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History-based action selection bias in posterior
parietal cortex
Eun Jung Hwang1, Jeffrey E. Dahlen1, Madan Mukundan1 & Takaki Komiyama 1,2

Making decisions based on choice-outcome history is a crucial, adaptive ability in life.

However, the neural circuit mechanisms underlying history-dependent decision-making are

poorly understood. In particular, history-related signals have been found in many brain areas

during various decision-making tasks, but the causal involvement of these signals in guiding

behavior is unclear. Here we addressed this issue utilizing behavioral modeling, two-photon

calcium imaging, and optogenetic inactivation in mice. We report that a subset of neurons in

the posterior parietal cortex (PPC) closely reflect the choice-outcome history and history-

dependent decision biases, and PPC inactivation diminishes the history dependency of choice.

Specifically, many PPC neurons show history- and bias-tuning during the inter-trial intervals

(ITI), and history dependency of choice is affected by PPC inactivation during ITI and not

during trial. These results indicate that PPC is a critical region mediating the subjective use of

history in biasing action selection.
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Imagine you are deciding on a meal to order at your favorite
restaurant. If you enjoyed the dish you ordered the last time
you dined there, you may be more inclined to order it again.

Such a decision bias shaped by the choice-outcome history can
allow one to infer the rules of the environment and generate
adaptive behavioral strategies1–4. History-dependent biases are
not limited to explicitly adaptive contexts such as dynamic
foraging tasks. Instead human and animal subjects show diverse
idiosyncratic history-dependent biases (e.g., win-stay, lose-switch,
or lose-stay) even when the optimal choice is a strict function of
environmental stimuli independent of the subject’s history, if they
are unaware of such a rule or the stimuli are difficult to deci-
pher5–10. The prevalent history-dependency of decisions suggests
that tracking choice-outcome history to form subjective bias is a
fundamental aspect of decision-making, yet the neural circuits
mediating this process are largely unknown.

Responses of neurons in the sensorimotor pathway including
areas implicated for decision-making show degrees of variability
even for identical sensory inputs and motor outputs11, 12. Such
variability is often treated as random noise13–15. However, for
future decisions to be biased by history, it is necessary that neural
responses are modulated by history, accounting for some of the
observed neural variability. Indeed, choice-outcome history has
been shown to modulate the activity in a variety of brain areas,
including parietal, prefrontal and premotor cortex, and sub-
cortical structures1, 4, 16–20. For example, neurons in the lateral
intraparietal area of the monkey posterior parietal cortex (PPC)
that has been implicated for the accumulation of sensory evidence
are modulated by the choice and outcome information of recent
trials19, 21, 22. However, history affects action selection biases in
flexible and complex ways that vary over time and across
individuals1, 19, and it is unclear how the history signals in the
brain may account for such a flexible relationship between history
and decision bias. Furthermore, these brain areas often contain

intermingled neurons with diverse temporal activity
profiles19, 23, 24, and the roles of specific temporal windows of
history-related activity cannot be accessed with traditional lesion
or pharmacological inactivation approaches.

Here we combine behavioral modeling, two-photon calcium
imaging, and temporally precise inactivation to explore the
mechanisms of the subjective, history-dependent decision bias in
mice performing a visually instructed action selection task.
Similar to previous findings in difficult decision-making tasks,
our behavioral model identifies diverse, idiosyncratic relation-
ships between choice-outcome history and action selection
bias5, 7. These idiosyncratic biases are highly correlated with the
pre-stimulus activity of a subset of neurons in PPC. Temporally
precise inactivation reveals a causal role of the pre-stimulus
activity of PPC, but not the subsequent activity following stimulus
onset, in action biases. Therefore, we conclude that PPC is
involved in subjective uses of history in biasing action selection.

Results
Visually instructed action selection task for head-fixed mice.
We developed a task in which head-fixed mice moved a joystick
with their left forelimb in one of two directions in response to
visual cues (Fig. 1a and Supplementary Fig. 1a). In each trial, one
of two visual stimuli (gratings moving forward or downward) was
presented for one second. This stimulus period was followed by a
2 s memory period. The end of the memory period triggered an
auditory go cue, and mice were required to move the
joystick in the remembered direction of the visual stimulus to
receive a water reward. Trials with no movements, movements
before the go cue, and movements in the wrong direction were
not rewarded. Mice performed one session per day, 281± 55
trials per session.

After 2–4 months of incremental training (Supplementary
Fig. 1b and Methods section), mice achieved a plateau level of
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Fig. 1 Task. a Top: task schematic. Middle: task trial structure. Bottom: stimulus-action-outcome rule. b Fraction of correctly discriminating trials is
significantly greater than chance. Black, mean± s.e.m. across mice; gray, individual mice. Wilcoxon one-sided signed rank test. c Fraction of correctly
discriminating trials is significantly greater in non-memory trials (visual stimulus stays on throughout the trial) when randomly interleaved with memory
trials. Black, mean± s.e.m. across mice; gray, individual mice. Wilcoxon one-sided signed rank test
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performance which was significantly above chance, but far from
perfect (Fig. 1b). The behavioral performance was not limited by
a difficulty in visual discrimination, as mice performed
significantly better in another version of the task without the
memory period (Fig. 1c and Supplementary Fig. 2a). The
suboptimal performance in the memory task, characterized by
variable responses to the same visual stimulus in individual trials,
is essential for uncovering internal biases underlying choice
variability as shown below.

History-based bias revealed by behavioral modeling. We
hypothesized that the choice variability in individual trials reflects
a systematic fluctuation of hidden internal biases that are shaped
by the recent history of the mice, rather than a random

