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Songbirds work around computational complexity
by learning song vocabulary independently of
sequence
Dina Lipkind1, Anja T. Zai2,3, Alexander Hanuschkin2,3, Gary F. Marcus4,5, Ofer Tchernichovski1

& Richard H.R. Hahnloser2,3

While acquiring motor skills, animals transform their plastic motor sequences to match

desired targets. However, because both the structure and temporal position of individual

gestures are adjustable, the number of possible motor transformations increases exponen-

tially with sequence length. Identifying the optimal transformation towards a given target is

therefore a computationally intractable problem. Here we show an evolutionary workaround

for reducing the computational complexity of song learning in zebra finches. We prompt

juveniles to modify syllable phonology and sequence in a learned song to match a newly

introduced target song. Surprisingly, juveniles match each syllable to the most spectrally

similar sound in the target, regardless of its temporal position, resulting in unnecessary

sequence errors, that they later try to correct. Thus, zebra finches prioritize efficient learning

of syllable vocabulary, at the cost of inefficient syntax learning. This strategy provides a non-

optimal but computationally manageable solution to the task of vocal sequence learning.
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M inimizing a cost or an error function is at the core of
many biological and artificial learning mechanisms.
Error minimization, or function optimization in the

broader sense, underlies algorithms such as linear regression for
minimizing residuals to linear fits, and the simplex algorithm for
solving linear optimization problems1. Optimization strategies have
been also elucidated in many adaptive behaviors2, particularly in
cases involving simple behavioral targets, such as the minimization
of retinal slip during smooth3 and ballistic4 eye movements, or
minimization of movement time5, endpoint error6, and movement
variability7 during arm reaching movements. However, many
animals are also capable of learning complex behavioral sequences,
such as courtship songs, that precisely match acquired sensory
target sequences8, 9. What kind of optimization strategy can guide
behavior toward such complex targets?

Natural learning of complex behaviors often requires adapting
both the structure and the order of gestures in a sequence
(Fig. 1a), which is a more complex task than adapting either
gestures or sequence alone10–14. Consider the example of learning
a complex word in a foreign language: if one’s utterance is mis-
understood, is it because some speech sounds (e.g., phonemes)
were pronounced incorrectly (a structural error), or because they
were performed in the wrong order (a timing error), or may be
some combination of both? Finding an optimal way to reduce
both structural and temporal performance errors constitutes a
quadratic assignment problem (Supplementary Notes). Such
optimization problems are computationally intractable, meaning
there is no known efficient algorithm for solving them15–17.

Songbirds, being skilled vocal learners18–21, provide an
opportunity for studying how errors are assigned and minimized
during the learning of complex motor sequences. A young zebra
finch (Taeniopygia guttata) imitating an adult tutor has to match
a series of spectrally distinct sounds (syllables) performed in a
precise order (Fig. 1b). Zebra finches are capable of adjusting
their developing song towards its target in a variety of
ways, including morphing the spectral (phonological) structure of
song syllables22–25, generating and adding novel syllables
to their song23, 25, 26, and rearranging the positions of existing
syllables26, 27. How then do they cope with the complexity of
selecting the appropriate combination of operations that
would reduce the mismatch between their own song and the
target?

