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Subunit-dependent oxidative stress sensitivity of LRRC8
volume-regulated anion channels
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Key points

� Swelling-activated anion currents are modulated by oxidative conditions, but it is unknown if
oxidation acts directly on the LRRC8 channel-forming proteins or on regulatory factors.

� We found that LRRC8A–LRRC8E heteromeric channels are dramatically activated by oxidation
of intracellular cysteines, whereas LRRC8A–LRRC8C and LRRC8A–LRRC8D heteromers are
inhibited by oxidation.

� Volume-regulated anion currents in Jurkat T lymphocytes were inhibited by oxidation, in
agreement with a low expression of the LRRC8E subunit in these cells.

� Our results show that LRRC8 channel proteins are directly modulated by oxidation in a
subunit-specific manner.

Abstract The volume-regulated anion channel (VRAC) is formed by heteromers of LRRC8
proteins containing the essential LRRC8A subunit and at least one among the LRRC8B–E sub-
units. Reactive oxygen species (ROS) play physiological and pathophysiological roles and VRAC
channels are highly ROS sensitive. However, it is unclear if ROS act directly on the channels or
on molecules involved in the activation pathway. We used fluorescently tagged LRRC8 proteins
that yield large constitutive currents to test direct effects of oxidation. We found that 8A/8E
heteromers are dramatically potentiated (more than 10-fold) by oxidation of intracellular cysteine
residues by chloramine-T or tert-butyl hydroperoxide. Oxidation was, however, not necessary
for hypotonicity-induced activation. In contrast, 8A/8C and 8A/8D heteromers were strongly
inhibited by oxidation. Endogenous VRAC currents in Jurkat T lymphocytes were similarly
inhibited by oxidation, in agreement with the finding that LRRC8C and LRRC8D subunits were
more abundantly expressed than LRRC8E in Jurkat cells. Our results show that LRRC8 channels
are directly modulated by oxidation in a subunit-dependent manner.

(Received 18 June 2017; accepted after revision 16 August 2017; first published online 25 August 2017)
Corresponding author M. Pusch: Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, I-16149
Genova, Italy. Email: michael.pusch@ge.ibf.cnr.it

Abbreviations CBX, carbenoxolone; chl-T, chloramine T; DTT, dithiothreitol; LRRC8, leucine rich repeat-containing
protein 8; MMTS, S-methyl methanethiosulfonate; MTS, methanethiosulfonate; MTSES, 2-sulfonatoethyl
methanethiosulfonate; MTSET, 2-(trimethylammonium)ethyl methanethiosulfonate; ROS, reactive oxygen species;
TBHP, tert-butyl hydroperoxide; VRAC, volume-regulated anion channel.

Introduction

Cell volume regulation is an essential function for virtually
all cells. In mammals volume regulation is physiologically
important for proliferation, migration, signalling and
apoptosis (Nilius et al. 1997; Schwab et al. 2012). The
ubiquitously expressed volume-regulated anion channel

(VRAC) mediates swelling-activated Cl− currents in
practically all cell types studied (Nilius et al. 1997).
Activation of VRAC underlies the process of regulatory
volume decrease, mediated by an efflux of KCl from the
cells followed by water efflux. In addition to chloride,
VRAC is also permeable to small organic molecules
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including taurine and excitatory amino acids, and even
ATP (Okada et al. 2009; Gaitán-Peñas et al. 2016; Jentsch,
2016; Lutter et al. 2017). VRAC is also linked to the cell
cycle and to proliferation. Cell shrinkage due to VRAC
activation is essential for apoptosis, in a process called
apoptotic volume decrease.

Until recently the gene(s) encoding VRAC were
unknown, such that the physiological roles of VRAC could
not be studied using molecular techniques. Only in 2014
two studies showed that the leucine rich repeat-containing
protein 8A (LRRC8A) is an essential component of VRAC
(Qiu et al. 2014; Voss et al. 2014), and four closely
related homologues (LRRC8B to -E) are complementary
VRAC subunits (Voss et al. 2014). VRAC channels are
heteromers composed of at least one LRRC8A subunit
and one member of the LRRC8B–E group (Voss et al.
2014; Gaitán-Peñas et al. 2016). LRRC8 proteins consist of
�800 amino acids with a molecular mass of �95 kD. They
are characterized by four transmembrane segments and
contain up to 17 leucine-rich repeats (LRRs) in their cyto-
plasmic C-terminus (Abascal & Zardoya, 2012). LRRs are
found in different proteins and are thought to participate
in protein–protein interactions.

It is well established that VRAC activity is dependent
on reactive oxygen species (ROS) (Browe & Baumgarten,
2004; Shimizu et al. 2004; Varela et al. 2004). In general
VRAC activation is associated with an increase in ROS.
ROS are implicated in a large variety of physiological and
pathophysiological situations in all tissues. In tumours
ROS are believed to be involved in proliferation of cancer
cells. However, the role of ROS in cancer is not yet
fully understood. For example, antioxidants can increase
melanoma metastasis in mice (Le Gal et al. 2015) and
distant metastasis induced in mice by human melanoma
cells showed increased ROS (Piskounova et al. 2015).
In addition to a pathological role in cancer, excessive
ROS levels have been associated with ageing, but the
evidence for this is still ambiguous (Lopez-Otin et al.
2013). Physiologically, ROS signalling plays an important
role in the immune system (Muralidharan & Mandrekar,
2013). For example, neutrophils can eliminate pathogens
by production of superoxide and other free oxygen radicals
in phagosomes (DeCoursey, 2003).

