more, D.melanogaster selected populations

were found to lose resistance more rapidly when maintained on a resource-poor environment.

All three species responded rapidly to selection for resistance. The proportion of individuals

encapsulating and killing L. boulardi eggs doubled after three generations of selection in D.

mauritiana and D. simulans, and quadrupled in D.melanogaster (for previous reports in D.

melanogaster see Fellowes et al., 1998 and Kraaijeveld and Godfray, 1997 [3, 27]). Strong selec-

tion is likely to be common in nature, as parasitoid wasps can infest over 90% of Drosophila
larvae [38,54] and successful parasitism always kills flies before they reproduce [33]. Moreover,

parasitoid frequency can vary greatly seasonally [38]. As all these species can have generation

times of less than two weeks, natural selection could potentially cause dramatic changes in sus-

ceptibility over the course of a single season, as has been reported in the crustacean Daphnia
magna [55].

It is likely that similar immunological changes are causing the increase in resistance in all

three species. In all cases, populations that were selected for resistance had over an 80%

increase in the number of circulating hemocytes. This is consistent with a previous report that

D.melanogaster populations selected for resistance to A. tabida have double the concentration

of circulating hemocytes [49]. Similarly, resistant D. simulans lines tend to have more circulat-

ing hemocytes [56], and the ability of different Drosophila species to resist A. tabida is corre-

lated with circulating hemocyte number [5,41]. Recent studies investigating D. suzukii, an

invasive species in Europe and the USA, have found an incredible ability to resist native para-

sitoids and circulating hemocyte counts around ten times that of D.melanogaster [57–59].
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Together these results suggest that there are strong evolutionary constraints, such that Dro-
sophila must increase circulating hemocyte numbers in order to evolve parasitoid resistance.

The tight association between hemocyte number and resistance is not unexpected. Hemo-

cytes are specialised immune cells that detect, bind to, encapsulate and ultimately kill parasitoid

eggs [60–62]. Injection of a parasitoid egg into a Drosophila larva usually results in an increase

in circulating hemocyte numbers [41,56,63,64], so it is possible that the cellular immune system

of the resistant populations is in a constitutively activated state. The anti-parasitoid response

Fig 5. The change in encapsulation rate of populations maintained in high and low food environments.

A) The mean encapsulation rates of selected populations split into high and low food treatments at generation 0

prior to maintenance on their respective regimes. B) The mean encapsulations rates of selected and control

populations following five generations of maintenance in either a high or low food environment. Bars represent

SE. Different letters denotes means that are significantly different from one another, with significance defined

as a p value of <0.05 (Tukey multiple comparison test) and these differences are only considering comparisons

within a given panel.

https://doi.org/10.1371/journal.ppat.1006683.g005
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involves the differentiation of a specialised hemocyte type known as lamellocytes from prohe-

mocytes in the lymph gland and plasmatocytes in the sessile clusters [44]. Before lamellocyte dif-

ferentiation, circulating plasmatocytes adhere and spread around the parasitoid egg, forming

the first capsule layer [65]. Thus, having a large pool of circulating plasmatocytes to draw on fol-

lowing parasitoid invasion likely aids the encapsulation process [41].

Despite all three species evolving resistance by increasing circulating hemocyte numbers,

the developmental basis of this change is not the same. In Drosophila a large proportion of

hemocytes are in sessile clusters. When D.mauritiana and D. simulans evolved resistance, they

increased total hemocyte numbers, resulting in more hemocytes in present circulation as well

as in sessile clusters. This is analogous to employing more soldiers in the military. In contrast,

when D.melanogaster evolved resistance the number of circulating hemocytes increased, but

the total hemocytes remained the same. This is equivalent to having more of your soldiers out

on patrol and less in the barracks. Therefore, we have shown that parasitoid resistance is a case

of parallel evolution, where three independent species evolve similar traits in response to the

same selection pressure. At the phenotypic level the similarities are striking. In all cases, the

parasitoid is being killed by encapsulation, resistance comes at a cost to larval competitive abil-

ity, and the number of circulating hemocytes increases. However, the developmental origins of

this difference are different in D.melanogaster than the other two species. A key unanswered

question is whether parallelisms extends to the genetic level—are similar pathways, genes or

even genetic variants responsible for resistance in the three species?

