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Breast cancer is one of the leading causes of death noticed in women across the world. Of late the most successful treatments
rendered are the use of aromatase inhibitors (AIs). In the current study, a two-way approach for the identification of novel leads
has been adapted. 81 chemical compounds were assessed to understand their potentiality against aromatase along with the four
knowndrugs. Dockingwas performed employing theCDOCKERprotocol available on theDiscovery Studio (DS v4.5). Exemestane
has displayed a higher dock score among the known drug candidates and is labeled as reference. Out of 81 ligands 14 have
exhibited higher dock scores than the reference. In the second approach, these 14 compounds were utilized for the generation of the
pharmacophore. The validated four-featured pharmacophore was then allowed to screen Chembridge database and the potential
Hits were obtained after subjecting them to Lipinski’s rule of five and the ADMET properties. Subsequently, the acquired 3,050
Hits were escalated to molecular docking utilizing GOLD v5.0. Finally, the obtained Hits were consequently represented to be ideal
lead candidates that were escalated to the MD simulations and binding free energy calculations. Additionally, the gene-disease
association was performed to delineate the associated disease caused by CYP19A1.

1. Introduction

Breast cancer is considered to be one of the leading causes
of death in women across the world [1]. More than 2.5
million women in the USA are reported with breast cancer
[2]. Majority of the breast cancer cases known today are
primarily hormone dependent. The development of aro-
matase inhibitors has immensely improved the efficacy of the
endocrine therapy towards breast cancer. Aromatase enzyme
plays a very crucial role in the oestrogen positive breast
cancers and hence establishes itself as a promising drug
candidate. Delineating the long-term oestrogen deprivation
(LTED) narrowed the fact that the breast cancer cells make
use of a variety of growth factor pathways and oncogenes

to bypass the general endocrine response [3, 4]. The most
important signal transduction pathways are the EGFR,HER2,
intracellular kinase cascades, transcription genes involved
in cell proliferation, and proteins that regulate the cell
cycle. Oestrogen receptor positive breast cancer is resistant
to tamoxifen [5] and oestrogen receptor positive signaling
was assumed to play a paramount role in this. Moreover,
the above-mentioned signal pathways may have crosstalk
with oestrogen receptor dependent gene transcription [6].
The drugs involved in treating the oestrogen positive breast
cancers act either by interfering with oestrogen production
or by action. However, aromatase inhibitors act only on
the oestrogen produced by breast cancer cells. The rationale
behind designing and developing new aromatase inhibitors is
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Figure 1: Depiction of the two-step method employed to retrieve the lead candidates from Chembridge database.

to produce a drugmolecule with higher clinical efficacy along
with reduced side effects that could be beneficial in treating
the postmenopausal women diagnosed with breast cancer
[7]. However, the success of the use of aromatase inhibitors
relies greatly on the mechanism involved in obtaining resis-
tance to aromatase inhibitors and furthermore the cross-
talk. Of late, endocrine therapy has failed to some extent in
treating the patients with hormone-sensitive breast cancer
because the tumors have developed expertise to flee from the
endocrine therapy [8], thus developing resistance. Some rea-
sons for obtaining such resistance are due to the upregulation
of signal transduction pathways, oestrogen hypersensitivity,
and further the cross-talk between the upregulated signal
transduction pathways and the oestrogen receptor pathways
[6]. In order to overcome this setback duly due to endocrine
resistance, one approach is to use the aromatase inhibitors
in combination with the signal transduction inhibitors. It
was presumed that, by the use of combined therapeutics, it
could be made possible for one or several treatments could
attack the cancer cells making the treatment more effective
[9]. Nevertheless, the prime focus is on identifying the best
combinationwith cost-effectiveness and hence there is a need
for developing new aromatase inhibitors. AIs can be grouped
into first-, second-, and third-generation drug compounds.
The first-generation drugs such as aminoglutethimide have
demonstrated a poor selectivity towards CYP450 and were
highly toxic. The second-generation drugs with an imidazole