Interestingly, T lymphocytes were among the first
cells in which VRAC currents have been identified
(Cahalan & Lewis, 1988; Lewis et al. 1993). Furthermore,
Lrrc8a knockout mice exhibit defective development and
function of T cells and increased thymocyte apoptosis
(Kumar et al. 2014), suggesting an important role of VRAC
for lymphocytes. However, the hypomorphic ébouriffé
(ebo) mouse line that lacks the terminal 15 leucine-rich
repeats in the LRRC8A subunit had no defect in T
cell development or function (Platt et al. 2017). Also
neutrophils from ebo mice retained phagocytic activity
and had normal-sized vacuoles (Behe et al. 2017).

Given the broad physiological and pathophysiological
relevance of the ROS sensitivity of VRAC it is important
to decipher the molecular mechanisms underlying this
regulation. However, a principal problem in studying
the mechanisms of ROS sensitivity of VRAC channels
is that it is difficult to distinguish direct effects of
oxidizing conditions on the channel protein from indirect
effects on other cellular components involved in the
activation machineries. Here, we took advantage of our
recent discovery that LRRC8 proteins can be conveniently
expressed in Xenopus oocytes and that the addition of
fluorescent proteins to their C-terminus leads to the
expression of large constitutive currents (Gaitán-Peñas
et al. 2016) to study the dependence of LRRC8 heteromers
on oxidizing and reducing conditions.

We found that LRRC8 heteromeric channels are
strongly regulated by oxidation. Surprisingly, LRRC8A/8E
heteromers are dramatically potentiated by oxidation,
whereas LRRC8A/8C and LRRC8A/8D heteromers are
blocked. In the Jurkat T lymphocyte cell line, VRAC
currents are inhibited by oxidation, in agreement with
the hypothesis that currents are mostly carried by
non-inactivating LRRC8A/8C channels, as also confirmed
by RT-PCR which highlights a conspicuous expression of
the LRRC8C gene.

Methods

Animals and ethical approval

Oocytes were obtained from Xenopus laevis frogs
purchased from Harlan Laboratories (Udine, Italy) or
directly purchased from Ecocyte Bioscience (Castrop-
Rauxel, Germany). Oocytes were harvested from
frogs that had been anaesthetized by tricaine (ethyl
3-aminobenzoate methanesulfonate salt, Sigma-Aldrich,
Milan, Italy). After surgery, frogs were allowed to recover
from anaesthesia and suitable aftercare was given. All
animal protocols conformed to the European Community
Guidelines on Animal Care and Experimentation and
were approved by the Ethics Committee for Animal
Experimentation of the Biophysics Institute.

Molecular biology and oocyte expression

All constructs used for heterologous expression have been
described in detail (Gaitán-Peñas et al. 2016). Briefly, we
used human LRRC8A–E cloned in the pCSDest vector.
We used WT constructs as well as constructs in which
Venus fluorescent protein (VFP) or mCherry was fused to
the C-terminus. For expression in Xenopus oocytes, after
linearization by NotI of the plasmids, cRNA of human
LRRC8 proteins was transcribed using the mMessage
mMachine SP6 kit (Thermo Fischer, Waltham, USA).
Oocytes were defolliculated by a 1 h treatment with
collagenase type I A (Sigma-Aldrich). Fifty nanolitres
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cRNA, containing normally 12 ng of each subunit, was
injected with a microinjector (Drummond, Broomall,
USA, Nanoject II). Oocytes were incubated at 18°C in
a solution containing (in mM): 90 NaCl, 2 KCl, 1 MgCl2,
1 CaCl2, 10 HEPES (pH 7.5).

Electrophysiology (voltage clamp)

One to three days after injection, voltage clamp
measurements were performed using the custom
acquisition program GePulse (available at http://users.
ge.ibf.cnr.it/pusch/programs-mik.htm) and a Turbo-Tec-
05X amplifier (npi electronics, Tamm, Germany). The
standard extracellular solution contained (in mM): 100
NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2 and 10 HEPES (pH 7.3,
osmolarity: 215 mosmol l−1). Hypotonic solution
contained (in mM): 48 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2
and 10 HEPES (pH 7.3, osmolarity: 120 mosmol l−1).
Oxidizing and reducing reagents were freshly added at
the desired concentration of 0.1–2 mM (chloramine-T),
0.25–1 mM (tert-butyl hydroperoxide (TBHP)) and
1 mM (S-methyl methanethiosulfonate (MMTS),
2-sulfonatoethyl methanethiosulfonate (MTSES),
2-(trimethylammonium)ethyl methanethiosulfonate
(MTSET)) or 10 mM (dithiothreitol (DTT)). For MTSES
and MTSET 100 mM stock solutions in distilled water
were prepared and kept on ice for not longer than
2 h. Solutions were applied by continuous perfusion
(solution exchange time <10 s). Carbenoxolone (CBX)
was dissolved in the recording solution at 100 μM.