fluctuation due to neural noise, similar to previous findings in
difficult decision-making tasks5, 7, 9. To test this hypothesis, we
built a logistic regression model of the behavior. A similar model
has been previously described7, 25. Briefly, this model predicts the
choice of each mouse on individual trials by utilizing the sensory
stimulus of the current trial, the choice-outcome history from
previous trials, and a constant choice preference (Eq. 1 and
Methods section). Accordingly, the portion of the equation
excluding the current stimulus corresponds to the estimate of the
internal bias on each trial. Regression was performed in each
session independently to identify the weight of each term and the
time constants of history terms that best fit the behavior. To avoid
overfitting, the accuracy of the model was quantified in a cross
validated manner in which the model was built using a fraction of
the trials in the session (‘training set’) and evaluated for the
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Fig. 2 Choice-outcome history biases future decision, driving choice variability. a Top: example trial-by-trial sequence of an animal’s choice (black) with
partial model fit using stimulus information only (cyan). Bottom: choice sequence from top plot (black) with full model fit using stimulus, trial history, and a
constant (green). b Full model including both stimulus and history information predicts choice more accurately than partial model with stimulus only. Black,
mean± s.e.m. across sessions; gray, individual sessions. Wilcoxon one-sided signed rank test. c Partial model accuracy using only one history variable
(outcome, choice, or outcome-choice interaction) at a time, indicating that outcome history and choice history have large contributions to model accuracy.
Black, mean± s.e.m. across sessions; gray, individual sessions. d Weight of each variable. Red circles indicate sessions in which the corresponding partial
model (with the variable and a constant) is significantly better than the model with only a constant (likelihood-ratio test between the partial and constant
models, p< 0.05), while gray circles indicate the other sessions. Black, mean± s.e.m. across significant sessions. e Time constant of each history variable.
Sessions are included only if the corresponding partial model (with one history variable and a constant) is significantly better than the model with only a
constant (likelihood-ratio test between the partial and constant models, p< 0.05). Black, mean± s.e.m. across sessions; gray, individual sessions. f History-
dependent strategies are classified as maladaptive (cyan), neutral (blue), or adaptive (magenta) depending on the fraction of correctly discriminating trials
achieved by the estimated history models (using only history but not stimulus) relative to chance (p< 0.05, Experimental Procedures). Sessions with
adaptive strategies tend to be associated with better behavioral performance (Pearson correlation coefficient= 0.64, p< 0.005)
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accuracy on the remaining trials (‘test set’).
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This model with choice-outcome history predicted the
behavior significantly better than the stimulus alone (Fig. 2a, b),
indicating that the choice variability observed in this task is
indeed not random. Instead, a significant part of the variability
arises from a systematic influence of choice-outcome history that
biases the decision on a trial-by-trial basis. To assess the
contributions of distinct components of history information to
the internal bias, we built partial models using only a subset of
history information at a time (Fig. 2c). On average, the outcomes
(reward or error) of previous trials carried the largest predictive
power, followed by the choices (forward or downward) of
previous trials. The weight of each variable and time constants in
the full model (Eq. 1) were examined in sessions in which the
corresponding variable exerted significant influence on the choice
(Fig. 2d, e). We found that the weight for the visual stimulus was
significant and positive in a majority of sessions (9/17),
demonstrating that animals properly used the stimulus informa-
tion despite a low behavioral performance. The weight for the
previous trial outcomes was significant in 9/17 sessions with short
(<1) time constants, indicating that mice tended to choose one

direction after reward and the other direction after error (e.g.,
forward following reward trials and downward following error
trials, irrespective of the choices of previous trials). This strategy
differs from the so-called ‘win-stay/lose-switch’ in which choice
depends on both the outcomes and choices of previous trials (e.g.,
forward following rewarded forward trials, but downward
following rewarded downward trials). Furthermore, the choices
of previous trials significantly contributed to the prediction in 8/
17 sessions, all with negative weights and longer (~10 trials) time
constants, showing that mice had a tendency to equalize the
frequencies of both forward and downward choices over time
(Fig. 2d, e). In the non-memory version of the task in which mice
performed better (Fig. 1c), the weight for visual stimulus was
significantly larger, and the outcome history weight was
significantly smaller than in the memory task (Supplementary
Fig. 2b), indicating an enhanced use of the stimulus information
and reduced importance of history information.

Mice employed somewhat common strategies in the memory
task as described above, but the weights and time constants of
individual terms were highly variable across individual sessions
(Fig. 2d, e). Consistent with the variability of weights and time
constants, model accuracy was significantly worse when a model
built for one session was applied to another session of the same
mouse (Supplementary Fig. 3). Thus, the rules that each mouse
employed to use choice-outcome history were variable over days,
similar to those previously reported in human subjects5. The
detriment in model accuracy was even larger when a model from
one mouse was applied to another mouse, demonstrating an
idiosyncratic nature of the strategies (Supplementary Fig. 3).
Taken together, the imperfect behavioral performance in
conjunction with the behavioral model gives us an opportunity
to estimate the hidden internal biases underlying decision
variability on individual trials that are not directly measurable.
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We note that these strategies can be somewhat adaptive or
maladaptive, due to our stimulus selection algorithm. Specifically,
the same stimulus was repeated after error trials, and the stimulus
was changed to the other stimulus after three consecutive
rewarded trials with the same stimulus. In all other trials, stimulus
was randomly selected. These rules were introduced to discourage
mice from selecting the same choice (forward or downward) in
every trial. Thus, the two common strategies described above,
biasing choice based on the outcome history of the immediately
preceding (N−1) trial, and equalizing choice frequencies, were
both adaptive and helped mice perform better than chance. In
contrast, a strong constant preference of one choice was an
example of maladaptive strategies, as it results in repetition of the
same error for multiple trials. The varying degrees of ‘adaptive-
ness’ of models in different sessions were quantified by assessing
the success rate of the internal bias model (excluding the stimulus
term in the full model) of each session in simulation in which the
stimulus was selected according to the same rules. We found that
53% of sessions showed significantly adaptive strategies, while 24%
were significantly maladaptive (Fig. 2f).

The pre-trial activity of PPC represents internal biases. To
explore the neural basis of these subjective, history-based

internal biases, we applied two-photon calcium imaging to
record the neural ensemble activity in PPC while mice
performed the task (Fig. 3a). We chose PPC because it is widely
implicated in decision-making processes, PPC is highly
interconnected with visual and motor areas, and PPC
neurons encode a recent history of choice and outcome, placing it
in an ideal location to bias the transformation of visual
information to motor outputs19, 21–23, 26, 27. We imaged neurons
in layer 2/3 expressing GCaMP6f in the 17 sessions from
8 mice whose behavioral analyses were presented in the previous
section. 991 unique neurons (mean: 58/session, range: 15–123)
showed significant task-related activity and were included in the
analysis.

Consistent with previous recording studies in monkeys and
rodents21, 23, 28, 29, many PPC neurons (66%, 652/991) exhibited
choice-selective activity such that the activity in forward-pressing
and downward-pressing trials was significantly different. Choice-
selective neurons presented varying timing of choice selectivity,
and largely distinct populations of neurons showed choice
selectivity during the stimulus, memory, and movement periods
(Fig. 3b). Surprisingly, a large fraction of choice-selective neurons
(56%, 362/652) showed significant choice selectivity during the
inter-trial interval (ITI) before the stimulus was presented
(Fig. 3b–d). In other words, these neurons had predictive
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information about the eventual choice of the mouse before the
trial was initiated.