A possible way to reduce computational complexity could be to
optimize one aspect of the task, while ignoring the costs of the
other. At one extreme, the task could be reduced to assigning each
syllable in the bird’s song to the temporally corresponding syl-
lable in the target song (Fig. 1c, left). Such strategy would mini-
mize sequence rearrangements, at the cost of possibly large
phonological adjustments. Although this hypothesis has not been
directly tested, a number of previous findings suggest that song-
birds may not be using global alignment between song and target
as a learning strategy. These include the observation that indi-
vidual syllables are recognizable in developing zebra finch song
before the correct sequence is apparent28; the existence of an early
developmental phase in which repetitions of a single “proto-syl-
lable” differentiate towards multiple targets22, 24, 25, 29, 30; the fact
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Fig. 1Motor sequence learning: hypotheses and testing method. a Sensorimotor learning may require adapting the structure of a motor gesture to a desired
target (left, different colors indicate a structural mismatch); adapting the temporal order of gestures to a target sequence (middle); or adapting a sequence
of unformed gestures to a target sequence (right). In the latter case, the number of possible combinations of structural and temporal adjustments (vertical
and horizontal arrows) increases exponentially with sequence length. b Song learning in zebra finches: a juvenile male gradually matches its own unformed
vocalizations (bottom sonogram) to a memorized song of a tutor (top sonogram). Letters represent consecutive syllables of the bird’s song (S1, S2…) and
the target (T1, T2…) c Hypothetical strategies of motor sequence learning: left, motor gestures are matched to temporally corresponding target gestures;
middle, gestures are matched to the most structurally similar targets, minimizing structural changes, but possibly requiring considerable sequential
rearrangements; right, error is computed across ‘chunks’ of gestures attempting to achieve local (non-optimal) tradeoffs between structural and temporal
adjustments. d Experimental setup for testing vocal learning strategies. Left, a young bird hears a playback of an artificial song (source); once he learns it
(middle), training is switched to a playback of a second song (target). The mismatch between the two songs is designed by the experimenter. The bird’s
vocal practice trajectory as it corrects the mismatch is continuously recorded
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that many songbird species perform variable syllable sequences as
adults (e.g., nightingales, starlings and Bengalese finches); and the
ability of zebra finches to match a target exclusively through
syllable rearrangements, without changing phonology26. An
alternative strategy, therefore, could be to assign song syllables to
target syllables in a manner that minimizes phonological
distances, while ignoring combinatorial distances (Fig. 1c,

middle). Such phonological greediness would increase the num-
ber of ensuing sequence changes and thus the overall sequencing
cost26. An intermediate strategy could be to seek a trade-off
between minimizing structural and temporal errors, for example
by independently matching parts of the song sequence (such as
phonology in bigrams or trigrams27) to parts of the target
sequence (Fig. 1c, right).
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Fig. 2 Phonological error correction in individual syllables disregards global similarity. a Song models used for imitation task 1 ABC→AC+B (a single motif
is shown; birds were trained with two motif repetitions). Scale bars for sonograms are 100ms (x axis) and 2 kHz (y axis). The pitch of syllable C+ in the
target song is shifted up by two semitones with respect to C in the source. b Developmental singing trajectory of an experimental bird trained with
imitation task 1. Stack plot shows consecutive renditions of song motifs containing C/C+ syllables, over experimental days (day 0, switch to target training;
instances of the transition BA, which the bird acquired early on, see c, are excluded from this plot). Colors, pitch of C/C+; grayscale, Wiener entropy in
neighboring syllables. Example sonograms of the bird’s song at experiment start (bottom) and end (top). The bird first changed its song to ABC+

(sonogram on the right) and only afterwards corrected the syntax to AC+B (arrows). c Top, the median pitch of consecutive renditions of syllable C/C+ in
the same experimental bird; bottom, the daily frequencies of target syllable transitions. d Left, scatter plot of the fraction of syntax correction vs. the
fraction of pitch correction (0, source pitch/syntax; 1, target pitch/syntax) in consecutive data bins (bin size 30 samples with 25 samples overlap) across
experimental birds trained with imitation task 1 (ABC→AC+B; n= 3) and imitation task 2 (ABC→A+C+B, only syllable C/C+ pitch correction included; n=
9; same for e); right, distribution of the fraction of syntax correction at 45–55% pitch correction (red horizontal bar on bottom of left panel); means± s.e.m.
across birds for each bin. When pitch reached half way to target, syntax was mostly unchanged. e Fraction of pitch and syntax correction at developmental
endpoint (0, source pitch/syntax; 1, target pitch/syntax; means±s.e.m.)
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towards target at developmental endpoint (0, source pitch/syntax; 1, full match of target pitch B− or B+/full match of target syntax (first 3 syllables),
defined as 100% performance of correct transitions; −1, syntax maximally shifted away from target, defined as 100% performance of incorrect transitions;
means± s.e.m. across birds)
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To test which strategy zebra finches employ to learn their song,
we used artificial tutoring to generate temporal and spectral
mismatches between a bird’s song and its target23, 26, 31, 32. We
utilized the fact that under certain conditions (presumably the
loss of a tutor due to high predation rates33) zebra finches can
learn their song in a piecewise manner25, 26 from more than one
tutor34–36: we trained young male zebra finches with playbacks of
an artificially designed tutor song (Methods section), and once we
could reliably identify copies of all tutored syllables in the singing
performance, we switched the training to an altered synthetic
song (Fig. 1d). We continuously recorded the birds’ vocal output
and tracked the developmental trajectory of individual syllables,
to uncover the underlying assignment of performance error and
the manner in which it is minimized.