The voltage and time dependence of currents were
assayed with a voltage-clamp pulse protocol consisting
of a prepulse to −100 mV for 200 ms, followed by voltages
ranging from −100 to 60 mV with 20 mV increments for
3000 ms. Pulses ended with a tail to −70 mV for 500 ms.
Holding potential was −30 mV.

To assay the effects of oxidizing and reducing agents,
a 200 ms pulse to 60 mV was applied every 5 s and
currents were averaged over the pulse period and plotted
as a function of time. In all figures, capacitive transients
were blanked for clarity. For currents larger than �10 μA,
series resistance was measured and compensated offline
as follows. In current clamp a current pulse of 2 μA
size was delivered and the initial fast rise in potential,
�V, was attributed to the voltage-drop across the series
resistance, Rs =�V/2 μA. For the voltage clamp protocols,
the effective command voltage, Veff, was then adjusted
offline according to the calculated series resistance error
by Veff = Vcommand – I × Rs, where I is the measured
current. The current response at 60 mV was then corrected
assuming a linear current–voltage relationship and the
measured reversal potential.

All chemicals were purchased from Sigma-Aldrich
except MTSES and MTSET, which were from Biotium
(Fremont, California, USA).

Electrophysiology of Jurkat cells

Jurkat cells were kept in RPMI-1640 medium
(Sigma-Aldrich) and were split every 3–4 days. For
patch-clamp electrophysiology, a few microlitres of cells
were transferred to a recording dish containing the
recording extracellular solution. To activate VRAC with
a hypertonic intracellular solution, patch pipettes of
2–4 M� resistance were filled with a solution containing
(in mM) 160 caesium glutamate, 0.1 CaCl2, 2 MgCl2,
1.1 EGTA, 4 Na2ATP, 10 HEPES, 50 sucrose (pH 7.2,
�394 mosmol l−1) as described in Lepple-Wienhues
et al. (1998) and the extracellular solution contained
145 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 10
glucose (pH 7.4, �315 mosmol l−1). For activation
of VRAC by extracellular hypotonicity, patch pipettes
were filled with a solution containing (in mM) 160
caesium glutamate, 0.1 CaCl2, 2 MgCl2, 1.1 EGTA, 4
Na2ATP, 10 HEPES (pH 7.2, �330 mosmol l−1) and
the extracellular solution contained (mM): 100 NaCl,
5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 10 glucose,
90 mannitol (pH 7.4, �315 mosmol l−1). Cells were
activated by a hypotonic solution lacking mannitol
(�212 mosmol l−1). Chloramine-T (500 μM) was freshly
added to the respective extracellular solutions. Activation
was monitored by application of steps of 50 ms pulses to
−100, −50, 0, 50 and 100 mV every 5 s from a holding
potential of −50 mV (see Fig. 9). These steps allowed
to verify the absence of a significant leak conductance
because the expected reversal potential is �−50 mV and
VRAC currents are strongly outwardly rectifying under
the ionic conditions used (Lepple-Wienhues et al. 1998).

Statistical analyses

All data are reported as mean values ± standard error of
the mean. Statistical significance was determined using
Student’s paired t test or one-sample t test, or ANOVA,
as appropriate (Igor Pro, Wavemetrics, Lake Oswego,
OR, USA). When a statistically significant difference was
determined with ANOVA, a post hoc Tukey’s test was
used to evaluate which data groups showed significant
differences. P-values < 0.05 were considered significant.

Real time qPCR

Jurkat cells (1.5 × 106) grown in suspension were collected
by centrifugation and washed in phosphate-buffered saline
(PBS). Total RNA was extracted using the Aurum Total
RNA Mini Kit (Bio-Rad, Hercules, CA, USA) according
to manufacturer’s instructions. RNA concentration and
purity were determined by measuring absorbance at
260 and 280 nm with a spectrophotometer. Two micro-
grams of total RNA were retrotranscribed to cDNA with
RNAse H+ MMLV reverse transcriptase, including both
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Table 1. Primers used in real-time qPCR

