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Summary

Cystic fibrosis is characterized by an overly exuberant neutrophilic inflammatory response to 

pathogens and other stimuli that starts very early in disease. The overwhelming nature of this 

response is a primary cause of remodeling and destruction of the airways, suggesting that anti-

inflammatory therapies could be beneficial in CF. However, finding therapies that can effectively 

reduce the inflammatory response without compromising host defenses remains elusive. New 

approaches towards mapping inflammatory targets promise to aid in developing novel therapeutic 

strategies and improve outcomes in individuals with CF.
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Introduction

Inflammation in cystic fibrosis (CF) is characterized by a marked and persistent influx of 

neutrophils into the airways. Despite the overwhelming nature of this inflammatory 

response, it remains insufficient to eradicate infection, resulting in a vicious cycle of 

infection, inflammation, and mucus hypersecretion/dehydration that causes progressive 

remodeling and destruction of the airways. This high degree of airway inflammation is 

responsible for much of the lung disease in CF, with concentrations of inflammatory 

biomarkers (particularly neutrophil elastase) the most predictive of disease progression1,2. 

Nevertheless, there are relatively few therapies developed to directly address airway 

inflammation in CF. This lack of treatment options reflects several challenges in developing 

effective anti-inflammatory therapies, including difficulties in measuring airway 

inflammation. This review will summarize the origins of airway inflammation in CF, current 

options for treatment, and how developments in measuring biomarkers of airway 

inflammation may lead to a new generation of anti-inflammatory treatments for CF.
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Origins of CF Inflammation

A key finding of studies of early CF lung disease is that airway inflammation begins at or 

very soon after birth. Neutrophils and neutrophil elastase can be detected in bronchoalveolar 

lavage (BAL) in patients diagnosed with CF by newborn screen as early as 3 months of age, 

and these inflammatory markers correlate with future development of bronchiectasis and gas 

trapping on CT scan1. This increase in inflammation does not appear to be solely a response 

to infection, since less than half of infants with neutrophil elastase detected in BAL fluid had 

an active pulmonary infection or history suggesting infection. These observations suggest 

that inflammation in CF airways is multifactorial (Figure 1) and can occur even in the 

absence of an infectious stimulus.

Localized hypoxia in the CF lung could explain the early inflammation seen in the absence 

of obvious infection3. The gene mutated in CF, the cystic fibrosis transmembrane 

conductance regulator (CFTR), encodes a cAMP dependent anion channel that conducts 

chloride and bicarbonate and regulates the balance of chloride secretion and sodium 

absorption in the airway.4 Loss of CFTR channel activity produces a dehydrated airway 

surface environment where the total mass of salt and volume of water are inadequate to 

maintain mucus hydration, leading to defects in mucociliary clearance. The resulting 

thickened mucus and mucus plugging in the small airway create localized areas of hypoxia, 

which can trigger inflammatory responses5 including release of cytokines such as IL-1 and 

activation of the inflammatory cascade via binding to the IL-1 receptor6. The resultant 

increase in inflammation may then worsen hypoxia and contribute to a niche for anaerobic 

bacteria, thus further propagating the inflammatory cycle3.

While infection may not be required to initiate inflammation in CF, defects in immune 

responses to pathogens likely contribute to the excessive inflammatory environment. A 

number of mechanisms of immune dysregulation have been described in CF, including 

aberrant responses in inflammatory cells such as neutrophils and macrophages as well as 

altered signaling pathways in airway epithelia. These aspects of immune dysregulation were 

reviewed in detail in 2015 by Nichols and Chmiel in a previous volume of “Barriers to 

Normalcy”7 and will be only briefly summarized here. The mucus dehydration and impaired 

mucociliary clearance contribute to enhanced inflammatory responses, with failure to clear 

pathogens out of the airway leading to prolonged stimulation of inflammatory pathways8,9. 

Furthermore, there is evidence that CFTR may play a more direct role in regulation of 

inflammatory responses. For example, neutrophils isolated from patients with CF tend to 

undergo necrotic rather than apoptotic responses, releasing additional pro-inflammatory 

molecules such as High Mobility Group Box 1 (HMGB1) protein and metalloproteases10,11. 