Results
Performance errors can be computed out of temporal context.
To test whether zebra finches compute vocal errors in syllables
with respect to temporally corresponding targets (Fig. 1c, left), we
first presented three birds with a three-syllable song ABC (source
song). Once the birds copied it, we presented a variant (target)
song with permuted syllable order (temporal mismatch) and with
a shift in the pitch of one syllable (local spectral mismatch):

Imitation task 1 ABC ! ACþB;

(plus sign (+) indicates a pitch mismatch of 1 or 2 semitones
between syllables C and C+; Fig. 2a; Supplementary Table 1,
Supplementary Audio 1).

All three birds shifted the pitch of syllable C to the target pitch
C+ before making any changes in song syntax. This resulted in a
performance of a song they never heard (A B C→A B C+; Fig. 2b,
Supplementary Audio 2–4), in which the “correct” syllables were
sung in the “wrong” order. It took the birds several additional days
to permute syllable order (fully or partially) towards the target
syntax A C+ B, one transition at a time (Fig. 2c), incorporating
each new transition into their song and performing it in
combination with the existing (source) transitions26. We tested
an additional nine birds with a slightly more complex task
involving pitch mismatches in two different syllables.

Imitation task 2 ABC ! Aþ CþB

(The size and direction of pitch mismatches were varied across
experimental birds; Supplementary Fig. 1a, Supplementary
Table 2, Supplementary Audio 5–7). Note that no single
alignment between the source and target songs can accommodate
the pitch mismatches in both syllables. Nevertheless, the birds
successfully corrected both mismatches, with no significant
differences in success rate or speed (Supplementary Fig. 1b–d;
percent of pitch correction at endpoint was 83± 7% vs. 79± 7%
for A/A+ and C/C+ syllables respectively, and the speed of
correcting 50% of the pitch mismatch was 10.8± 4.0 vs. 18.0±
8.2 days; NS for both comparisons, Wilcoxon rank sum test).
Pooling results across tasks 1 and 2 (n= 12 birds), we found that
when pitch correction reached 50%, only 15± 8% of the syntax
mismatch was corrected. Therefore, the majority of pitch errors
were corrected while sequentially misaligned with the target
(Fig. 2d). This result indicates that zebra finches are not
constrained to assign errors to song syllables according to their
sequential order (Fig. 1c, left), but instead are able to compute
vocal errors between song and target syllables at non-
corresponding temporal positions (Fig. 1c, middle or right).

Overall, the birds corrected 81± 6% of the pitch error, but only
32± 12% of the syntax error (Fig. 2e). The syntax adjustments
were smaller than in a previous study26, which presented zebra

finches with the “pure” syntax correction task ABC→ACB (57±
1% syntax error correction, n= 17), suggesting that phonological
adjustments are prioritized over syntactical adjustments.

Syntax error cannot bias phonological error assignment. Imi-
tation tasks 1 and 2 show that zebra finches are able to correct
local pitch errors out of context, namely, without globally aligning
their own performance with the target song. We next tested
whether, when given a reasonable choice, the birds would prefer
to match pitch in a correct alignment, so as to increase both local
and global similarity with the target (Fig. 1c, right):

Imitation task 3 ABC ! AB� CBþ

(Where minus and plus signs indicate two semitone pitch shifts,
down and up; Fig. 3a, Supplementary Table 3, Supplementary
Audio 8; n= 4). In this task, syllable B in the source song is offered
two fairly similar competing targets (B− and B+), one of which is at
the same sequential position (B−), and the other at a different
position (B+). If the birds average those potential targets, the error
should be zero, and we should observe little (if any) vocal changes.
However, if the birds use a winner-take-all strategy for target
selection, then the target chosen for syllable B would greatly affect
the resulting global match: B− would increase global similarity to
the target (A B− C), while B+ would decrease it (A B+ C).