Parasitoid resistance appears to be a universally costly trait. When reared in a low-resource

high-competition environment, the survival of resistant flies in all three species was reduced

by over 70% relative to controls. This is likely driven by low survival of resistant flies when pro-

tein or other nutrients are in short supply. Similar costs have previously been reported in D.

melanogaster populations selected for resistance to L. boulardi [27] and A. tabida [3], where

resistant larvae have been found to have lower feeding rates [12]. Our results demonstrate that

this is not a quirk of this species. Instead, there is a strong underlying evolutionary constraint

that results in resistance being costly across multiple species. This cost to resistance likely

explains why genetic variation in susceptibility is maintained in nature, as any resistance allele

that was cost-free would likely have a strong advantage and be fixed by selection.

Evolving resistance to parasites may be costly if resources are diverted from other functions

into immune defences. When Kraaijeveld et al first observed increased hemocyte numbers in

parasitoid-resistant D. melanogaster larvae, they argued that the resource cost of increasing

hemocyte production likely explained the cost of resistance [49]. As resistant larvae feed at a

slower rate, they speculated that this resource competition could be the result of hemocytes

and the head musculature being derived from the same embryonic tissue [49]. However, we

have found that in resistant populations of D.melanogaster there is no increase in the number

of hemocytes produced, so this cannot be the reason resistance is costly. Instead, the increased

number of circulating hemocytes may reflect a constitutively activated cellular immune sys-

tem. If this is the case, then the costs of resistance could result from autoimmune damage.

In all three species the cost associated with parasitoid resistance is far greater in low-

resource conditions where larval competition is intense. Therefore, population or species level

differences in parasitoid resistance might be driven by differences in resource availability (or

other stresses that affect the cost of resistance) as well as differences in parasite pressure. This

is supported by our finding that resistance was rapidly lost when populations were maintained

under resource-poor conditions, with a ~75% drop in encapsulation rates after just five gener-

ations in this environment. Thus whether resistance is favoured in a given Drosophila popula-

tion will be tightly linked with the locally available resources. This finding might also explain

some why some D.melanogaster populations in unusual environments like sherry cask slime
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and indoor fruit markets are anomalously resistant [33,40]. It is likely that these costs will be

expressed in nature, as it is thought that resources are far more plentiful in laboratory condi-

tions than in natural populations of Drosophila melanogaster. In adult females, levels of virtel-

logenesis and hence fecundity are far lower in the wild than in the lab, reflecting restricted

access to food [66]. Larvae seem to similarly suffer from nutrient limitation, as flies reared in

the lab are larger and have more ovarioles than flies in nature [66].

Natural Drosophila populations encounter multiple parasitoids. We found that all three spe-

cies selected to resist L. boulardi were also more resistant to A. tabida. Given that D.melanoga-
ster populations selected for resistance to A. tabida have an increased number of circulating

hemocytes [49], it is likely that increased hemocyte numbers are the cause of the correlated

increase in resistance to A. tabida in our experiments. Patterns of cross resistance have previ-

ously been explored in more detail in D.melanogaster. In line with our results, D.melanogaster
populations selected for resistance to L. boulardi have previously been shown to be resistant to

A. tabida and L. heterotoma [50]. However, the reverse is not true and A. tabida selected lines

are not significantly more able to encapsulate L. boulardi than control populations [50],

although they are better able to encapsulate L. heterotoma. This suggests a specific and a gen-

eral component to parasitoid resistance, with L. boulardi resistance requiring both factors and

A. tabida resistance only requiring the general component [5,50,67]. These patterns of cross

resistance will have important consequences for the evolution of natural populations, with the

community of parasitoids present determining levels of resistance.