There is also evidence that CFTR is involved in the acidification of phagosomes and 

bacterial killing in both neutrophils and macrophages12,13. Similarly, CF macrophages and 

monocytes also demonstrate defective immune response14.

Studies of animal models suggest that defects in innate immunity contribute to the excessive 

inflammatory responses in CF. CF pigs have decreased bacterial clearance and increased 

inflammation relative to unaffected litter mates after exposure to bacterial pathogens15. 

CFTR knockout ferrets16 also show abnormal bacterial clearance and enhanced 
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inflammatory responses17. The mechanisms that underlie these defects are not fully defined, 

though there is evidence that defective bacterial clearance in the CF pig reflects altered 

airway acidification, likely related to loss of CFTR mediated bicarbonate secretion that 

alters the efficacy of antimicrobial peptides18.

Despite this evidence, the role of altered inflammatory responses directly related to CFTR 

deficiency (as opposed to secondary effects from defective mucociliary clearance) remains 

controversial. Systemic infection remains uncommon in CF despite high airway bacterial 

loads19, raising some questions about the clinical relevance of abnormalities observed in 

isolated CF inflammatory cells. Studies in animal models must also be interpreted with 

caution, since no animal model faithfully recapitulates all aspects of human disease. For 

example, the altered airway pH observed in pigs may not be present in human CF20, and 

airway acidification similar in magnitude to that of the CF pigs has been observed in 

asthma21,22, a disease that is not commonly associated with airway infection21,22.

Anti-inflammatory therapies in CF

Although the factors that contribute to inflammation in CF are not fully defined, the 

relevance of inflammation as a therapeutic target is unquestioned23. Nevertheless, despite 

intensive effort, limited therapies are available. Prednisone is perhaps the most canonical 

anti-inflammatory, and alternate day therapy with prednisone has been shown to increase 

forced vital capacity (FVC) in treated CF patients compared to placebo24. However, chronic 

use of systemic steroids is contraindicated due to their adverse effects including growth 

retardation, osteoporosis, cataracts, hyperglycemia and risk of opportunistic infection. High 

dose ibuprofen is a more targeted anti-inflammatory that has been shown to slow the rate of 

decline of FEV1 in two separate double blind, placebo controlled studies25,26, and this 

clinical benefit has been associated with a decrease in neutrophil migration to the lung27. 

Although trials with ibuprofen did not show a significant increase in adverse events between 

treatment and placebo groups, the perceived risk of gastrointestinal bleeding and renal 

toxicity coupled with the need to obtain serum levels to minimize these risks has inhibited 

widespread use of this drug.

The most widely used therapy in CF with anti-inflammatory properties is azithromycin. 

Interest in azithromycin as a CF therapeutic stemmed from its benefit in diffuse 

panbronchiolitis28, a disease with many similarities to CF, and was thought to possibly relate 

to its antimicrobial activity against Pseudomonas aeruginosa growing in biofilms29. Indeed, 

the initial large study of chronic, low dose azithromycin in CF was targeted towards patients 

with persistent Pseudomonas infection. This study demonstrated that chronic azithromycin 

treatment led to improvement in FEV1, a decrease in exacerbations requiring antibiotic 

therapy, as well as improved quality of life (QOL) scores30,31. However, the clinical benefits 

occurred despite minimal impact on Pseudomonas bacterial density, suggesting that a 

different mechanism of action was responsible. Azithromycin has a number of anti-

inflammatory effects, including reduction in neutrophil oxidative burst and increases 

neutrophil apoptosis32,33. In lung macrophages azithromycin also appears to inhibit 

apoptosis, stimulate phagocytosis of bacteria and cellular debris, as well as skew 

macrophage cytokine expression toward an anti-inflammatory phenotype34. Other anti-
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inflammatory effects of azithromycin include decreased mucin production with a resultant 

decrease in mucus viscosity, maintenance of tight junctions between epithelial cells and 

improvement of the integrity of the epithelial cell layer under inflammatory conditions33. 

These immunomodulatory effects may underlie the benefits of azithromycin more than its 

anti-Pseudomonal activity, and a large multi-center study demonstrated clinical benefit of 

chronic azithromycin in patients who did not have Pseudomonas infection35.