All four birds shifted the pitch of syllable B, approaching either
B− or B+, with a remarkable accuracy of 97± 1%, defeating the
hypothesis of error averaging and indicating a winner-take-all
target selection strategy. The remaining target syllable (towards
which syllable B did not shift) was matched as well in 3 of the 4
birds, by a precursor initially performed outside of the song motif
(see more on this below and in Supplementary Fig. 3). In contrast
to early developmental stages where renditions of a single syllable
prototype often differentiate to match distinct targets22, 24, 25, we
did not observe cases of duplication and “splitting” of syllable B
renditions to match both B− and B+ (except for a possible
unsuccessful attempt in one bird, see bird 4 in Supplementary
Fig. 3) However, surprisingly, only two birds chose target B− for
syllable B resulting in a decrease in syntax error, while the other
two chose the target B+, resulting in an increase of syntax error
(Fig. 3b–d; −0.6± 56.0% syntax shift with respect to start point
across birds; Fig. 3e). These mixed results suggest that syntax
error does not affect phonological error assignment, and therefore
point to the possibility of a dedicated phonology-correction
mechanism that is “deaf” to syntax (Fig. 1c, middle).

Phonological error correction is spectrally greedy. Assuming a
syllable-learning module that has no access to sequence informa-
tion, how would such a module “decide” on syllable-to-target
assignments? Our results so far appear to suggest that performance
errors are assigned randomly among equidistant targets. We next
tested if the size of the (small) phonological error matters to the
bird, that is, if target selection is optimized (and greedy) with
respect to spectral distance. We trained seven birds with a task
offering syllables a choice between two spectrally similar targets, but
this time the targets were at different pitch distances (1 vs. 2 semi-
tones). We assigned a correct sequential context to the more distant
target, and an incorrect sequential context to the closer target:

Imitation task 4 ABCBþ1 $ ABþ2 CB�1

(Superscript values indicate pitch shift size in semitones with
respect to syllable B). We used two variants of this task, in which
the source and target models were interchanged (task 4.1 (n= 2)
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and task 4.2 (n= 5); Fig. 4a, Supplementary Table 4, Supple-
mentary Audio 9).

Six out of seven birds shifted pitch towards the spectrally closer
(1 semitone) targets (final pitch shift of 0.8± 0.2 semitones

toward target; Fig. 4b-e; Supplementary Fig. 2). Since the closer
targets were at “incorrect” temporal positions, this choice resulted
in a reduced match of the target syntax (−91± 6% relative to
source song, task 4.1, Fig. 4d), or in an incomplete match
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(58± 7%, task 4.2, Fig. 4e). One-semitone targets were chosen
regardless of their position in the target motif (2nd or 4th

syllable in the motif, Fig. 4b–c; Supplementary Fig. 2), indicating
that the choice was not a result of a salience effect of the last
syllable in the motif. Thus, although we failed to bias the
pitch trajectories of song syllables by offering the birds a
greater sequence match, even small differences in local spectral
distance affected the choice of targets for phonological error
correction. These results confirm the conclusion that zebra
finches employ a dedicated mechanism for learning the syllable
vocabulary of their target song. Further, this mechanism is
spectrally greedy, namely, it prioritizes local phonological match
over global syntax match.

Competitive syllable-target assignments. Is phonological gree-
diness sufficient to successfully learn a syllable vocabulary? What
happens if there are unmatched syllables in the target song even
after all syllables in the bird’s song have converged on a target?
While in early development multiple targets are often matched by
duplication and differentiation of a single precursor
syllable22, 24, 25, we know that during later vocal development new
syllable types can be added to the song to match missing
targets23, 25, 26. Given our evidence for phonologically greedy
target selection, we wondered how a syllable is recruited to an
unoccupied target, when other (occupied) targets may be spec-
trally closer. To find out, we returned to the results of imitation
task 3 (ABC→AB− CB+, see above), and combined them with an
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additional task, in which two equidistant target syllables are
competing for a single source syllable, but no sequential bias is
introduced:

Imitation task 5 AB ! ABþ AB�

(Where plus and minus signs indicate two semitone shifts up and
down; Fig. 5a, Supplementary Table 5, Supplementary Audio 10).
As in imitation task 3, we found that birds trained with imitation
task 5 selected and matched one of the two equidistant targets, B+

or B− (83± 22% pitch error corrected), seemingly at random,
confirming a winner-take-all mechanism for target selection
across tasks 3 and 5 (Fig. 5b).