Curiously, selection for L. boulardi resistance led to a correlated increase in L. heterotoma
resistance in D.melanogaster but not D.mauritiana or D. simulans. Neither selected nor con-

trol populations of these species ever survived parasitism by L. heterotoma. All three species

use lamellocytes as the main anti-parasitoid immune cell and L. heterotoma virulence factors

destroy lamellocytes that are present in the hemolymph and also appear to damage the

machinery of hemocyte production [64,68,69]. L. boulardi virulence factors, in contrast,

appear to block hemocyte release and morphologically alter lamellocytes making them non-

functional [68]. These differences in action could explain the lack of cross resistance if D.

mauritiana and D. simulans are especially susceptible to these venoms, although this then

poses questions regarding how D.melanogaster selected populations are able to overcome this.

We have sampled each species from a single geographical location, and it is known that

there is strong geographical variation in parasitoid resistance in Drosophila [33]. It is therefore

possible that some of the differences that we observe between species may also exist between

populations of the same species. Similarly, some of the patterns that are the same across species

may not hold when new populations are sampled. These questions await future study.

From this work we draw three main conclusions. (1) Costs of resistance maintain genetic

variation in susceptibility to infection. These costs can explain why all three species of Drosoph-
ila remain susceptible in nature despite it being easy to select for resistance in the lab. As these

costs are found across all three species, it suggests that there are fundamental constraints to

evolving resistance. (2) Whether resistance evolves will depend not only on parasitism rates but

also food-availability and the community composition of parasites. (3) Different species

all evolve resistance by increasing investment in cellular immune defences, although the conver-

gent evolution of the immune phenotype has different developmental bases in different species.

Materials and methods

Founding of outcrossed populations prior to selection

AD.melanogaster outcrossed population (COP2) was founded in 2014 from 2050 isofemale lines.

These lines were founded by flies collected from 10 separate field sites around Coventry, England
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(52.383807˚N, -1.481671˚W; 52.386305˚N, -1.484438˚W; 52.386827˚N, -1.480226˚W; 52.4121

42˚N, -1.466066˚W; 52.41714˚N, -1.601703˚W; 52.386701˚N, -1.481095˚W; 52.386921˚N,

-1.482000˚W; 52.410799˚N, -1.468799˚W; 52.386345˚N, -1.483517˚W; 52.408893˚N, -1.5821

20˚W). Females were sorted and placed into vials containingDrosophila food [70] in order to

establish isofemale lines. The progeny of these isofemales lines were then collected and five flies

from each line pooled to found an initial outcrossed population of ~10,250 flies. The progeny of

this initial generation were immediately used for selection.

Similarly, D.mauritania Outcrossed Population (MOP) and the D. simulans Outcrossed

Population (SOP) were founded using a similar technique, with the caveat that previously

established isofemale lines that had been maintained in the laboratory were used, rather than

wild caught lines. 36 D.mauritiana (provided by Marie-Louise Cariou, Mauritius, [71]) and

180 D. simulans (collected in North America and provided by Trudy Mackay) isofemale lines

were combined to create MOP and SOP, respectively. Both populations were put through an

intermediate step of producing sub-populations in an attempt to maintain genetic variation.

Sub-populations were created by pooling five lines together into a population for a single gen-

eration. The progeny of these sub-populations were then aggregated to create a large out-

crossed population. Both MOP and SOP were maintained as large outcrossed populations for

approximately 20 and 8 generations prior to selection, respectively.

Drosophila and parasitoid wasp stock maintenance

Unless otherwise stated, all Drosophila were maintained on a cornmeal diet [70], supplemented

with a sprinkling of dried live yeast, 70% relative humidity and a 12hr:12hr light-dark cycle.