A trivial explanation for the ITI choice-selectivity is that the
mice are already preparing or partially executing the movement
during the ITI, and thus ITI choice-selective neurons are
movement-related neurons. To address the possibility that mice
are partially executing the movement during the ITI (e.g., leaning
on the joystick), we performed additional experiments in which
the joystick was unfixed in the ITI of a subset of trials. Choice-
selectivity of PPC neurons during the ITI in the trials when mice
did not apply force on the unfixed joystick remained the same as
in the joystick-fixed condition, suggesting that the ITI choice-
selectivity does not arise from partial execution of movements
(Supplementary Fig. 4). Moreover, a majority of ITI choice-
selective neurons (69%, 251/362) were non-movement neurons,
distinct from movement neurons that showed maximal choice-
selectivity during the peri-movement period (−0.5 to 1.5 s around
movement onset; Fig. 4a). Conversely, a majority of non-
movement choice-selective neurons showed choice-selectivity
during the ITI (85%, 251/292). The choice-selectivity of these
non-movement choice-selective neurons appears to be related to
their sensitivity to the recent choice-outcome history. Of non-
movement neurons, 92% (270/292) and 46% (135/292) were
significantly tuned during the ITI to the outcome and choice of
the immediately preceding (N−1) trial, respectively (Fig. 4b).
Accordingly, these N−1 outcome- and choice-tuned neurons are

differentially modulated during ITI even when the choice in the
upcoming N trial is the same, depending on the previous trial
conditions (Fig. 4c).

Notably, many non-movement choice-selective neurons (43%,
125/292) were tuned to both N−1 outcome and N−1 choice,
suggesting that multiple types of distinct history information are
mixed at the level of individual neurons. However, in theory, the
concurrent tuning to multiple variables could result from the
correlation of N trial choice with both N−1 outcome and N−1
choice as shown by our behavioral modeling. To disentangle this
confounding relationship, we evaluated how the ITI activity of
individual ITI choice-selective neurons was modulated by history
information (N−1 trial outcome and N−1 trial choice) and
N choice (used as a binary estimate of internal bias) indepen-
dently, by focusing on trials in which 2 of the 3 variables were
identical. For example, neuron 1 shown in Fig. 4d was strongly
modulated by N−1 outcome, exhibiting different levels of activity
after rewarded and error trials. This modulation by N−1 outcome
was clearly present even when we considered only the trials in
which N−1 choice and N choice were fixed, indicating that the
N−1 outcome modulation of this neuron was not a secondary
effect of correlation between N−1 outcome and N−1 choice or
N choice. In addition, this neuron was also modulated by both
N−1 choice and N choice, independent from its modulation by
N−1 outcome. Overall, large fractions of ITI choice-selective
neurons exhibited independent tuning for N−1 outcome, N−1
choice, and N choice (Fig. 4e), indicating that distinct history and
bias information is encoded in overlapping but distinct popula-
tions of individual PPC neurons.

Importantly, such tuning of individual neurons was not fixed
but sensitive to the current strategies employed by the mice. We
addressed this issue in a subset of experiments in which we
imaged the activity of the same populations of PPC neurons
across multiple sessions (386 neurons in 4 mice were imaged
across 4–7 sessions). For example, the neuron in Fig. 5a imaged
over 5 sessions is tuned to N−1 outcome in all imaged sessions
during the ITI. However, the strength of its N−1 outcome tuning
varied across sessions, tracking the strength of the influence of
previous outcome on the subsequent choice as estimated by the
accuracy of the partial model using the previous outcome
information only. That is, the neuron showed more pronounced
N−1 outcome tuning in sessions in which the previous outcome
influenced the upcoming choice more strongly. Such flexible
modulation of N−1 outcome tuning was consistent across PPC
neurons (Fig. 5b). Similar effects were found for N−1 choice
tuning (Fig. 5c). The flexible sensitivity of PPC neurons to distinct
history information may underlie the flexible, subjective use of
history to generate bias revealed by our behavioral modeling
(Supplementary Fig. 3).

In line with this notion that PPC represents the subjective bias,
the weighted sum of ITI activity of neurons simultaneously
recorded from PPC was able to fit very closely the internal biases
estimated by our behavioral model (Fig. 6a–c). The excellent fit
was specific to the internal biases, and ITI activity could not fit
the trial-shuffled internal biases (Fig. 6b). The PPC ITI activity
closely tracked the fluctuations of the strengths of internal biases
even in trials of the same choice (Fig. 6b, c), suggesting that the
PPC ITI activity reflected continuously varying internal biases
rather than categorical choice. PPC ITI activity better predicted
the subsequent choice when the bias direction estimated from
PPC ITI activity matched that of the subsequent stimulus,
supporting the idea that the final choice is made by integrating
the biases encoded in PPC and the subsequent stimulus (Fig. 6d).

The earlier analyses of single neuron responses showed that
individual PPC neuron encode history and choice information in
a mixed and heterogeneous manner (Fig. 4). Consistently, the
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information has stronger contributions to the bias. b Between-session
differences in (N−1) outcome tuning of the ITI activity of single neurons
plotted against between-session differences in choice dependency on
outcome information (Pearson correlation coefficient= 0.14, p< 7.1e-6).
Neurons with significant outcome tuning in at least one of the two sessions
are included. c The same as b but for the (N−1) trial choice
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Fig. 6 Pre-stimulus population activity in PPC reflects the history-dependent bias and previous trial history. a Sequences of internal bias (thin black lines,
estimated from the behavioral model) and weighted sum of ITI activity (thick yellow lines) across simultaneously imaged PPC neurons in three example
mice. b Goodness of fit of PPC ITI activity to the internal bias across (from left to right): all trials, only forward choice trials, only downward trials, and
shuffled trials. Only the sessions in which the history-dependent bias is significant (likelihood-ratio test between the full model and a partial model that
contains only stimulus and constant terms, p< 0.05, 12 sessions; Experimental Procedures) are included. Black, mean± s.e.m. across sessions; gray,
individual sessions. Wilcoxon one-sided signed rank test. c Data from a single session showing the weighted sum of PPC ITI activity across simultaneously
imaged neurons against the internal bias estimated from the behavioral model. Each dot represents a single trial. d Fraction of forward choice as a function
of the internal bias estimated from the ITI activity (mean± s.e.m. across 12 sessions). Black, forward stimulus trials; red, downward stimulus trials. The
estimated internal bias in each session was normalized such that it represents the signed distance from the decision boundary (Methods section) that
divides the forward and downward choice trials. e Example population ITI activity from one session projected on a two-dimensional plane. Left: x-axis,
activity encoding internal bias (i.e., estimated internal bias from the population activity, as in a), y-axis, activity encoding N−1 trial outcome (i.e., estimated
N−1 trial outcome from the population activity), each dot, a single trial. Population activity in trials with similar internal bias still encodes N−1 trial outcome
information (reward or error). Right: x-axis same as the left and y-axis shows the activity encoding N−1 trial choice. f History information independent of
internal bias in the ITI activity, computed as (prediction accuracy of history information decoded from the ITI activity – prediction accuracy of history
information decoded from the ITI activity projected to the internal bias axis). Each dot represents a single session in which the behavioral model predicts
the choice sequence significantly (p< 0.001). Black, mean± s.e.m. across mice. Wilcoxon one-sided signed rank test
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PPC ensemble activity also encodes a mixture of history and bias
information. When the ensemble ITI activity was fit separately to
the internal biases and the outcome in the N−1 trial, we found
that the population activity encoded both bias and N−1 outcome
independently. That is, even for the same value of internal
bias, population activity was still separable depending on the
N−1 outcome (Fig. 6e, f). Similar results were found between bias
and N−1 choice (Fig. 6e, f). Thus, PPC neuronal population
encoded both history and bias information independently during
the ITI.