We next examined if and how did the birds in both tasks match
the remaining target (B+ or B−), which was not selected by
syllable B. We examined each bird’s singing repertoire at the end
of development, searching for vocalizations with pitch in the
vicinity of the vacant target and back-tracking their develop-
mental origin23, 37, 38. We found that 7 out of 8 birds matched the
vacant target (endpoint pitch error of 0.22± 0.06 semitones) by
adding a new vocalization type to their song motifs, in most cases
originating from a call (Fig. 5c–e; Supplementary Fig. 3). We then
further searched the birds’ entire vocal output (including calls
performed outside of song bouts) for any additional precursors
that might have converged on either of the targets B + or B-. To do
so, we focused on vocalizations in the spectral vicinity of targets
B+ and B- (i.e., harmonic sounds with pitch range of B-6 to B+6

semitones), excluding from the analysis vocalization types
originating in syllable B or the call that differentiated to match
the vacant target. We did not find any additional vocalization
types that converged on either of the targets (Fig. 5f). Thus,
matching efficiency was close to the theoretical optimum: 7 out of
8 birds managed to successfully match both targets B+ and B-,
and achieved this feat using only two motor precursors: they
recruited syllable B to match one of the targets, and a call to
match the other. The likelihood of such efficient matching to
occur via phonological greediness alone is very small: assuming
randomly distributed call origins, a purely greedy mechanism
would achieve such high efficiency (to match the vacant but not
the occupied target) with very low probability (p= 0.57= 0.008, n
= 7 birds). Therefore, our findings demonstrate an additional
competitive constraint that prevents more than one motor
syllable to converge on a single target syllable. In combination
with a winner-take-all target selection, these constraints can
ensure successful one-to-one matching of a syllable vocabulary.
Such set of constraints is analogous to a “musical chairs” game,
where players (motor syllables) compete for the occupancy of
chairs (target syllables), and which ends with all chairs being
occupied by a single player each.

Error computation is modular across levels of song hierarchy.
The complete disregard of temporal context in the computation
of phonological errors that we find contrasts with the fact that
vocal imitation in songbirds (and zebra finches in particular) is
clearly sensitive to temporal order. Zebra finches can precisely
imitate entire syllable sequences, whether trained naturally with
live tutors22, 39, artificially with a single song early in
development24, 37, or serially with two songs that are switched in
mid development23, 26. Furthermore, they do so even when pre-
sented with a “pure” combinatorial error (namely, with source
and target songs that are composed of phonologically identical
syllables, but that differ in syllable order), and at late stages of
their sensitive period (up to days 90–120 post hatch26). Conse-
quently, the large syntax errors due to greedy matching of pho-
nology, which we observed in our experimental birds (especially
in tasks 3–4), are not likely to result from a general indifference to

syntax imitation or from an age-related decline in the tendency to
imitate syntax.

We therefore next examined whether birds trained with tasks 3–4
made any attempts to match the target song syntax, despite their
greedy and context-insensitive phonology matching strategy. We
found that most birds adjusted their song syntax towards the target,
by partially correcting sequence errors that arose from greedy pitch
matching, and by incorporating the newly acquired syllable (in task
3) into the appropriate position in the song motif (a task requiring
the acquisition of two new syllable transitions). Overall, across
experimental birds (tasks 1–5), 77% (20/26) made syntax adjust-
ments towards the target, though only 15% (4/26) achieved a full
match of the target syntax (Supplementary Fig. 4). The degree of
final syntax match was not significantly correlated with the age of
switching to target training (R= −0.13; p= 0.58). These results are
consistent with previous findings showing that song syntax learning
is a slow and piecemeal process, in which individual syllable
transitions are acquired one by one, often leading to incomplete
imitation in zebra finches trained serially with two songs26. Because
the syntax “deaf” learning strategy for phonology that we discovered
is on its own insufficient for correct imitation of a syllable sequence,
our findings, taken together, indicate that error computation during
song learning is carried out by two distinct and independent
modules: one for acquiring the target syllable vocabulary and
another for learning the target syntax.

Discussion
We find that young zebra finches use a remarkably simple
strategy to learn complex vocal sequences: they greedily match
their syllable vocabulary to the target vocabulary, and initially
ignore ensuing problems of temporal ordering, which are later
resolved via an independent, slower process. A similar division of
a complex learning task across distinct modules, sometimes with
different time scales, was demonstrated in human sensorimotor
learning40, 41, and decision making42, 43. It is also akin to artificial
learning algorithms in which texts are divided into separate bag-
of-words (vocabulary) and n-gram (syntax) models44. Thus, zebra
finches break down the computationally difficult task of exploring
the entire space of possible motor permutations, into two simpler
tasks, yielding a search for solutions that is non-optimal45–47, but
manageable.