Given the extensive number of pathways identified as playing roles in CF airway 

inflammation, it may seem surprising that other anti-inflammatory therapies have not yet 

been developed. However, an effective anti-inflammatory for CF must manage a careful 

balancing act, providing sufficient potency to reduce inflammation induced lung damage 

without interfering with the ability to resolve infection. This balance can be difficult to 

achieve, as revealed by the Phase II clinical trial of BIIL 284 BS, a promising antagonist of 

the leukotriene B4 receptor known to play a significant role in CF airway inflammation. This 

trial was stopped early due to an increase in pulmonary adverse events in those receiving the 

active drug compared to placebo36. Further studies showed that treatment of CF mice with 

BIIL 284 BS interfered with their ability to resolve Pseudomonas aeruginosa respiratory 

infection37. These results showcase the difficulty of balancing a reduction in inflammation 

while not significantly increasing the bacterial burden with the use of anti-inflammatory 

therapies and emphasize the need for pre-clinical testing of novel therapeutics23.

Barriers to anti-inflammatory development: measuring airway inflammation

The dearth of effective anti-inflammatory therapies represents an ongoing barrier to 

normalcy in CF and suggests a need to identify new therapeutic targets. Testing of anti-

inflammatory therapies and other treatments in CF has become increasingly challenging, as 

overall improvements in lung function and health make observing changes in traditional 

endpoints such as lung function or pulmonary exacerbations more difficult to assess without 

large and expensive trials38. However, accurately measuring airway inflammation directly as 

a marker of therapeutic activity can be difficult. Indeed, most of the major trials of anti-

inflammatory therapies described above24–26,36 did not include an airway inflammation 

biomarker, with the exception of the azithromycin trial that demonstrated statistically 

significant though modest changes in neutrophil elastase30. Although treatment related 

reductions in airway inflammation biomarkers were often shown in smaller studies27,39, 

better biomarkers of airway inflammation are clearly needed to identify potential therapeutic 

targets and serve as surrogate markers of efficacy for clinical trials. This need is particularly 

great in young children to try and limit inflammation before the onset of lung damage. The 

challenges in developing better biomarkers reflect limitations in the primary methods to 

obtain airway samples: sputum collection, bronchoalveolar lavage, and assessments of 

exhaled breath (Figure 2, Table 2).

Sputum

Historically, assessments of airway inflammation in CF (and other diseases) have been 

primarily based on analysis of biomarkers in sputum, in part reflecting the long experience 

and existence of standardized protocols for this airway sample. Given the intense airway 
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inflammation that characterizes CF, it is no surprise that a multitude of inflammatory 

biomarkers are elevated in CF sputum, as summarized in several excellent reviews2,40. 

Among these biomarkers, sputum neutrophil elastase has emerged as one of the most 

predictive, with concentrations of sputum NE most highly correlated with lung function 

decline in large studies2,41,42.

However, the utility of sputum is limited somewhat by the need for specialized procedures to 

process samples that typically must be performed immediately after collection43. 

Spontaneously expectorated sputum likely arises from more affected regions of the lung, and 

concentrations of inflammatory markers can be influenced by regional variability in lung 

disease39 Furthermore, in general only older patients with more advanced disease can 

regularly expectorate sputum spontaneously. While sputum induction using hypertonic 

saline can be utilized to obtain samples from patients who do not spontaneously expectorate, 

many younger children have difficulty expectorating sputum even after induction44,45. Thus, 

sputum has a limited role in assessing—and by extension treating—airway inflammation in 

the youngest children.

Bronchoalveolar lavage fluid

For patients who cannot expectorate sputum, flexible bronchoscopy with BAL is considered 

the gold standard for airway biomarker assessment40. As with sputum, numerous 

inflammatory biomarkers are elevated in BAL fluid in children with CF including neutrophil 

counts, neutrophil elastase, pro-inflammatory cytokines such as interleukin-8, and 

others46–51. Several of these inflammatory biomarkers correlate with other aspects of disease 

severity including infection52, radiologic findings51,53,54, and infant lung function 

testing46,49. Like sputum, neutrophil elastase represents one of the most informative markers 

in BAL fluid, with elevated concentrations in infancy predictive of future 

bronchiectasis 1,55–57.