Inactivation of PPC ITI activity alters internal bias. The results
so far indicate that PPC contains information about action
selection biases during the pre-stimulus ITI. To address whether

this information in PPC is indeed used to bias the subsequent
actions, as opposed to the alternative possibility that actions are
biased by activity elsewhere and PPC activity simply correlates
with it, we used optogenetics to inactivate PPC during the task.
We injected Cre-dependent AAV encoding Channelrhodopsin-2
(ChR2) in PV-Cre mice to express ChR2 in parvalbumin-positive
inhibitory neurons in PPC and these mice were trained with the
task (N= 8). Once their performance reached a plateau, we
started inactivation sessions in which blue light was applied
bilaterally to inactivate PPC during the ITI of a small subset
(~15%) of trials (Fig. 7a). If PPC is indeed essential for the
internal biases based on choice-outcome history, then PPC
inactivation should alter the history dependency of choices. We
tested this idea by building a behavioral model with a subset of
the unperturbed light-off trials as the training set and testing the
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Fig. 7 Inactivating pre-stimulus activity in PPC alters internal bias. a Schematic of inactivation experiment. Control (blue light directed away from PPC) and
inactivation (the light directed to PPC) sessions alternated day-to-day (for 14–16 days). Continuous blue light was applied during the ITI in randomly
selected trials (15%; light-on trials) in both control and inactivation sessions. b Choice sequence (black) and behavioral model fit (orange) in an example
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mouse. Black, mean± s.e.m. across sessions; gray, individual sessions. Wilcoxon signed rank test. The light-off model was built on a subset of light-off trials
and its accuracy was assessed on the remaining light-off or light-on trials. d Average light-off model accuracy in light-off and light-on trials in inactivation
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accuracy of choice prediction for the remaining unperturbed
light-off and inactivated light-on trials. Consistent with our
hypothesis, the model built with unperturbed trials (‘light-off
model’) was significantly better at predicting the choice on other
light-off trials than light-on trials (Fig. 7b–d and Supplementary
Fig. 7). This result shows that PPC inactivation altered the idio-
syncratic relationship between choice-outcome history and the
subsequent actions. Such an effect was not observed in control
sessions of the same mice in which the light was directed at the
head bar instead of PPC (Supplementary Fig. 8a). Consequently,
the light-off model performed significantly worse in inactivation
light-on trials than control light-on trials, indicating that the
effect was due to PPC inactivation and not due to non-specific
effects of light. The altered history dependency occurred without
significant changes in reaction time or movement time (Supple-
mentary Fig. 7).

To examine the temporal specificity of inactivation effects, we
inactivated PPC during the trial period, which starts from the
visual stimulus onset and lasts until the end of a trial, thus not
overlapping with the ITI (Fig. 7e; N= 7, subset of the PPC ITI
inactivation mice). To our surprise, the history-choice relation-
ship was not altered when we inactivated PPC during the trial
period (Fig. 7f and Supplementary Fig. 8b). Accordingly, the
model performed significantly worse in ITI inactivation trials
than trial inactivation trials. These results suggest that the bias
information encoded in PPC during the pre-stimulus ITI is
subsequently maintained elsewhere to guide behavior indepen-
dent of later PPC activity. Importantly, the consistent effect of ITI
inactivation on internal bias was specific to PPC. When we
inactivated the primary motor cortex (M1) during the ITI in a
separate set of mice (N= 7), the effect was variable across animals
(Fig. 7g and Supplementary Fig. 8c), thus no significant difference
was observed between unperturbed light-off and inactivated light-
on trials. Therefore, the altered relationship between history and
subsequence choice is not a general effect of inactivation, but
instead it is specific to PPC.

To delineate the nature of the altered relationship between
history and choice by PPC ITI inactivation, we fit the light-on and
light-off trials with separate full models (Eq. 1), and compared the

weights of the two models. Because of a greater number of light-
off trials, we built light-off models using randomly sampled light-
off trials matching the number of light-on trials 100 times. The
light-on model was compared to the distributions of the 100
light-off models of each session. We found significant decreases
in the weights for the choice history, outcome-choice interaction
history, and constant (Fig. 8a). It is notable that the weight for
outcome history did not change significantly although neural
activity in PPC encodes the outcome history strongly (Fig. 4e).
Therefore, outcome information may be redundantly represented
in many areas and thus PPC inactivation alone does not alter the
outcome dependence of choice, while PPC may be important
more uniquely for previous choice information. In contrast,
weights did not change in control sessions (Supplementary
Fig. 8d, e), and the decreases in the three weights were
significantly larger than in control sessions. ITI inactivation of
M1 did not lead to significant changes in weights, either (Fig. 8b).
These results indicate that PPC inactivation during the ITI
weakened the dependency of subsequent action choice on choice-
outcome history.

Given that some sessions showed adaptive and maladaptive
strategies (Fig. 2f), we hypothesized that weakened history
dependency would deteriorate behavioral performance in sessions
with adaptive strategies, and improve performance in sessions
with maladaptive strategies. Consistent with this prediction, the
change in behavioral performance induced by PPC ITI inactiva-
tion was negatively correlated with the degree of adaptiveness of
the strategies (Fig. 8c). In contrast, the change in behavioral
performance and the degree of adaptiveness was not significantly
correlated in control sessions (Supplementary Fig. 8f).
Accordingly, the slope of linear regression on performance
change against adaptiveness was significantly steeper in the
inactivation sessions compared to control sessions (bootstrap; 56
inactivation vs. 106 control sessions; p< 0.005). These changes in
behavioral performance provide additional evidence that PPC ITI
activity is essential for the history-dependent biases, and the
bidirectional effects suggest that PPC is responsible for the range
of variable and idiosyncratic strategies to utilize the history
information.
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Discussion
The pre-stimulus activity of PPC during the ITI closely reflected
the subjective, internal bias estimated by our behavioral model
and accordingly predicted the future choice. Choice-predicting
pre-stimulus activity has been reported in various brain areas
including the visual, parietal, premotor, and prefrontal
cortex21, 26, 30–33. However, in contrast to the current study, these
previous studies did not systematically relate the pre-stimulus
activity to decision variables such as history-dependent internal
bias and could not distinguish it from stochastic neural noise such
as ongoing fluctuations of baseline. Moreover, the causal rela-
tionship between pre-stimulus activity and future choice has not
been tested. To our knowledge, our current study is the first to
demonstrate that the PPC pre-stimulus activity is essential for the
influence of biases on subsequent actions.