Though zebra finches do not possess a globally optimal song
learning strategy, our findings show that their strategy for
learning a syllable vocabulary is very efficient, and even close to
optimal. The complex developmental trajectories of song syllables
which we observed could be accounted for by two computational
“rules”: (1) greedy (context-independent) matching of the pho-
nological structure of target syllables; and (2) competition among
syllables and targets over syllable-target associations. This process
can be accurately described as a “musical chairs” game, beginning
with a group of players (motor syllables) and a row of empty
chairs (sensory targets), and ending with each chair being occu-
pied by one player. Computationally, zebra finches’ strategy for
learning a syllable vocabulary amounts to solving a linear
assignment problem48 (Supplementary Notes), a fundamental
optimization problem consisting of minimizing the cost of
assigning a group of agents to perform a group of tasks (for
example, assigning taxi cabs to passengers so as to minimize
overall pick-up time). Interestingly, the same strategy is employed
in the currently most successful method for automatic evaluation
of document similarity, known as word mover’s distance49, 50

(Supplementary Notes).
Engineers use efficient methods to solve linear assignment

problems51. However, it is not known how such problems are
solved by biological systems, in which agent-task assignments
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must be estimated from noisy input, such as the variable song
performances of juvenile songbirds and their tutors. Therefore,
we find that zebra finches’ explorative and greedy strategy is
more closely paralleled by machine learning algorithms such as
the expectation maximization (EM) algorithm52, in which
models are gradually matched to observed data in an iterative
process. If we view each rendition of a target syllable as an
observable data point and each of the birds’ own syllables as a
Gaussian model with unknown (hidden) parameters, then birds’
greedy-competitive strategy of maximizing the overlap between
model and data can be approximated by the EM algorithm for
Gaussian mixture models (Supplementary Notes, Supplementary
Fig. 5).

What sort of neural architecture could implement the greedy-
competitive algorithm employed by zebra finches? Answering this
question can help to restrict the space of possible neural models
for sensorimotor vocal learning. In most models, the brain is
assumed to compute a global error by aligning the motor output
with the entire target sequence and performing temporal sum-
mation over the partial errors21, 53–55. Our findings require the
modification of such models and more generally, of models
assuming simple one-to-one links between neural representations
of motor gestures and sensory targets. The “musical chairs” style
competition we observed suggests a more complex dynamic
network, where syllable-target associations are shaped according
to linear assignment constraints, such as for example Hopfield
and Tank’s constraint-satisfying attractor network56. Our results
are consistent with models in which song features are reinforced
when they are sufficiently close to any target syllable57, and where
spectral learning and sequence learning are carried out inde-
pendently by two separate modules58–60.

What are the smallest units at which spectral learning is
independent of temporal context? We find a phonologically
greedy and context-independent target matching strategy at the
time scale of syllable vocabulary, but what happens at time scales
within individual syllables? Does context independence continue
all the way to the level of the smallest controllable song segments
(5–10 ms)61, or does it break down at a certain point along the
song hierarchy? The answer depends on which are the smallest
units within the song that a bird is able to rearrange. Namely,
units that cannot be “moved around” with respect to each other
must be learned in the appropriate context, since in such a case,
sequence errors resulting from greedy learning could not be
corrected. Given the laborious and time-consuming nature of
sequence rearrangements26, learning individual vocal gestures in
a context-independent manner would be a highly inefficient
strategy, as it would require a large number of positional rear-
rangements. In addition, resolving competitive conflicts between
spectrally similar targets at such small time scales might be dif-
ficult, because many more conflicts would need to be considered,
thus substantially increasing the number of computations to be
performed. A more reasonable strategy would be to switch from
context “deaf” to context-dependent learning at small time scales.
Previous evidence of in-situ differentiation of sub-syllabic ele-
ments during zebra finch development24 suggests that the tran-
sition point from phonologically greedy to context-dependent
target matching may be the song syllable. This would imply that
zebra finches could not rearrange the positions of sub-syllabic
elements within their song. However, large (50–100 ms long) sub-
syllabic notes have been shown to constitute behavioral breaking
points62, and are thought to be carried out by distinct neural
activation chains in the premotor song nucleus HVC63. Therefore
an alternative hypothesis is that such sub-syllabic notes are
rearrange-able, and that their spectral structure is learned in a
phonologically greedy manner. These hypotheses could be tested
in the future with appropriate serial tutoring tasks.