group were remarkable and promising as compared with the
first-generation drugs; however, they lacked specificity. Later,
the third-generation drugs were developed that represented
an enhanced therapeutic index and reduced toxicity and
therefore were successful in obtaining approval from the FDA
[10–12]. The third-generation drugs were further classified
into steroidal (type I) and nonsteroidal (type II) inhibitors
[13, 14]. The main difference exists with their mechanism of
action. Structurally, the steroid inhibitors are the analogues
of the substrate androstenedione and thus impart its action
by binding irreversibly to the substrate binding site. Such a
type of inhibitors is called suicide inhibitors or inactivators
[15, 16]. In contrast, the nonsteroidal inhibitors occupy the
substrate binding site by interacting noncovalently with the
heme [13]. The objective of the present article is to identify
most potential aromatase inhibitors from the set of chosen
ligands and then utilize them to screen the database to obtain
novel lead compounds which could be beneficial in limiting
the breast cancer prognosis and further to understand their
binding affinities for the establishment of potential drug
molecules as compared to the currently used drugs.

2. Materials and Methods

To accomplish the objectives, the investigation was executed
by a two-step process. The info graphic depiction of the
method adapted is shown in Figure 1.
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Figure 2: General structure of nimesulide.
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Figure 3: Nimesulide with modifications.

2.1. Approach 1

2.1.1. Selection of the Protein. The protein for the present
investigation is aromatase (gene: CYP19A1) which was
retrieved from the Protein Data Bank (PDB) with the code
3EQM [17, 18] that displayed a resolution of 2.9 Å and is in
complex with the substrate 4-androstene-3-17-dione. Protein
preparation was performed by removing all the heteroatoms
and further the missing hydrogens were added [19]. To make
the protein ready for docking, the energy minimization was
conducted until satisfied convergence gradient was obtained.
The active site was selected around the substrate at 15 Å
radius. Additionally, the crucial residues located at the active
sites were identified as Arg115, Ala306, Asp309, Val370,
Leu372, Met374, and Leu477 [20]. Among them, the amino
acid residue Met374 has been identified to play an important
role by forming the hydrogen bond interactions with the
substrate molecule. The other residues impart electrostatic
and hydrophobic interactions. Therefore, the interactions
with these residues are imperative in identifying novel lead
molecules.

2.1.2. Selection of the Ligands and Preparation. Sulfonanilide
derivatives are known to suppress aromatase activity in trans-
fectedMCF-7 cells [1]; however their binding potency has not
been tested. Therefore several sulfonanilide derivatives were
used for the present investigation. 81 sulfonanilide derivatives
were drawnon theMarvin sketch tool (https://wwwchemaxon
.com/products/marvin/marvinsketch/), Supplementary 1, in
Supplementary Material available online at https://doi.org/
10.1155/2017/2105610. Further, energy minimization with
CHARMm force field was applied. The selected 81 com-
pounds were designed based on nimesulide as described by
Su et al., Figures 2 and 3 [1], and were imported onto the DS
v4.5. Additionally, the known inhibitors, namely, anastrozole,

exemestane, letrozole, and tamoxifen, were also sketched on
Marvin sketch and were subsequently imported onto the DS
v4.5.

2.2. Approach 2. The prospective drug compounds that
have displayed the higher dock scores than the known
inhibitors (higher one among them is labeled as the reference
molecule) were employed to generate the pharmacophore
model employing the HipHop common feature pharma-
cophore generation protocol implemented on the DS. HipHop
specifically extracts the common feature pharmacophore
models utilizing the information available on the set of given
active compounds. The interfeature distance was taken as
2.97, while keeping all the other features as default.