Our temporally precise optogenetic inactivation revealed that
the effect of PPC inactivation was specific to ITI, and perturba-
tion after stimulus onset did not cause a measurable effect on
behavior. This result implies that bias information encoded in
PPC during ITI is unloaded to some other areas after the ITI and
maintained in a PPC-independent manner. PPC neurons have
projections to various brain areas23, 34, and identifying these
downstream areas that are responsible for the bias execution is an
important topic of future research. We also note that our result
does not imply that the post-stimulus choice-selective activity in
PPC has no functions. In fact, several studies reported altered
behavioral performance in perceptual discrimination tasks fol-
lowing PPC perturbation27, 29, 35. PPC also contributes to
movement planning and execution, and inactivation in monkeys
can affect movement end point control36. Such a role in fine
motor control or sensory evidence accumulation is distinct from
the bias coding that we describe here and was not tested in this
study.

We found that the PPC ITI activity contains both history and
bias information mixed at the level of individual neurons. This
observation clearly excludes two extreme possibilities; (1) PPC
only contains history information and is upstream of bias com-
putation, and (2) PPC only contains bias information and is
downstream of bias computation. While the precise circuit
mechanisms underlying the transformation of history informa-
tion into bias are extremely difficult to uncover, based on the
mixed representation of history and bias in PPC, we favor the
view that PPC participates in the computation of subjective bias
from history information. It is important to note that these PPC
neurons that encode history and bias information are inter-
mingled with other neurons that are selectively active during
visual stimulation, delay, and movement periods. PPC thus likely
contains multiplexed, parallel pathways dedicated to the proces-
sing of distinct forms of information.

The functional homology between primate and rodent PPC is
not fully established, but several rodent PPC studies have found
neural response properties analogous to primate PPC and started
to provide further insights into PPC circuits and
functions23, 27, 35, 37, 38. Especially, two recent findings in rodent
PPC resonate with our current study: (1) PPC population activity
exhibits slow dynamics that integrate recent events22, and (2)
PPC perturbation affects internally guided decisions39. Our
finding that PPC neurons encode a mixture of history and bias to
influence action selection demonstrates an important functional
consequence of the former observation. The representation of
history-dependent internal bias in PPC presents a mechanism for
PPC to affect internally guided decisions. Furthermore, our
finding that intermingled but distinct sets of neurons represent
specific sets of information lays foundation for investigating
functional diversity in PPC microcircuits, likely linked with
projection target areas.

Methods
Animals. All procedures were in accordance with protocols approved by the UCSD
Institutional Animal Care and Use Committee and guidelines of the National
Institute of Health. Mice (calcium imaging: cross between Gad2-IRES-Cre [JAX
010802]40 and Rosa26-CAG-LSL-tdTomato [JAX 007914]41 or Rosa26-CAG-LSL-
tdTomato or cross between Camk2a-tTA [JAX 003010] and tetO-GCaMP6s [JAX
024742]; optogenetic perturbation: PV-Cre [JAX 008069]42 or cross between PV-
Cre and Ai32 [JAX024109]) were housed in a room with a reversed light cycle
(12–12 h). Experiments were performed during the dark period.

The animal sample size was determined based on previously published studies,
and no randomization or blinding were applied when allocating animals to
experimental groups.

Long-term behavioral training. Adult mice (six weeks or older, male and female)
were implanted with a custom head-fixation plate on the skull. Following a
minimum 3 days of recovery, daily water consumption was limited to a controlled
amount (typically 1 mL/day). Behavioral training began following 3–10 days of
water restriction.

A custom-built behavioral apparatus housed in a box (40 × 40 × 40 cm)
included a joystick (M11L061P; CHProducts), a 17 inch computer monitor (for
visual stimulus presentation; placed ~15 cm from the right eye of the mouse), and a
water port with photodiodes to sense licking (Fig. 1a). The stock joystick handle
was custom machined and retrofitted with a 1/16 inch thick brass rod that mice
manipulated with their left forepaw (Supplementary Fig. 1a). An electromagnet
(EM050–3–222; APW) was situated so it could be used to mechanically immobilize
the joystick at the origin. The joystick had a dynamic range of 56° in each angular
direction forming a spherical endpoint space (Supplementary Fig. 1a). The 2D
angular position of the joystick was continuously recorded at 1 kHz using a data
acquisition card (USB6008; National Instruments) and custom Matlab software.
The task-sequence execution, stimulus selection, auditory cue presentation, reward
dispensation, and task time recording were coordinated by an open source real-
time Linux/Matlab software package BControl (http://brodywiki.princeton.edu/
bcontrol/). The presentation of visual stimuli (100% contrast, full-field, square wave
drifting gratings 0.04 cycles/degree, and 3 cycles/sec) was implemented using
Psychtoolbox (an open source Matlab toolbox; http://psychtoolbox.org/).

In the two-alternative forced-choice task (Fig. 1a), one of two orthogonal visual
stimuli (forward or downward moving gratings) was presented for 1 s, followed by
a 2-sec memory period. After the memory period, an auditory cue (6 kHz pure
tone) marked the response period (up to 10 s) during which the joystick entering
the correct target area (hereafter referred to simply as ‘target’; Supplementary
Fig. 1a) in the same direction as the gratings triggered a water reward. Errors (i.e.,
entering the incorrect target, and movements before the go cue) triggered a white
noise sound and led to an immediate trial-abortion. Following reward, trial-
abortion, or no response, the return of the joystick to the origin ended the trial and
initiated an ITI (4 or 8 s, constant within each session). During the ITI the joystick
was immobilized at the origin by an electromagnet. At the end of the ITI
(simultaneous with the beginning of visual stimulus onset), the electromagnet was
disengaged, and the joystick was free to move. Thus, if mice already pushed the
joystick in any direction from the ITI, the joystick would have moved out of the
origin as soon as the next trial stimulus period began and the trial was most likely
aborted (see below for the withholding requirement). However, these movements
immediately after the ITI (movement onset within 100 ms from stimulus onset)
were rare (1%, 45/4747).

Mice were trained under head-fixation in the behavioral apparatus, ~1 h per day
over a period of 2–4 months. The task was shaped to reach the final version
through 8 training steps (Supplementary Fig. 1b). In the first step, the mice received
a water reward as long as they moved the joystick to the correct target within a 30-s
response period (regardless of whether or not they hit the incorrect target first). As
they became more proficient with pressing the joystick in both directions, we
increased the target distance from 6.7° (~6 mm) to 11.1° (~10 mm). In step 2, we
decreased the response time to 10 s, and trained the mice until they reached the
targets during the 10 s response period in more than 80% of trials. In both steps 1
and 2, the joystick was mechanically fixed by the electromagnet until the auditory
go cue.