Gene Amplicon length (bp) Forward Reverse

LRRC8A 109 ACAACAACCTGACCTTCCTC GCACTGGAAGAGCTCCG
LRRC8B 143 TCTTTCGGGCTGTGTTCTCC GCAATGAAGGCAGGAGGTCT
LRRC8C 142 AGCAGTTGCCAGTACCACTC GAGGGCTCGCTCATAACACA
LRRC8D 136 CCCGATGCTGTCTTTGACCT CAACTTTTGCAGGGCAGTGG
LRRC8E 146 ATCCCCCATGCAGTGTTCAG ACGTAGGCGATCTGGTTGTG
ACTB 139 CTGGAACGGTGAAGGTGACA AAGGGACTTCCTGTAACAAT

oligo(dT) and random primers in a 20 μl reaction (iScript
Advanced cDNA Synthesis Kit for RT-qPCR, Bio-Rad). To
determine the expression of LRRC8A–E subunits, cDNA
was amplified in quantitative real-time PCR reaction
using Sybr Green dye (SsoAdvanced Universal SYBR
Green Supermix, Bio-Rad) and the Bio-Rad CFX Connect
Instrument. The reaction conditions consisted of a poly-
merase activation/DNA denaturation step (3 min at 95°C),
followed by 39 two-step cycles, each composed of a 10 s
denaturation step at 95°C and a 40 s annealing/elongation
step at 57°C. Actin (ACTB) was used as an inter-
nal control. No template control (NTC), no primer
control (NPC), no reverse transcription control (NAC),
consisting of a reaction without reverse transcriptase, were
included in the qPCR reactions to exclude genomic DNA
contamination and the presence of primer dimers. In order
to check reaction specificity, a melting curve was generated
after the amplification step. The sequences of the primers
specific for LRRC8A–E subunits are listed in Table 1.
In order to estimate PCR efficiency (E), standard curves
were created for each LRRC8 subunit, using as template
the plasmids containing the cDNAs of LRRC8 subunits
(8A/8E). The concentration of each plasmid was initially
determined with a spectrophotometer and then qPCR
was performed on 1:10 serial dilutions of the templates,
covering a range between 107 and 102 molecules. The plots
of Cq (threshold cycle) versus the logarithm of the number
of starting molecules were constructed for each target and
fit with a straight line. The efficiency (E) of the reaction
was estimated assuming an efficiency of 100% for a 1:10
serial dilution in case of a negative slope of log10(0.5) �
−3.3.

Results

Activation of LRRC8A–VFP/8E–mCherry channels
by oxidation

Recently we established Xenopus oocytes as an efficient
system to study functional properties of VRAC channels
formed by LRRC8 proteins (Gaitán-Peñas et al. 2016).
Here, we used this system to investigate effects of oxidizing
and reducing agents. In particular, we exploited the finding

that the addition of fluorescent tags to the C-terminus
of LRRC8 subunits induces large currents even in the
absence of hypotonic stimulation (Gaitán-Peñas et al.
2016). We started with the LRRC8A–VFP/8E–mCherry
subunit combination (for short 8A-VFP/8E-mCh), which
yielded the largest currents (Gaitán-Peñas et al. 2016). Bath
application of 1 mM of the oxidizing agent chloramine-T
in isotonic conditions induced a dramatic current increase
of 10- to 15-fold of 8A-VFP/8E-mCh-mediated currents
recorded at a test potential of 60 mV from a holding
potential of −30 mV (Fig. 1A and F). Currents were
almost completely blocked upon application of the
VRAC inhibitor CBX (100 μM; Fig. 1A). The current
increase started after a delay of 20–30 s suggesting that
chloramine-T had to enter the oocyte in order to exert its
effect, as confirmed by more detailed studies (see below).
The effect of the oxidizing reagent was not reversible upon
washout of chloramine-T and only partially reversible
upon application of the reducing agent DTT at 10 mM (less
than 50% recovery, data not shown). The chloramine-T
effect was dose-dependent: 0.1 mM was ineffective, while
2 mM did not result in higher currents compared to 1 mM

(Fig. 1B and F).
Also application of the highly membrane-permeant

oxidizing agent tert-butyl hydroperoxide (TBHP,
1 mM) led to a dramatic increase of 8A-VFP/
8E-mCh-mediated currents in isotonic solution (Fig. 1C
and F). Again, the onset of the current increase occurred
after a significant delay following the application of TBHP
suggesting an intracellular action of the oxidizing reagent.
The minimal concentration at which we observed an effect
was 0.5 mM, while 0.25 mM TBHP was almost ineffective
within 5 min (Fig. 1D). The effect of TBHP developed at
least 3 times more slowly than chloramine-T, preventing a
proper quantification of the effect at lower concentrations.
In contrast to chloramine-T, the TBHP effect was almost
fully reversible upon application of 10 mM DTT (data not
shown). However, as DTT is membrane permeant, this
result does not provide information on the location of the
residue(s) implicated in the activating oxidation reaction.

Applying 10 mM DTT without prior activation by
oxidation had no effect on 8A-VFP/8E-mCh (Fig. 1E and
F), suggesting that the constitutive currents exhibited by
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these channels are not caused by an intrinsic oxidation
process that can be reversed by DTT.

Importantly, application of chloramine-T or TBHP at
1 mM to uninjected oocyte did not induce significant
currents within 5−10 min (Fig. 2). This finding, together
with the observed block by CBX of the oxidation-induced
currents in 8A-VFP/8E-mCh-expressing oocytes, strongly
suggests that the oxidation-induced currents are
mediated by the exogenously expressed 8A-VFP/8E-mCh
heteromeric channels.