Our serial tutoring paradigm is confined to mid and late stages
of song development, at which the early phenomenon of dupli-
cation and differentiation of syllable prototypes to match multiple
targets22, 24, 25, 29, 30 is no longer observed. In our experiments,
when a syllable was offered two spectrally similar targets (tasks 3
and 5), only one of those targets was selected—the syllable never
“split”25 to match both. We therefore do not have direct evidence
as to what target assignment algorithm may govern the dupli-
cation and differentiation of early proto-syllables, and even on
whether proto-syllable splitting is related to target assignments at
all or occurs prior to targets being assigned. We cannot rule out
the possibility that the “musical chairs” constraints we discovered
might not (or not fully) apply to early song development. If our
model applies to earlier stages of song development, this would
mean that duplicated proto-syllables differentiate towards targets
chosen by a phonologically greedy and competitive algorithm. In
such a case, adjacent renditions of a proto-syllable, would not
necessarily differentiate towards temporally adjacent syllables in
the target song, but would instead differentiate towards targets
according to spectral similarity. Since the spectral structure of
early proto-syllables varies considerably across renditions23, 29, 37,
an interesting possibility is that target assignments may be initi-
ally determined by random spectral variation among proto-
syllable renditions, and later reinforced by competitive musical-
chairs-like constraints.

A previous study reported variable learning strategies in young
zebra finches, including a “motif-learning” strategy22, where syl-
lables in mature zebra finch song develop from very early pre-
cursors already arranged in the correct sequential order. This
suggests that zebra finches are capable of employing a global
alignment target matching strategy (Fig. 1c, left) at early stages of
their development. Another study of early development observed
rare cases of motif learning25, and showed that they originated
from an earlier stage of duplication and differentiation of a single
proto-syllable precursor, which is consistent with a non-global
phonologically greedy strategy (since phonologically greedy target
matching could lead to correct sequence matching by chance in
rare cases). The challenge in resolving the question of target
assignment strategies during early development, and in particular
of testing the predictions of our model for early syllable pre-
cursors, lies in being able to identify specific assignments between
variable proto-syllable renditions and their targets as early as
possible. A recent step towards achieving this goal25 was
recording the activity of neurons in the premotor song nucleus
HVC during singing in young zebra finches, allowing tracking of
the process by which a single proto-syllable splits into two or
more neurally distinct syllable precursors. Interestingly, HVC
premotor neurons have been shown to exhibit precise auditory
responses to the target song in young songbirds32, 64, possibly
providing an instructive signal for song development32. There-
fore, combining recordings from HVC during singing in juveniles
with recordings of auditory responses to the target song in the
same neurons may, in the future, allow tracking the process by
which targets are assigned to early syllable prototypes.

We speculate that zebra finches’ modular vocal learning
strategy is an evolutionary compromise between the need to
efficiently use motor plasticity resources, and the computational
burden of searching through a large space of possible solutions
for the most efficient one. We do not know whether the same
strategy is employed by other species of vocal learners, or in non-
vocal learning processes, but in principle, such trade-off problems
are inherent to any case of learning complex motor sequences
(e.g., ref. 65), and therefore may pose a common constraint
shaping the evolution of motor learning mechanisms. A struc-
turally greedy workaround, such as we observe in zebra finches,
may be particularly useful for the learning of complex behaviors
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in which combinatorial flexibility is essential. For example, many
vocal learners (including songbird species such as nightingales
and starlings) have much greater degrees of vocal combinatorial
complexity than zebra finches. In particular, combinatorial
diversity is a crucial characteristic of human languages, all of
which consist of very large word vocabularies, from which an
infinite number of higher order sequences can be generated.
Thus, human infants’ learning targets are the variable utterances
of adults, in which basic speech sounds appear in diverse
sequential contexts. Even ignoring the semantic and grammatical
aspects of language, the task that human infants face of learning
such highly diverse vocal repertoires from scratch seems extre-
mely challenging. A sequence-independent and phonologically
greedy vocal learning module may enable infants to extract a
small set of basic learning targets (phonemes or syllables) from
the highly variable input of adult tutors, and thus facilitate the
acquisition of the speech sound vocabulary of their language,
presumably occurring at the vocal babbling stage of infant
development66.

Methods
Experimental design. Animal care and experimental procedures were conducted
in accordance with the guidelines of the US National Institutes of Health and have
been reviewed and approved by the Institutional Animal Care and Use Committee
of Hunter College.