In step 3, to prevent mice from pushing or leaning on the joystick before the go
cue, we released the joystick from electromagnet immobilization simultaneously
with visual stimulus onset, and rewarded the mice only if they moved the joystick
during the response period (i.e., withheld movements until after the go cue) and
reached the correct target. Trials in which mice responded before the go cue were
considered errors and immediately aborted, resulting in a white noise error sound.
Step 3 training continued until mice achieved withholding performance above 80%:

Witholding performance ¼ Number of responding trials after go cueð Þ=
Number of all responding trialsð Þ

In step 4, mice were trained to discriminate between the two distinct visual
stimuli (forward and downward drifting gratings) and reach the correct target after
the go cue. In this step, trials were considered errors and immediately aborted if
mice reached the incorrect target, or moved before the go cue (as in step 3). step 4
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continued until they achieved both withholding and discrimination performance
above 80%:

Discrimination performance ¼ Number of trials hitting the correct targetð Þ=
Number of trials hitting any targetð Þ

Discrimination performance was computed for all trials that reached a target
regardless of whether or not the trials were successfully withheld. Once this
performance criterion was achieved, the ITI length was gradually increased to 4 or
8 s (step 5). In step 6, we turned off the visual stimulus during the response period
(i.e., visual stimulus was turned off simultaneously with the go cue). In step 7, the
stimulus period was shortened to 1.8 s and a 0.2 s memory period was introduced.
In the final step, the visual stimulus period was gradually decreased to 1 s and the
memory period was gradually increased to 2 s. With the 2-s memory period, the
discrimination performance rarely improved above 60% (even after prolonged
training). Thus, we trained each mouse until their discrimination performance in
the 2-s memory task reached 60% on average.

A subset of mice performed sessions containing randomly interleaved non-
memory and memory trials (both with a 3-s pre-movement period between the
stimulus onset and the go cue; in non-memory trials, the visual stimulus stayed on
until a target was reached) during training. In those sessions, the discrimination
accuracy was consistently lower in memory than non-memory trials, indicating
that the memory load, rather than the sensory discriminability, impaired
performance in the memory task (Fig. 1c).

Visual stimulus. The visual stimulus was randomly selected between forward or
downward drifting gratings with the following constraints: (1) after three con-
secutive rewarded trials in one direction, the stimulus always switched to the other
direction, and (2) after error trials, the same stimulus was repeated. These con-
straints were implemented to discourage the mice from choosing only one direc-
tion and settling at 50% discrimination accuracy. Despite the deterministic
stimulus after an error or a third consecutive reward in one direction, the mice
performed only slightly better in those trials than random trials (Supplementary
Fig. 1c), indicating that mice did not fully utilize these hidden stimulus pre-
sentation rules to their advantage.

Because of the pseudo-random rules of stimulus presentation, the fraction of
correctly discriminating trials
ð# of trials hitting the correct target=# of trials hitting any targetÞ achieved by
random choice would not be 50% if there was a constant choice preference. So we
estimated the constant choice preference within a session and converted it to a
probability to choose each choice using the following formulae:

Probability of choice 1 ¼ 1
2
´

Number of trialschoice 1 j stimulus 1

Number of trialsstimulus 1
þ Number of trialschoice 1jstimulus 2

Number of trialsstimulus 2

� �

Probability of choice 2 ¼ 1� Probability of choice 1

Then, the chance level performance for the given session was computed by
simulating random binary choice with the estimated probabilities under the same
pseudo-random rules 1000 times (Fig. 1b).

Behavioral model. In our behavioral model, the choice on a given trial is predicted
by a weighted sum of the current stimulus, the history of past trial outcome, choice,
and their interaction, and a constant (Eqs. 1 and 2). Past trials were temporally
discounted in an exponentially decaying manner (i.e., stronger effect from more
recent trials) with time constants fit independently for each history variable. Sti-
mulus, outcome, and choice were all binary variables with the value of 1 or −1.
However, in trials in which mice did not reach a target, choice was zero and
outcome was 1 (error).

We repeated the following procedure for a fixed set of time constants (varying
from 0.01 to 100 for each history variable), and selected the time constants and
weights that produced the highest model accuracy as the best-fit regression
parameters. For given time constants, we found best weights using logistic
regression on a training set (Eq. 1), and then estimated the choice sequence in a
designated test set using the best weights (Eq. 2). The two-step process was 10-fold
cross-validated. That is, trials within a session were divided in 10 non-overlapping
parts, where each part served as a test set once, and the other nine parts as a
training set. The fit of the model (or simply, model accuracy) was measured as the
fraction of test trials in which the estimated choice matched the actual choice.

dchoice Nð Þ ¼ 1; if p > 0:5

�1; otherwise

�
ð2Þ

In partial models, we used a subset of variables and performed the same
regression procedure. For instance, when estimating the effect of inactivation on
trial-history dependency of choice, we used a partial model without the stimulus
term and compared the partial model accuracy between light-on and light-off trials.

To assess the statistical significance of history information in predicting future
choices, we applied a likelihood-ratio test between the full model and a partial
model that contains only stimulus and constant terms. We used p < 0.05 as a
significance threshold.

To determine whether the specific history-dependent strategy of a given session
was adaptive or not (Fig. 2f), we generated a sequence of choices following the
estimated history model (i.e., the partial model without the stimulus term) and the
same stimulus rules described earlier. After simulating 100 sequences, if the
fraction of correctly discriminating trials was >0.5 in more than 95% of the
iterations, the strategy was classified as adaptive. If the fraction of correctly
discriminating trials was <0.5 in more than 95% of the iterations, it was
maladaptive. In the other cases, the strategy was neutral.

Imaging neural activity. After mice reached the discrimination threshold of 60%
in the 2-s memory task, we paused training and allowed unlimited water access at
least for 2 days prior to craniotomy and virus injections. The craniotomy spanned
both the PPC (stereotaxic coordinates relative to bregma: 1.7 mm lateral, 2.0 mm
posterior) and the forelimb region of the primary motor cortex (M1; stereotaxic
coordinates relative to bregma: 1.5 mm lateral, 0.3 mm anterior) in the right
hemisphere. Viruses (AAV2-1-hSyn-GCaMP6f diluted in saline 1:7, or AAV2-9-
hSyn-GCaMP6f diluted in saline 1:7; UPenn Vector Core) were injected at 5 sites
(~20 nL per site) in PPC and M1 at a depth of ~250 µm beneath the dura, in layer
2–3. After the injections, the craniotomy (~2 mm × 3.5 mm) was covered with an
optical window fixed in place with dental cement. Two of the three mice in the
free-joystick task condition (Supplementary Fig. 4) were generated by crossing
Camk2-tTA and tetO-CGaMP6s and received the same procedures for craniotomy
and optical window implant without virus injections.