2.2.1. Validation of the Generated Pharmacophore. The gen-
erated pharmacophore was further validated to assess its
predictive ability in retrieving the active molecules from
the database used for screening. Accordingly, the generated
pharmacophore was validated using the ROC curve and the
decoy set method. The ROC curve was performed alongside
the pharmacophore generation. In the ROC method a set
of ligand molecules were taken consisting of known active
and known inactive compounds. A total of 20 molecules
were selected that consisted of 14 known active compounds
and the remaining were the known inactive compounds. In
the decoy set validation [21], a dataset of 107 molecules was
instituted comprising the 14 active compounds. The ligand
pharmacophore mapping protocol available on the DS was
employed to understand the ability of the pharmacophore
model to map with the active compounds. Subsequently, the
GH and the EF [21] values were computed to affirm the same.

2.2.2. Database Screening and Drug-Like Properties. Pharma-
cophore based virtual database screening is one of the most
advanced methods used to identify the novel potential leads
for further development. A pharmacophore thus imbibes all
the bioactive features of the prospective drugs and is therefore
recommended to screen the databases to obtain the candidate
compounds. The validated pharmacophore was therefore
adapted to screen the Chembridge database in order to obtain
the lead molecules that oblige to all the pharmacophoric
features. The database screening was initiated employing the
ligand pharmacophore mapping protocol available on the DS
using the best flexible algorithm.The retrieved Hit molecules
that mapped with all the features were subjected to Lipinski’s
rule of five and the ADMET implemented on the DS.

2.2.3. Molecular Docking. CDOCKER, available with the
DS v4.5, was recruited for analyzing the binding affinities
between the protein and the ligand that relies largely on the
CHARMm force field. Consequently, diverse conformations
were generated adapting the random rigid body rotation.
Each ligand was allowed to generate 30 conformers, keeping
all the other parameters as default. The docking results were
read by the -CDOCKER interaction energy [22, 23], which
implies the energy of the nonbonded interactions that exists
between the protein and the ligand [19, 24]. Additionally,
higher -CDOCKER interaction energy values denote greater

https://www.chemaxon.com/products/marvin/marvinsketch/
https://www.chemaxon.com/products/marvin/marvinsketch/
https://doi.org/10.1155/2017/2105610
https://doi.org/10.1155/2017/2105610
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favorable binding between the protein and the ligand [19, 24].
Docking was performed with 81 ligand molecules along with
four FDA approved breast cancer drugs, to understand the
potency of the new drugs. The known drugs used for the
present investigation are anastrozole, exemestane, letrozole,
and tamoxifen. The prepared protein and the ligands were
imported onto DS v4.5 for the execution of the docking pro-
tocol. Corresponding results were evaluated based upon the
-CDOCKER interaction energy, hydrogen bond interaction,
and the binding mode pattern.

2.2.4. Molecular Dynamics Simulations. To further affirm
the potentiality of the selected compounds and to evaluate
the dynamic behaviour of the prospective drug molecules
in the binding site pocket, they were subjected to MD
simulation along with the reference compound using GRO-
MACS4.5.7 [25–27], employingCHARMm27 [25] force field.
Ligand topologies were generated using SwissParam [28].
Corresponding counterions were added to neutralize the
solvated TIP3P water model present in the dodecahedron
box. Unwanted contacts from the initial structure were
dislodged by performing the energy minimization, adapting
the steepest descent algorithm which was followed by the
NVT and NPT equilibration steps. During this process, the
solvent molecules along with the counterions were allowed
to move restraining the protein backbone. Both the processes
were executed by 100 ps at 300K and a pressure of 1 bar,
respectively. Parrinello-Rahman barostat was employed to
maintain the pressure of the system [29]. The geometry
of the water molecules and the bonds involving hydrogen
atoms were constrained employing SETTLE and LINCS,
respectively [30, 31]. ParticleMesh Ewald (PME)method [32]
was used to calculate long-range electrostatic interactions.
A cut-off distance of 12 Å was attributed for Coulombic and
van der Waals interactions. The equilibrated structures were
then subjected to productionMDconducted for 50 ns and the
results were evaluated on VMD [33] and DS.

2.2.5. Time Based Binding Free Energy Calculations. To
delineate further the protein-ligand complex, time based
binding free energy calculations were performed. Molecular
Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA)
[34, 35] was used for its accomplishment and was performed
after theMDsimulations.TheobtainedΔ𝐺 takes into account
the protein fluctuations and the ligand conformations, which
therefore ensures proper positioning of the ligand within the
binding pocket.