Male zebra finches were bred at Hunter College, and reared in the absence of
adult males between days 7–30 post hatch. Afterwards, birds were kept singly in
sound attenuation chambers, and continuously recorded. From day 33–39 until day
43 birds were passively exposed to 20 playbacks per day of the source song,
occurring at random with a probability of 0.005 per second. On day 43, each bird
was trained to press a key to hear song playbacks, with a daily quota of 20. Once
birds learned the source song, we switched to playbacks of the target song. Learning
of the source was assessed by quantifying the percent of similarity (Sound Analysis
Pro38, 67) between the bird’s song motifs and the source model motif in 10
randomly chosen song bouts per day. We considered the source song as being
learned when the similarity to the model was at least 70%. Since the sensitive
period for song learning in zebra finches ends around day 90–100 post hatch, we
had to select for relatively fast learners of the source song. Therefore, in tasks 1–3
and 5, we used only birds that learned the source before day 68 (mean switch day
62.0± 0.8; n= 20, 39% of the total birds trained with the source). Because the
source song models in task 4 were more complex than in the other tasks, we
extended the switch threshold to day 84 for this task (mean switch day 72.0 ± 2.5;
n= 7; 12% of total birds trained with the source). Recording and training were
done using Sound Analysis Pro38, 67, and continued until birds reached adulthood
(day 99–158 post hatch). At these ages, males are sexually mature, and perform a
crystalized song motif, which remains unchanged for the remainder of their lives33.

Source and target song models were synthetically composed of natural syllables.
Each model included either one or two harmonic syllables, which we used to
generate pitch mismatches between source and target syllables (GOLDWAVE v.
5.68, www.goldwave.com). Each playback of a model included two motif
renditions. To control for model-specific effects, we varied baseline pitch, and pitch
shift size and direction across experimental birds. Supplementary Tables 1–5
contain a description of the training models used for each experimental bird.
Sound files of the models are in Supplementary Audio 1 and 5–10.

Data analysis. Song feature calculation and cluster analysis were performed using
Sound Analysis Pro38, 67, on randomly selected 10% of the sound files in each
developmental day. The rest of the analysis was performed using Matlab (Math-
works Inc.). Cluster information was used to elucidate the order of syllable types
sung, and to track changes in spectral structure of syllable types, in particular
shifted pitch. To distinguish between spectrally close syllable types (e.g., syllables B
and B+1 in task 4, see main text), which were sometimes lumped into a single
cluster, clustering was refined by visual inspection of Wiener entropy stack plots of
song motifs aligned on renditions of those syllable types, and sorted according to
preceding or following context.

The percent of clustered syllables in bouts (assessed by manual inspection of a
sample of 10 song bouts per bird in 10 randomly selected experimental birds) was
95.7± 1.2% at start point (day on which the training was switched from source to
target), and 96.7± 1.0% during the transition from source to target. To test for
possible biases of our clustering method, all song syllables of 8 of the birds were
also clustered using a nearest neighbor classifier trained on visually clustered 70 ms
log-power sound spectrograms segments, yielding similar results.

For pitch calculation in every millisecond of sound we used the YIN
algorithm68, implemented in Sound Analysis Pro38, 67. To track developmental
pitch shifts in syllable and call types, we used the median pitch in each syllable or

call rendition. Initial noisy segments characteristic of distance calls69 were not
included in the median calculation. The fraction of pitch error corrected in a
syllable type on a given day (or data bin) was estimated from the median across all
renditions on that day.

Song bouts were defined as sequences of identified syllable types with inter-
syllable stop durations of less than a maximum duration that was determined by
the typical stop duration in the endpoint song (150–200 ms). To quantify syntax
error correction with respect to a pitch shifted syllable type, we tracked the identity
of the preceding (converging) and following (diverging) syllable in each song bout,
and calculated the fraction of renditions belonging to the target syntax on a given
day (or data bin). For example, in Task 1 (ABC→AC+B, see Results section),
syllable A is the converging target syntax with respect to syllable C/C+, and syllable
B is the diverging target syntax. The overall fraction of syntax error correction was
the mean of the fraction of converging and diverging syntax error correction. For
comparison of syntax error correction with data from a previous study26, in which
birds were trained with the purely combinatorial task ABC→ACB, we calculated
the sum of the fractions of performing the three target bigrams (AC, CB, and BA).

Code availability. All MATLAB codes used for analysis are available from the
authors upon request.

Data availability. All relevant data are available from the authors upon request.
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