Following surgery and recovery (14–35 days after the surgery), we imaged
cortical activity in layer 2–3 at the depth of ~200 µm with excitation at 925 nm
from a Ti–Sa laser (Spectra-physics) using a two-photon microscope (B-scope,
Thorlabs). Each imaging field was 512 × 512 pixels covering 472 × 508 µm and
imaging was performed at ~28.4 Hz. The duration of each behavior-imaging
session limited to 1.5 h, ended when the mouse was disengaged from the task, or
completed 170 rewarded trials. Mice completed ~135 (range: 88–172) rewarded
trials in each imaging session.

For each mouse, 1–4 different imaging fields were studied within PPC (one field
per session). For some mice (N= 4), the same fields were imaged repeatedly over
4–7 sessions. Of the repeatedly imaged fields, except for the analysis tracking
selectivity for immediately preceding trial outcome and choice across sessions
(Fig. 6), we included only the session with the most number of active cells.

PPC inactivation experiment. Mice for PPC inactivation experiments (PV-Cre; N
= 8) were implanted with a head-fixation bar and bilaterally injected with virus
carrying ChR2 (AAV2-1-EF1A-DIO-hChR2, undiluted; UPenn Vector Core)
through a thinned skull over PPC. Approximately 100 nL of virus was injected in
one location at each of two depths, 200 µm and 600 µm from the dura.
After the surgery, following the same training protocol as the head-plate implanted
mice described above, we trained them to perform the task over a period of
2–4 months.

Once a mouse reached the 60% discrimination criterion, we inspected the
previously thinned-skull area and performed re-thinning if necessary. Then, we
conducted 1–7 light acclimation sessions to minimize non-specific light effects on
behaviors. In the acclimation sessions, bifurcated blue LED fibers (470 nm, 11–20
mW for inactivation in each fiber, Doric) were placed ~2 mm above the head-
fixation bar, away from the cortical region expressing Channelrhodopsin, and lights
were turned on during the ITI of randomly selected 15% of trials. Most mice
recovered their previous task performance within 1–2 days.

Each inactivation experiment was performed across 14–16 daily sessions.
Control and inactivation sessions alternated day-by-day for all but 5 mice. The 5
mice (3 trial inactivation and 2 ITI inactivation) performed control and
perturbation sessions sequentially in 7-day blocks. In control sessions,
the LED lights were directed above the head-fixation bar, whereas in inactivation
sessions they were placed directly above PPC on both hemispheres. Except for
this difference, all procedures were identical between control and inactivation
sessions.

In both control and inactivation sessions, light-on trials were pseudo-randomly
selected with a constraint that there be at least 5 light-off trials between any two
adjacent light-on trials to avoid potential behavioral adaptation to cortical
perturbation due to consecutive and/or frequent exposures. Under this restriction,
light stimulation was applied to ~15% of trials.

M1 inactivation experiment. The procedures were identical to the PPC
inactivation experiment described above except for the following difference. In
three of the seven mice, ChR2 was expressed in PV positive neurons by crossing
PV-Cre mice with Ai32 mice containing lox-stop-lox-ChR2 in the ROSA
locus, and an optical window was placed over M1. We did not observe behavioral
differences during the inactivation experiment between these three mice and the
rest.
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Trial selection. In behavioral model analyses, choice was predicted only for trials
in which mice reached any of the two targets after the stimulus onset, ~248 trials
(range: 137–344; 91%) per session. In neural data analyses, we included trials in
which mice reached any target within 1 s after the go cue. Error trials in which mice
moved the joystick before the go cue (~15% of trials) were excluded due to the
possibility that neural activity during stimulus and memory period in those trials
might be contaminated with immediate movement planning and execution. Slow
trials (target acquisition taking longer than 1 s from the go cue; ~16%) were also
excluded to reduce neural variability associated with highly dissimilar movement
kinematics within the same categorical choice. By these criteria, ~185 trials
per session (range: 92–293) were analyzed. The early and late trials excluded from
the neural analysis showed similar choice tuning to the regular trials (Supple-
mentary Fig. 5).

Single-cell activity. Using custom Matlab program, fluorescence images were
aligned frame by frame to compensate for lateral motions. Regions of interest
(ROIs) were manually drawn on the motion-corrected fluorescence images, by
circumscribing the cell bodies based on their GCaMP fluorescence intensity dis-
tinguishable from the background. Pixels inside each ROI were considered as a
single cell, whereas pixels extending radially outward from the cell boundary by
2–6 pixels were considered background. In case the background included other
cells’ ROIs, those pixels were excluded. To estimate the activity of a single cell, 70%
of the average pixel intensity in its background was subtracted from the average
pixel intensity inside the cell43. The time series of the background-adjusted
intensity was transformed to dF/F by dynamically estimating the baseline intensity
(i.e., the 8th percentile of the intensity distribution in the 20 s window centered at
each time point)23. For GCaMP6s signals recorded to compare ITI tuning between
free-joystick and fixed-joystick conditions, dF/F was further transformed into an
estimate of spike rates using the spike-triggered mixture model (https://github.
com/lucastheis/c2s)44.

Active cells. To detect calcium transients, we used a zero-mean dF/F trace in
which the mean dF/F was subtracted from the original dF/F. Using Matlab function
findpeaks, we first identified tentative transient peaks. If the amplitude of a detected
peak was at least 0.5 and >3.3 times the standard deviation of dF/F velocity per
frame, the peak was counted as a calcium transient. To focus our analysis on stable
and reliable cells, we only included the cells that showed calcium transients at a rate
>1 transient/minute in both the first and second half of a session and the average
peak amplitude of all transients is greater than five times the standard deviation of
dF/F. By these criteria, the average number of analyzed cells (or, active cells) in a
single PPC field was 73 (range: 22–140).

Task-related cells. Of the active cells, we identified task-related cells that showed
significant activity modulation during the task as following. The mean activity trace
of each neuron was calculated by aligning dF/F traces to behavioral events and
averaging across all correct trials. Three different behavioral events were used to
align dF/F traces: stimulus onset (−6 to 3 s), movement onset (−2 to 7 s), and
reward onset (−4 to 5 s). A cell was considered to be task-related if its mean activity
fell outside the 99.9th percentile of its dF/F distribution in three consecutive frames
in any of the three alignments. For this criterion, the false positive rate estimated on
temporally-shifted dF/F traces, by a random amount for each trial, was 4.4%.