Parasitoid wasps L. boulardi strain from Sienna, Italy (NSRef [72]), L. heterotoma (collected in

Oeiras, Portugal in 2014) and A. tabida (collected in Sainte Foy-Lès-Lyon, Rhône, France in

2012 and provided by Fabrice Vavre) were maintained on an outcrossed D.melanogaster pop-

ulation, and cultivated at 25˚C. A single wasp was placed on eggs collected from COP1 and left

for 72 hours before removal. Following emergence female adult parasitoids were stored on

apple agar vials (apple juice concentrate, agar, glucose, water, nipagin) with males at a ratio of

roughly 2:1 at 18˚C, with humidity maintained at 70% and a 12hr: 12hr light and dark cycle.

Assessing the frequency of encapsulation within a population

Adult flies were placed in a population cage and provided with apple juice agar plates (apple

juice concentrate (120ml), agar (8g), glucose (0.4g), water (440ml), nipagin 10% w/v (10 ml))

with fresh yeast paste applied to the surface. They were left for five days prior to experimenta-

tion to ensure sufficient time for remating. Following this period, the plates were changed and

flies were allowed to lay over a period of twenty four hours. These plates were then collected

and the eggs removed through surface washing with PBS and gentle stimulation with a soft

bristle paint brush. Eggs were then transferred into a 50ml falcon tube and the suspension left

to settle for 1 minute. 1 ml of dense egg suspension was then transferred from this tube into a

clean 1.5ml microcentrifuge tube. To set up experimental vials, 5μl of dense egg suspension

was then added to each cornmeal vial, which were subsequently numbered and randomly

assigned to a treatment.

A single female wasp of age 3–5 days for the parasitoids L. boulardi and L. heterotoma, or 7–9

days for A. tabida, was added to each parasitised treatment vial. This was done 10 hours after

the eggs were added to the vial, so the fly larvae were aged between 10-34hrs. Control vials were

left unparasitised. All vials placed in a 25˚C controlled temperature (CT) room, with humidity

maintained at 70%. Wasps were removed after 24hrs for L. boulardi and L. heterotoma, or 48hrs

for A. tabida. Vials were left to develop for a total of 14 days. Following this, flies were sorted
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and counted under CO2 anaesthesia, and then flies from parasitised vials were crushed between

two clear microscope slides and checked for the presence of capsules and the number of flies

with at least one capsule present recorded. As a precautionary measure every tenth control vial

was also checked in this way, although no capsules were ever discovered in these vials.

Estimating the encapsulation rate

The Parasitism rate (Pr), which we define as the proportion of Drosophila larvae infected with

at least one parasitoid egg, was estimated by comparing the mean number of adult flies in para-

sitised (Nt) and unparasitised vials (Nc) [72]. The mean number of flies containing at least one

capsule (Ncap) was used to account for flies that had survived parasitism.

Pr ¼
Nc � ðNt � NcapÞ

Nc
ð1Þ

The Successful Encapsulation Rate (SER), defined as the proportion of parasitised flies sur-

viving into adulthood [72], was calculated as:

SER ¼
Ncap

Pr � Nc
ð2Þ

Selection for resistance

We artificially selected for resistance by exposing the populations to parasitoids over 6 genera-

tions and only allowing flies that displayed visible evidence of having survived parasitism to

reproduce. Using the method described above, 5μl of eggs from the outcrossed populations

were placed into vials of food (see above), which were assigned randomly to be parasitised and

as controls. A single female L. boulardi wasp was placed into each vial to be parasitised and

removed after 36 hours. This long period of parasitism was decided upon for reasons of experi-

ment feasibility. All vials were matured at 25˚C for 14 days. Emerging flies were sorted on CO2

and parasitised flies were sorted under a dissecting microscope (Leica MZ6) at 20x magnifica-

tion and those identified as possessing a capsule isolated. Presence of a capsule is taken as affir-

mation of both parasitism and a successful immune response.