Use of BAL fluid as a source of airway inflammation biomarkers is constrained by several 

limitations, including the time, expertise, and expense needed for the procedure58. 

Furthermore, bronchoscopy requires sedation, which carries both short term risks and 

increasing concerns about long term adverse outcomes 59. Due to these limitations, BAL has 

seen a limited role in clinical trials, though longer term observational studies that include 

BAL biomarkers such as AREST CF have provided significant insights into early 

disease51,60,61.

Exhaled breath

Many of the limitations of sputum and BAL can be overcome through use of exhaled breath, 

which contains both volatile and non-volatile compounds that could serve as inflammatory 

biomarkers. Exhaled biomarkers are often collected as exhaled breath condensate (EBC), 

and since collection only requires the subject to exhale through a chilled tube, EBC can be 

obtained simply and non-invasively even in young children62,63. Indeed, a number of airway 

inflammatory biomarkers that are informative in sputum or BAL fluid are also elevated in 

EBC from subjects with CF, including inflammatory cytokines63–66, 8-isoprostane64,67, 

nitrates64,68, leukotrienes69, and purines49,70, with measures of EBC leukotrienes and 
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purines shown to track changes related to CF exacerbations69,70. EBC pH has also been 

shown to be decreased in subjects with CF and change with treatment of an 

exacerbation71–73. With specialized methods, EBC can even be collected from the youngest 

children during infant pulmonary function testing (iPFTs)74–76.

The ease of EBC collection is belied by difficulty in analysis, with EBC being described as 

“easy on patients” but “hard on scientists”77. Airway secretions in EBC arise from 

microaerosols generated during respiration, which represent a very low and highly variable 

fraction of the fluid volume of the condensate and may under-sample obstructed 

airways78,79. Therefore, extremely sensitive methods are typically needed to assess the low 

concentrations of most traditional biomarkers found in EBC, which ideally should also 

include a means to control for variable dilution78,80. Our own approach has been to utilize 

mass spectrometry to measure relevant biomarkers as well as urea as a dilution marker81–83, 

though there are other valid methods30,32. Failure to adequately address these challenges 

impacts the reproducibility and validity of EBC biomarkers and may limit their utility as 

effective measures of airway inflammation84.

Some of the limitations of EBC can be addressed by a focus on volatile biomarkers, which 

are not dependent on microaerosol generation for incorporation in exhaled breath. Several 

studies had shown that volatile organic carbon (VOC) profiles are altered in individuals with 

CF and could serve as inflammatory biomarkers85,86. One of the potentially exciting 

application of VOC profiling in CF is the development of electronic “nose” systems that 

could provide information on airway inflammation at the point of care87,88. However, 

current methods require sophisticated mathematical modeling to identify complex patterns 

in the detected VOCs, and the reproducibility of these signatures and their relationships to 

specific aspects of airway inflammation have not been established.

Non airway samples

The high levels of inflammation in the airways of individuals with CF translate into 

increases in systemic inflammatory biomarkers that could be assessed in serum or plasma, 

which are relatively easily obtained and analyze. Indeed, a large number of blood 

inflammatory markers are elevated relative in CF, including C-reactive protein89–92, 

immunoglobulin G90,93,94, cytokines91, tumor necrosis factor95, and transforming growth 

factor β96, many of which are altered with pulmonary exacerbation91,92,96,97. However, the 

potential contribution of non-pulmonary inflammation reduces the specificity of these 

biomarker for lung disease and limits applicability. There have also been small trials 

investigating the use of biomarkers in both saliva and urine as a surrogate for lung 

inflammation98,99.

Imaging

A number of small studies have been done using fluorodeoxyglucose (FDG) PET to quantify 

lung inflammation and follow response to treatment of CF exacerbations. FDG is 

concentrated in activated neutrophils which are recruited to sites of inflammation. The 

degree of inflammation can be estimated by the degree of FDG emission. A study following 

the kinetics of FDG movement to the lung showed that increased influx into the lung 
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correlated with a more rapid decline in FEV1 over time100. Other studies have used FDG 

PET monitor changes in inflammation during antibiotic treatment of CF exacerbation. 