Interdependence of hypotonic stimulation and
oxidation effects on LRRC8A–VFP/8E–mCherry
channels

We asked if the activation of 8A-VFP/8E-mCh channels
by oxidation mimics the ‘regular’ stimulation by

hypo-osmotic conditions. To avoid series-resistance
problems, for these experiments, we used oocytes
with a small initial current. As seen in Fig. 3A
application of chloramine-T after hypotonic activation of
8A-VFP/8E-mCh led to a large increase of the currents,
suggesting that the two activating signals are additive.
We next tested if the oxidation/reduction effects are
artificially introduced by the C-terminal tags or if the
same mechanisms are present in WT, i.e. untagged
constructs. In isotonic conditions 8A/8E exhibited
currents that were difficult to distinguish from back-
ground (Gaitán-Peñas et al. 2016; Fig. 3B). Nevertheless,
addition of chloramine-T to 8A/8E-expressing oocytes
activated a small but significant current with typical time
and voltage dependence of 8A/8E channels (Fig. 3B and
D), probably reflecting a minimal constitutive activity of
8A/8E without hypotonic stimulation. In this respect,
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Figure 1. Activation of 8A-VFP/8E-mCh
by oxidation
A–E, typical experiments illustrating the
effect of application of chloramine-T (A and
B), TBHP (C and D) or DTT to oocytes
co-expressing 8A-VFP and 8E-mCh. The
concentration is indicated in the figure. Time
course of current recorded with a test pulse
at +60 mV from a holding potential of
−30 mV. Arrowhead indicates time of
application of 100 µM CBX blocker. The
inset shows the typical VRAC currents in
response to an I–V protocol stimulation from
−100 to +60 mV every 40 mV. Horizontal
scale bars, 1 s; vertical scale bars, 1 µA (A, C
and E), 2 µA (B) and 0.5 µA (D). F, average
current response to the indicated stimuli,
normalized to the initial current. Dashed line
indicates basal current level (one-sample t
test with respect to control value 1, 0.1 mM

chloramine-T (chl-T), P = 0.19, n = 4;
0.5 mM chl-T, P = 0.048∗, n = 4; 1 mM chl-T,
P = 0.00001∗∗, n = 10; 1 mM TBHP,
P = 0.00016∗∗, n = 7; 10 mM DTT,
P = 0.14, n = 3; error bars indicate SEM).
Please note the different time and current
scales in the various panels. [Colour figure
can be viewed at wileyonlinelibrary.com]
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it is important to recall that we did not observe a
chloramine-T effect (at 1 mM) on uninjected oocytes
(Fig. 2). Hypotonicity significantly activated 8A/8E
channels (Gaitán-Peñas et al. 2016; Fig. 3C). Importantly,
applying chloramine-T (in a hypotonic solution) after the
hypotonic activation led to a dramatic current increase
(Fig. 3C and D) similar to that seen in 8A-VFP/8E-mCh
(Fig. 1A and F).

Inhibition of LRRC8A–VFP/8C–mCherry and
LRRC8A–VFP/8D–mCherry channels by oxidation

We next tested the oxidizing and reducing agents on
8A-VFP/8C-mCh and on 8A-VFP/8D-mCh heteromeric
channels. Surprisingly, the constitutive currents of both
combinations were inhibited by chloramine-T (Figs 4A
and D, and 5A and D). In contrast TBHP had no significant
effect on 8A-VFP/8C-mCh- (Fig. 4B and D) and on
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shows traces before hypotonic activation. B
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various panels. [Colour figure can be viewed
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8A-VFP/8D-mCh- (Fig. 5B and D) mediated currents.
Currents of both subunit combinations were significantly
increased by DTT (Figs 4C and 5C) with an average
increase of �2.5-fold for 8A-VFP/8C-mCh (Fig. 4D)
and �2-fold for 8A-VFP/8D-mCh (Fig. 5D), suggesting
that these channel subunits are slightly depressed by a
constitutive baseline oxidation.

The inhibition of 8A-VFP/8C-mCh and 8A-VFP/
8D-mCh channels by chloramine-T was pronounced even
on hypotonically activated currents of these constructs
(Fig. 6). Chloramine-T had no effect on basal currents
in oocytes expressing WT 8A/8C or 8A/8D channels
(data not shown). However, as seen for the fluorescently
tagged constructs, chloramine-T strongly inhibited and
DTT slightly increased hypotonically activated 8A/8C
and 8A/8D WT channels (Fig. 7). However, due to the
relatively small expression levels of untagged 8A/8C and
8A/8D channels, a quantitative evaluation of the effects
is more difficult compared to the fluorescently tagged
versions.

Expression of 8A/8B or 8A-VFP/8B-mCh subunits did
not give rise to functional expression (Voss et al. 2014;
Gaitán-Peñas et al. 2016). Unfortunately, neither the
application of chloramine-T nor that of DTT on oocytes
co-expressing fluorescently tagged 8A-VFP and 8B-mCh
subunits elicited any currents above background (data not
shown).