To establish populations for selection, capsule containing flies were randomly sorted into

six populations. Control populations were established in the same way from the unparasitised

vials. Further selection was carried out in the same way for each population each generation,

with selected populations being parasitized and only flies containing a capsule allowed to con-

tinue. At each generation the population size was kept constant for all populations, and this

was always above 180 individuals per population with an approximate sex ratio of 50:50. Selec-

tion was carried out continuously for six generations, with the encapsulation rate of the

selected populations assayed each generation. Control populations were assayed at generations

one and six. Following generation six, selection was relaxed and the populations maintained

with large population sizes, with selection carried out only every three generations for reasons

of convenience. Selected and control populations were maintained at a population size of 1500

per line in cornmeal media vials [70] at a density of ~50 larva per vial in a 25˚C controlled tem-

perature (CT) room, with relative humidity maintained at 70%.

Assessing the specificity of parasitoid resistance

We investigated whether populations selected for resistance to L. boulardi exhibited increased

resistance to L. heterotoma and A. tabida. Vials containing 5μlof eggs from each population

were set up as described above and assigned to one of four treatments: controls and parasitised

The evolution of parasitoid resistance

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006683 October 19, 2017 14 / 20

https://doi.org/10.1371/journal.ppat.1006683


by L. boulardi, L. heterotoma, or A. tabida. Larva of ages 24–48 were then parasitised by a single

female wasp. Wasps were removed after 24 hours for the Leptopilina species and 48 hours for

A. tabida, and then left to develop at 25˚C 70% relative humidity for 14 days. The adult flies

were then sorted on CO2, checked for the presence of capsules, and the encapsulation rate esti-

mated using Eq 2.

Counting hemocytes

To count hemocyte numbers, Drosophila larvae were reared by allowing selected and control

populations to lay on a 90mm apple juice agar plate with live yeast paste added to the surface

for four hours, and the resulting eggs collected into an Eppendorf tube as above. Following

this, 8μl of egg mixture was transferred to 55mm plates containing standard Drosophila corn-

meal food, the surface of which had been scored with a needle. The plate was then left for 72

hours, so the larvae were between 72–76 hours old. Larvae were then removed from the plates

using forceps, washed in PBS and then dried on filter paper to remove any food contamina-

tion. For an estimate of larval ‘Circulating hemocyte number’ a single larvae was gently bled by

tearing the ventral cuticle using a pair of fine steel forceps while immersed in 4μl of Ringer’s

solution (NaCl 46mM, KCl 182mM, CaCl2 3mM, TrisBase 10mM, pH = 7.2) on top of a grid

(10-by-10 of 0.4mm2 squares). The number of cells was counted under a compound micro-

scope (Leica DM750). For ‘Total hemocytes number’ larvae were first rolled ~20 times with a

brush to physically dislodge hemocytes residing in sessile clusters into circulation [52]. This

method of dislodging haemocytes from the sessile clusters, similar to that described in Petraki

et al., (2015), recovers approximately 60% of total haemocytes (Figure A in S1 Supporting

Information), over four times as many haemocytes as are found in circulation without disrup-

tion. The hemocytes were collected as described above.

To visualize sessile hemocytes in the dorsal cuticle, 69nl of pHrodo Red E.coli BioParticles

(Life Technologies) were injected into the larval haemocoel using a nanoinjector (Nanoject II,

Drummond Scientific). Injected larvae were incubated for 20min in fly food, washed in PBS,

dried in filter paper and immobilized between two glass slides. Pictures were taken with fluo-

rescent stereomicroscope (Leica MZ16F) equipped with a monochrome digital camera (Leica

DFC340 FX). Hemocytes in the dorsal cuticle were counted manually with ImageJ. Hemocytes

in the A8 segment were excluded because the high hemocyte density in this region makes it

very hard to distinguish cells. To avoid biases with manual counting, files names were renamed

with random tags blindly to the experimenter counting the cells.