Choice-selectivity in trial epochs. For the task-related cells, their choice-selec-
tivity was examined in 9 non-overlapping 1-s epochs (Fig. 3): the first 6 epochs
aligned to stimulus onset (−4 to 2 s), and the latter 3 epochs aligned to movement
onset (−1.5 to 1.5 s). The ITI started ~1.3 s after movement onset on average. To
obtain both selectivity strength and significance, we performed receiver operating
characteristic (ROC) analysis on the time-averaged activity in each epoch, using the
binary choice as label and the activity as score. For a given area under the ROC
curve (AUROCC), double the distance from 0.5 (i.e., 2 × |AUROCC-0.5|) was taken
as the selectivity strength. For a significance test, we used the 99.9th percentile of
the null distribution of selectivity strength (p < 0.01 with Bonferroni correction for
multiple comparisons) estimated by choice label shuffling per cell and epoch, 1000
times. The preferred directions of choice-selective neurons were nearly equally
distributed (Supplementary Fig. 6).

Selectivity for other behavioral variables. Selectivity or tuning for other beha-
vioral variables (e.g., N−1 trial outcome and choice) was computed in the same way
as choice selectivity, but with those binary variables as the label or score (Figs. 4
and 5).

Fitting trial-by-trial internal bias with PPC ITI activity. We used a linear
regression to fit the trial-by-trial fluctuation of internal bias with the trial-by-trial
ITI population activity, following 10-fold cross-validation method (Fig. 6a). To
further avoid overfitting, cells that significantly contribute to the linear regression
of the internal bias were selected using Matlab function stepwisefit on all trials,
before applying linear regression. The fit was measured as r2 achieved on test sets.

Linear classifier. To compute the prediction power of the neural activity on binary
behavioral variables such as (N−1) trial outcome, (N−1) choice, and N choice, we
computed the classifying accuracy of a linear classifier (Fig. 6f). The weights and
constant of each classifier were estimated by a logistic regression represented in
Eq. 3 on a training set, and its performance was evaluated on a test set using Eq. 4,
following the standard 10-fold cross-validation method. The classifier performance
was defined as the fraction of test trials in which the prediction matched the actual
variable. ITI population neural activity is high dimensional (dimension =N cells ×
4 ITI epochs/cell= 4N). Thus to avoid overfitting, only the features (i.e., selective
epochs of selective cells) that significantly contributed to the regression were
selected using Matlab function stepwisefit using all trials before applying the
classification analysis.

log
probability behavior ¼ 1f g

1� probability behavior ¼ 1f g ¼ w � predictorðNÞ þ const ð3Þ

dbehavior Nð Þ ¼ 1; if p > 0:5

�1; otherwise
ð4Þ

Neural distance from the decision boundary. We computed the signed Euclidian
distance of the ITI population activity from the linear decision boundary of the N
trial choice classifier for each trial (Fig. 6d). That is, the distance for the activity on
one side of the boundary was positive, and the other side negative. Given the strong
correlation between the PPC ITI activity and the internal bias estimated from our
behavior model, the neural distance serves as a proxy for the strength of internal
bias.

Decoding N−1 trial history information independent of internal bias. To esti-
mate the amount of history information independent of internal bias in the
population ITI activity, we built two classifiers. The first classifier decoded N−1
outcome information from the population ITI activity. The second classifier
decoded N−1 outcome from the internal bias related activity (i.e., the weighted sum
of the population ITI activity that best fit the internal bias estimated from our
model). Then, to compute the outcome information independent of the internal
bias, we subtracted the accuracy of the second classifier from the first (Fig. 6f). The
independent N−1 choice information was computed similarly.

Choice selectivity independent of immediately preceding trial outcome and
choice information. Because the immediately preceding (N−1) trial outcome and
choice information had predictable power for the upcoming trial choice, we
inspected whether the ITI activity remains choice selective even for the trials that
followed the same outcome and choice conditions in the N−1 trial. Thus, the ITI
choice selectivity was examined in each of the four possible conditions of the N−1
trial: (1) post-reward and post-downward, (2) post-reward and post-forward, (3)
post-error and post-downward, and (4) post-error and post-forward (Fig. 4d). The
ITI activity would not be N choice selective in any of these 4 conditions if its
activity purely encoded N−1 outcome or choice because the N−1 outcome and
choice were the same within each condition. To ensure statistical power, we
examined the choice selectivity of cells only for the conditions with at least 18 trials
per choice direction (118 neurons with one condition and 65 neurons with two
conditions). In each of these conditions, choice selectivity of each cell was assessed
using ROC analysis. The fraction of conditions in which the cells are choice
selective was compared to the null distribution estimated by shuffling choice labels
in each condition.

History information tuning independent of N trial choice. Similarly to the choice
selectivity independent of history information described above, tuning for N−1 trial
outcome was assessed in four different conditions, in which N−1 choice and N
choice were fixed. Likewise, tuning for N−1 choice was assessed in four conditions
in which N−1 outcome and N choice were fixed.

Excluded sessions in the analysis of inactivation effects on the behavioral
model weights. In some behavioral sessions, animals chose only one direction in
the light-on trials. Because a numerical solution of logistic regression on a sequence
of constant choice cannot produce a reliable estimate for weights, we removed
these sessions from the weight change analysis (8 sessions across 3 mice of M1 ITI
inactivation and 3 sessions across 3 mice of control).

Movement analysis. Movement onset was defined as the first time at which the
joystick velocity exceeded 22.2°/sec (~20 mm/s) continuously for 20 msec and the
joystick moved at least 1.3° (~1.1 mm) from the origin. The reaction time was
measured as the time from the go cue and movement onset, and the movement
duration was measured as the time from movement onset to the time when the
joystick entered any target region (Supplementary Fig. 7).
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Statistical analysis. Throughout the paper, we performed non-parametric tests to
avoid normality assumption. Similarity in variance between groups was not
explicitly tested. When simply assessing whether the medians of paired samples
acquired from the same subjects are different, we used Wilcoxon signed rank test.
When testing for unpaired samples acquired from different subjects, we used
Wilcoxon rank sum test. When testing a specific hypothesis that the median of one
set of samples is greater (or smaller) than the median of the other set acquired from
the same subjects, we used Wilcoxon one-sided signed rank test. For two sets of
samples acquired from different subjects, we used Wilcoxon one-sided rank-sum
test for testing specific hypotheses. For statistical tests for means, we used
bootstrapping.

Bootstrapping for the statistical test of model parameter changes. To examine
whether the mean change in a parameter across N different inactivation sessions is
significantly different from zero, we randomly drew N values from the original N
observations allowing repetitions, computed the mean of N random samples, and
constructed the probability distribution of the mean through 1000 repetitions.
When the 95% confidence interval of the distribution did not include zero, we
deemed the mean significantly different from zero.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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