Chemical identity and localization of oxidized
residues

An important question is whether the oxidation/reduction
processes regulating LRRC8 channels are taking place
in the intracellular or in the extracellular space. The
delay in the onset of the effect of chloramine-T and
TBHP suggests an intracellular action. To distinguish
between these possibilities, and in addition, to identify the
chemical identity of the residues involved, we employed
various cysteine-modifying reagents. We first used
the membrane-permeant cysteine reactive compound
S-methyl methanethiosulfonate (MMTS). Application of
MMTS to 8A-VFP/8E-mCh channels resulted in an
approximate doubling of currents (Fig. 8A and D). More
importantly, subsequent application of chloramine-T had
practically no effect (Fig. 8A and E). This strongly
suggests that the dramatic activation of 8A-VFP/8E-mCh
by chloramine-T (Fig. 1) is mediated by the oxidation
of cysteine residues, and that their oxidation by
chloramine-T is prevented by prior modification by
MMTS. To test the intracellular vs. extracellular location
of the relevant cysteine residue(s), we applied charged
MTS reagents. Application of the positively charged
MTSET had no effect on 8A-VFP/8E-mCh mediated
currents (Fig. 8B and D). Furthermore, treatment with
MTSET slightly reduced, but did not prevent a strong
activation of 8A-VFP/8E-mCh currents by chloramine-T
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figure can be viewed at
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(Fig. 8B and E), suggesting that the relevant cysteine
residue(s) are not located on the extracellular side. Inter-
estingly, application of the negatively charged MTSES
reagent, while not affecting currents of 8A-VFP/8E-mCh
channels by itself (Fig. 8C and D), markedly reduced the
activation of currents by the subsequent application of
chloramine-T (Fig. 8C) to a 2-fold increase compared to
the more than 10-fold increase without prior treatment
(Fig. 8C and E). This result is compatible with the
hypothesis that MTSES can enter the oocytes through
the pore of 8A-VFP/8E-mCh channels and it is consistent
with the permeability of these channels to relatively

large organic molecules (Planells-Cases et al. 2015;
Gaitán-Peñas et al. 2016; Gradogna et al. 2017; Lutter et al.
2017).

Similar to 8A-VFP/8E-mCh, application of cysteine-
modifying reagents on 8A-VFP/8C-mCh channels had
little direct effects (Fig. 9A). However, application of none
of the cysteine-modifying reagents (MMTS, MTSET or
MTSES) altered in a significant manner the subsequent
effect of chloramine-T-induced reduction of currents
(Fig. 9B). This result suggests that cysteine residues are
not primarily involved in the oxidation-mediated current
reduction of 8A-VFP/8C-mCh channels.
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Effects of cysteine-modifying reagents on 8A-VFP/
8D-mCh were more complex. For 8A-VFP/8D-mCh
application of MMTS, MTSET and to a lesser degree also
MTSES by themselves led to a significant current decrease
with respect to basal level (Fig. 9C). Yet, subsequent
application of chloramine-T induced a further reduction
of currents as without prior cysteine modification
(Fig. 9D). These results suggest an involvement of cysteine
as well as other residues in the redox regulation of
8A-VFP/8D-mCh channels.

Oxidation-induced VRAC current decrease
in the Jurkat T cell line

In order to test if the above-described effects of oxidative
stress on VRAC channels may be of relevance in vivo,
as a proof of principle, we concentrated on cells of the
immune system. Oxidative stress plays an important role
in the immune response in healthy (Belikov et al. 2015)
and in tumour tissue (Chen et al. 2016). In addition,
VRAC had been first identified (Cahalan & Lewis, 1988)
and well studied in T lymphocytes (Nilius et al. 1997).
A distinguishing feature of VRAC in lymphocytes and
in the Jurkat T lymphocyte cell line is the absence of a

significant time-dependent inactivation process at positive
voltages (Lepple-Wienhues et al. 1998), consistent with
the hypothesis that VRAC currents in T lymphocytes are
mostly carried by LRRC8A–LRRC8C heteromers (Voss
et al. 2014; Gaitán-Peñas et al. 2016; Ullrich et al.
2016). Thus, a priori, given our results on heterologously
expressed LRRC8 proteins, oxidation, for example induced
by the application of chloramine-T, is expected to decrease
VRAC currents in T lymphocytes. To test this prediction,
we used two different protocols to activate VRAC in
the Jurkat T lymphocyte cell line. First, we employed
a hypertonic pipette solution (�390 mosmol l−1)
which leads to the activation of VRAC about 1 min
after establishing the whole-cell configuration (Fig. 10A
and B). Currents showed the typical outward rectification
and lack of inactivation as expected (Lepple-Wienhues
et al. 1998; Fig. 10A, inset). Application of chloramine-T
after significant current activation led to an almost
immediate current inhibition in all cells tested
(Fig. 10A and B; average inhibition: 59 ± 6%,
n = 8). Very similar inhibition by chloramine-T was
seen when currents were activated by a hypotonic
extracellular solution (212 mosmol l−1) (Fig. 10C and
D; average inhibition: 57 ± 8%, n = 5). These results
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suggest that VRAC currents in Jurkat cells are not
carried in a significant manner by LRRC8A–LRRC8E
heteromers.