Patients underwent FDG PET on days 1 and 14 of treatment and degree of inflammation was 

determined using standard uptake values (SUV). This group found that over the course of 14 

days of IV therapy the max SUV decreased101. Regular use of FDG PET CT is limited by 

radiation exposure, however, as low dose CT protocols improve this may become a useful 

technique to follow lung inflammation.

Novel strategies

Despite all we have learned about the inflammatory pathways involved in CF lung disease, 

numerous challenges remain in translating these findings into effective anti-inflammatories. 

Many signaling pathways are not easily amenable to pharmacological inhibition, often 

requiring biologic antibody based treatments that while effective can be expensive and 

difficult to administer102. Other pathways may be too vital to host defenses to serve as a 

viable therapeutic targets, as suggested by the outcomes of the BIIL 284 BS study36. 

Therefore, there remains an urgent need to identify new pathways that could serve as viable 

targets for anti-inflammatory development. The ideal pathway would have defined 

characteristics, including an involvement in early disease, a readily measurable biomarker of 

activity, and availability of a relatively simple pharmaceutical treatment. Perhaps most 

importantly, blockade of this pathway should reduce inflammation without interfering with 

the ability to resolve infection (Table 1).

Use of ‘omics strategies, particularly metabolomics, is well suited towards identifying 

pathways that meet these criteria. The changes in metabolite patterns associated with disease 

reflect cellular enzymatic activities, which are attractive as therapeutic targets since they can 

often be inhibited by small molecule therapeutics103. Furthermore, the identified metabolites 

can serve as biomarkers of pathway activity and drug effects, many of which can be readily 

measured using standard methods even in non-invasive sample such as EBC81,82,104. The 

potential metabolomics has been demonstrated in several studies that find CF specific 

metabolite patterns in sputum105, BALF106–108, blood109,110, and even EBC111,112.

Metabolomics studies can be particularly informative when interpreted in conjunction with 

other ‘omics evaluations. For example, one of the largest gene wide association studies to 

date in CF identified associations between disease severity and expression of the gene 

APIP113, which encodes an enzyme involved in the methionine salvage pathway, and 

metabolites associated with this pathway, including polyamines and free adenine, are 

associated with neutrophilic inflammation in CF107,108,114. Similarly, the lysophosphatidic 

acid receptor LPAR6 has been linked to CF lung disease in genomic studies115, while the 

lysophospholipid substrates of this receptor are elevated in CF bronchitis107,116. While such 

studies demonstrate the promise of metabolomics to identify biomarkers and therapeutic 

targets, further study is needed before the potential of these identified pathways is truly 

known.
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Conclusions

The intense inflammation present in the airways of individuals with CF is one of the most 

significant causes of progressive lung disease. Until we have a cure for CF, development of 

effective anti-inflammatories needs to be a priority for the CF research community. New 

approaches using metabolomics and other strategies to map the inflammatory targets in CF 

hold promise in development of new therapies.
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Figure 1. 
Factors that contribute to the excessive inflammatory response in CF
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Figure 2. 
Ease of collection and ease of biomarker measurement (including processing steps) are 

generally inversely related.
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Table 1

Ideal inflammatory pathways to target

1. Involved in early disease

2. Associated with a biomarker that is readily measured in a non-invasive sample

3. Can be altered by a relatively simple pharmaceutical

4. Inhibition reduces inflammation without limiting ability to contain infection
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Table 2

Comparison of airway samples for biomarker measurement

Advantages Disadvantages Region sampled Inflammatory biomarkers

Sputum Well established
Non-invasive

Requires immediate processing
Difficult in young children

Most affected large airways Cell counts
Cytokines/proteins
Metabolites

BAL Can be used in all 
subjects

Higher risk (anesthesia)
Expensive

Targeted smaller airways Cell counts
Cytokines/proteins
Metabolites

EBC Simple to collect
Non-invasive

Very low and variable biomarker 
concentrations

Small airways (may under-
sample plugged airways)

Cytokines/proteins
Metabolites
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