The competitive ability of selected populations

To examine whether selection for resistance produced a correlated decline in larval competi-

tive ability, we measured the survival of larvae reared in competition with a standard tester

strain. All three Drosophila species were competed against an isogenic white-eyed Drosophila
melanogaster line (w1118), and Drosophila simulans was additionally tested with an inbred

white-eyed Drosophila simulans line w501 [73]. Larval competitive ability was assessed using

two different quantities of food. Yeast paste was prepared by adding a mixture of 25g Allin-

son’s dried live baker’s yeast per 100ml water, with 0.5ml (approximately 0.06g protein) and

0.05ml (approximately 0.006g protein) of yeast paste added to 50mm apple juice agar plates for

‘high’ and ‘low’ food types respectively. Plates were covered and left to dry overnight at room

temperature. Previous studies have shown that these two volumes represent both a highly

stressful (low food) and non-stressful (high food) environment for flies [3,27]. To assess com-

petitive ability, fifteen second instar larvae of both the experimental and the tester strain were

added to plates from the high and low food treatment, and left to develop at 25˚C for 12 days.

The evolution of parasitoid resistance

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006683 October 19, 2017 15 / 20

https://doi.org/10.1371/journal.ppat.1006683


There were 20 replicate vials per treatment for each population. Flies were then sorted on CO2

and the number of white eyed tester flies and red eyed experimental flies that survived to adult-

hood recorded.

Food availability and the maintenance of parasitoid resistance in D.

melanogaster populations

To investigate how resistance might be maintained in natural populations, we generated replicates

of ourD.melanogaster selected and control populations and allowed these replicate populations

to propagate for five generations without selection under different environmental conditions.

Each population was maintained on two different food resource regimes: a rich or poor food

resource. In order to produce these conditions, either 1ml or 50μl of 25% yeast was pipetted onto

the surface of 50mm apple agar plates, representing the rich and poor food sources respectively.

Each generation flies were collected and placed in a population cage and allowed to outcross

for 24 hours. Following this, flies were allowed to lay onto a 90mm apple agar plate with 1ml of

25% yeast paste over a period of 12 hours. These eggs were then collected in a 1.5ml Eppendorf

tube and suspended in PBS. 5μl of these eggs were then transferred to each treatment plate.

Population size for each population in each treatment was maintained above 100 individuals

each generation. Populations were maintained at 25˚C for 18 days. The longer period of time

was required due to the effect of low resources on development time.

Following five generations, both high and low resource populations were then expanded for

one generation on a standard cornmeal media with a sprinkling of dry yeast, and in the subse-

quent generation their encapsulation rate estimated using the methods described above and

Eq 2. Populations’ encapsulation rates were also estimated at generation 0 prior to rearing on

the two different food regimes.

Statistical analysis and data availability

All statistical analyses were performed in using R. The raw data and scripts to perform the

analysis and plot the figures are available at the Cambridge data repository https://doi.org/10.

17863/CAM.13612. The encapsulation rates for selected and control populations of Drosophila
were compared by first calculating the encapsulation rate SER for each population (Eq 2), and

comparing these estimates between the two types of population using Student’s t-test.

Differences in the number of hemocytes in selected and control larvae were compared using

a generalised linear model (glm). We assumed a Poisson distribution, under quasi-likelihood

estimates to account for over-dispersion of the data. The final model applied to the data was

Hemocyte Count ~ Partition � SS. Where Partition represents whether the hemocyte count

originated from larvae who had undergone cluster disruption or not, and SS, the selected state.

To compare the competitive ability of selected and control flies, we followed Kraaijeveld

and Godfray [3] by first calculating a competition index (CI) for each plate of flies [74]:

CI ¼ lnðe=t þ 1Þ ð3Þ

where e is the number of adult experimental flies and t is the number of adult white-eyed tester

flies. Differences between mean competitive indexes of the resistant and control populations

were assessed using Student’s t test.

Supporting information

S1 Supporting Information. Supplementary methods and results.

(PDF)
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