Expression of LRRC8 genes Jurkat cells

We used real time PCR to evaluate the degree of expression
of the various LRRC8 genes in Jurkat cells. Primer pairs
were selected to produce fragments of 109–146 bp for all
LRRC8 genes. Absolute quantification was performed by
generating standard reference curves for all target genes
(LRRC8A–E, see Methods for details) and determining
the performance of the qPCR assay through estimation
of the efficiency, which showed values ranging from
85 to 92%, rather similar for all cDNAs (Fig. 11A).
RT-qPCR performed on retrotranscribed cDNA from
Jurkat cell RNA indicated that transcriptional activity

changes significantly among the different subunits with
LRRC8D being the most expressed, followed by 8C and 8B,
while LRRC8A and 8E were about one order of magnitude
less expressed (Fig. 11B). Thus, in agreement with the
results that oxidation by chloramine-T leads to a current
reduction, the LRRC8E subunit is the least expressed in
Jurkat cells.

Discussion

Oxidative processes play important roles in physiology and
in pathological conditions as for example in cancer and
ageing. Volume-regulated anion channels are ubiquitously
expressed in practically all cell types and their activity
has been linked directly or indirectly to ROS activity
in many different physiological and pathophysiological
contexts. ROS are generated by hypotonic cell swelling
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in various cell types (Lambert, 2003; Crutzen et al.
2012; Holm et al. 2013), and in concert, in several cell
types ROS appear to activate VRAC currents (Shimizu
et al. 2004; Varela et al. 2004, 2007; Wang et al. 2005,
2017a, b; Harrigan et al. 2008; Liu et al. 2009; Deng et al.
2010; Crutzen et al. 2012; Holm et al. 2013; Shen et al.
2014; Xia et al. 2016).

However, a critical open question regarding the role of
ROS in processes involving VRAC is whether oxidation
directly acts on the channel forming proteins (i.e. LRRC8
proteins) or if ROS act on other cellular components
involved in VRAC modulation. This question is extremely
difficult to address in a cellular system because in order

to monitor VRAC function, the channels have first to
be activated, for example by extracellular hypotonicity.
However, the activation mechanism is poorly understood,
but is known to involve factors like protein kinases (Nilius
et al. 1997; Jentsch, 2016; Pedersen et al. 2016). Thus, it
is difficult to determine whether oxidation acts on such
factors or directly on the channel protein. Here we took
advantage of the recent finding that LRRC8 subunits that
are C-terminally tagged with fluorescent proteins give rise
to constitutive currents in Xenopus oocytes (Gaitán-Peñas
et al. 2016). This allowed us to study direct effects of
oxidizing and reducing agents on LRRC8-mediated VRAC
channel activity.
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Surprisingly, we found that channels composed of
different subunit combinations responded in opposite
manners to oxidation. 8A-VFP/8E-mCh channels were
dramatically potentiated by oxidation with chloramine-T
as well as by TBHP, whereas 8A-VFP/8C-mCh and 8A-
VFP/8D-mCh channels were markedly inhibited by
chloramine-T oxidation. Conversely, whereas 8A-VFP/
8E-mCh channels were unaffected by DTT, 8A-VFP/
8C-mCh and 8A-VFP/8D-mCh channels were
significantly augmented by DTT, suggesting a
constitutive oxidative inhibition of these channels.
Somewhat surprisingly, 8A-VFP/8C-mCh channels were
slightly activated by TBHP and 8A-VFP/8D-mCh were
unaffected by TBHP. Thus, either the relevant residues
in 8A-VFP/8C-mCh and 8A-VFP/8D-mCh channels,
whose oxidation by chloramine-T leads to channel
inactivation, are not modified by TBHP or their oxidation
by TBHP is of a different chemical character. Similar
different sensitivity to chloramine-T versus TBHP has also
been observed in two-pore domain potassium channels
(Duprat et al. 2005).

Such a differential effect of chloramine-T and the
differential effect on the various heteromers strongly
suggest that the relevant oxidation reactions directly affect
the channel protein and not other molecules involved
in volume activation. Otherwise, a parallel effect would
have to be expected for all subunit combinations, as
all heteromers are activated by hypotonic stimulation.
However, our experiments do not provide a direct

biochemical proof that the effects are mediated by an
oxidation of the LRRC8 proteins.

A further important conclusion that can be drawn from
our experiments is that oxidation of 8A-VFP/8E-mCh
is not a necessary event for volume stimulation of the
channels, but rather modulates channel open probability
in addition to the activation by a hypotonic stimulation. In
fact, oxidation of 8A-VFP/8E-mCh and also of WT 8A/8E
channels after volume stimulation further enhances the
currents (Fig. 3). This result is also in agreement with
the hypothesis that the direct physico-chemical signal
mediating VRAC activation is low intracellular ionic
strength (Nilius et al. 1998; Syeda et al. 2016).

Several lines of evidence support the conclusion that
the oxidative potentiation of 8A/8E channels involves
intracellularly accessible cysteine residue(s). First, effects
of chloramine-T and TBHP occurred with a significant
delay, suggesting that the compounds had to enter the
oocytes. Secondly, effects were completely blocked by the
membrane permeable cysteine-modifying MMTS reagent,
but not by the positively charged MTSET reagent. Inter-
estingly, the negatively charged MTSES partially inhibited
subsequent activation by chloramine-T. This is consistent
with the hypothesis that MTSES can permeate the channel
and exert its effect from the inside or that cysteine residues
located in the pore could be involved. The permeation of
such a large organic molecule is in agreement with the
permeability of 8A/8E for several amino acids, taurine,
myo-inositol, cisplatin and even ATP (Voss et al. 2014;
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Gaitán-Peñas et al. 2016; Gradogna et al. 2017; Lutter et al.
2017).

In contrast, the oxidation-induced inhibition of 8A/8C
channels is likely not mediated by cysteine residues because
pretreatment with MMTS, MTSES or MTSET did not
prevent subsequent chloramine-T-induced inhibition. It
can be speculated that for example methionine residues
are involved in the inhibition.

The situation is less clear for 8A/8D because MMTS,
while inhibiting the channels by itself, only slightly
impeded subsequent inhibition by chloramine-T. This
suggests the involvement of cysteine as well as non-cysteine
residues in redox regulation of this subunit combination.

The fact that endogenous LRRC8 channels are most
likely heteromers of variable stoichiometry that contain
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Figure 11. Quantification of LRRC8 subunit expression in
Jurkat cells
A, standard curves of LRRC8A–E are shown. Curves were generated
performing qPCR on serial dilutions of the plasmids containing the
respective cDNAs. The lines represent the best linear fit to the
experimental data. Error bars indicate standard deviation. Slope,
y-intercept of the linear fit and calculated efficiency are, respectively:
8A: −3.53, 32.9, 92%; 8B: −3.59, 32.4, 89.9%; 8C: −3.71, 33.4,
85.9%; 8D: −3.78; 33.2, 84.6%; 8E: −3.52, 32.5; 92.5%. B,
expression of LRRC8 subunits reported as number of molecules in
40 ng of RNA, as determined from the calibration curve shown in A.
Data are from two independent experiments and six technical
replicates. [Colour figure can be viewed at wileyonlinelibrary.com]

more than two different LRRC8 subunits (Gaitán-Peñas
et al. 2016; Lutter et al. 2017) renders the redox regulation
of VRAC channels extremely complex. Here, we tested
effects of oxidation on endogenous VRAC currents in
Jurkat T lymphocytes. In general, ROS play an extremely
important role in the immune system both for direct
killing activity, for example by phagocytic leukocytes, and
as second messengers for T cell activation (Belikov et al.
2015). VRAC has been well studied in T lymphocytes,
the cells where a volume-regulated anion current actually
had been described for the first time (Cahalan & Lewis,
1988). In a single heterozygous patient, a truncation of
the two terminal leucine-rich repeats was reported to be
associated with agammaglobulinaemia and the absence
of circulating B cells (Sawada et al. 2003). Furthermore,
complete knockout of LRRC8A led to a severe defect in
T and B cell development (Kumar et al. 2014). However,
surprisingly, truncation of the terminal 15 leucine-rich
repeats of LRRC8A in the ebo mouse line did not impair T
cell development nor change T cell function, even though
VRAC channel activity was practically absent in T cells
from these mice (Platt et al. 2017). Thus, the physiological
role of VRAC in T cells is still unclear.

A peculiar feature of VRAC in T cells is the
almost complete lack of inactivation at positive voltages
(Lepple-Wienhues et al. 1998). Among all binary LRRC8
combinations, 8A/8C channels exhibit the least degree of
inactivation (Voss et al. 2014; Gaitán-Peñas et al. 2016;
Ullrich et al. 2016), suggesting that the endogenous VRAC
currents in T cells are carried in a significant manner by
8A/8C channels. In agreement with this hypothesis, we
found that VRAC currents are significantly suppressed
by oxidation in Jurkat cells. Furthermore, we found that
the 8E subunit, which would be expected to confer an
activating effect of oxidation, is the least expressed in
Jurkat cells. We found the 8D subunit to be the one of
highest expression in Jurkat cells. A priori, 8D-containing
channels might be expected to exhibit an inactivating
current phenotype (Voss et al. 2014; Gaitán-Peñas et al.
2016). However, the biophysical properties of channels
composed of more than two different LRRC8 subunits are
unknown.

In summary, we found that VRAC channels composed
of LRRC8 proteins are directly modulated by oxidation,
with 8A/8E heteromers being dramatically activated by the
oxidation of intracellular cysteines, whereas 8A/8C and
8A/8D heteromers are drastically inhibited. In agreement
with the non-inactivating current characteristic of VRAC
in T lymphocytes that is a typical feature of the 8C sub-
unit, we found that VRAC currents in Jurkat cells are
inhibited by oxidation and that the 8E subunit is the least
expressed in Jurkat cells. We speculate that a reduction
of VRAC during acute T cell activation associated with
ROS production might be of physiological relevance in
the immune response.
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