The binding free energy protein-ligand complex in sol-
vent system is stated as

Δ𝐺binding = 𝐺complex − (𝐺protein + 𝐺ligand) . (1)

Herein, 𝐺complex refers to the total free energy of the complex
and 𝐺protein and 𝐺ligand indicate the separated protein and
ligand in the solvent. Their free energies can be computed by

𝐺
𝑋
= 𝐸MM + 𝐺solvation, (2)

where 𝑋 can be a protein, ligand, or its complex. 𝐸MM
represents the average molecular mechanics potential energy

in vacuum, while 𝐺solvation interprets the free energy of
solvation.

Additionally, molecular mechanics potential energy in
vacuum can be evaluated by adapting the equation

𝐸MM = 𝐸bonded + 𝐸non-bonded

= 𝐸bonded + (𝐸vdw + 𝐸elec) .
(3)

𝐸bonded represents the bonded interactions, while the non-
bonded interactions are denoted by 𝐸non-bonded. Δ𝐸bonded is
generally regarded as zero [36].

The solvation free energy (𝐺solvation) is expressed by the
sum of electrostatic solvation free energy (𝐺polar) and apolar
solvation free energy (𝐺non-polar) and is given as follows:

𝐺solvation = 𝐺polar + 𝐺non-polar. (4)

𝐺polar is computed recruiting the Poisson-Boltzmann (PB)
equation [37] while 𝐺non-polar is computed from the solvent-
accessible surface area (SASA) and can be written as follows:

𝐺non polar = 𝛾SASA + 𝑏. (5)

Here, 𝛾 is the coefficient of the surface tension of the
solvent whereas, 𝑏 is its fitting parameter, whose values are
0.02267 kJ/mol/Å2 or 0.0054 kcal/mol/Å2 and 3.849 kJ/mol
or 0.916 kcal/mol, respectively.

2.2.6. Gene Network and Disease Complexity. To further
understand the complexity of the disease in terms of knowing
the association of the causative gene with other genes and
diseases, a systematic gene-disease association and gene-
gene association was performed employing the DisGeNET
[38, 39]. DisGeNET efficiently finds the related genes to the
disease and vice versa. This investigation was undertaken
to delineate the diseases caused by the same gene such that
there might be a possibility of using the same drugs that were
identified. Several reports exist on such strategies and have
gained increasing popularity [40–43]. The development of
suchmethods has certain advantages such as being time- and
cost-effective [44, 45].

For the current investigation, the gene CYP19A1 has been
used as a query to examine the diseases and genes associated
with it. The results are read as scores to rank based on the
supporting evidence. Score is the accuracy of the gene-disease
pair depending upon the type and the number of sources
reported from PubMed.

3. Results

3.1. Approach 1

3.1.1. Molecular Docking Mechanism. The selected ligands
along with the known inhibitors have rendered good docking
results when challenged against the protein drug target. The
docking results showed that the CDOCKER interaction ener-
gies of the 81 compounds were higher than the known drug
candidates as represented inTable 1 and Supplementary 2.The
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Table 1: Dock scores of 14 inhibitors along with exemestane in the order of their CDOCKER interaction energy. Exemestane showed higher
dock score than the other known drugs.

S number Compound number -CDOCKER energy
(kcal/mol)

-CDOCKER
interaction energy (kcal/mol)

1 22 22.54 55.76
2 30 25.63 55.50
3 28 30.32 55.40
4 8 21.03 55.2
5 42 29.80 54.99
6 74 28.80 54.96
7 16 14.36 54.44
8 27 32.14 53.84
9 34 25.96 53.08
10 9 27.97 51.79
11 37 19.56 50.78
12 7 17.91 50.17
13 12 26.78 49.83
14 29 23.32 49.45

Exemestane 10.25 48.27

-CDOCKER interaction energies of the known drugs have
ranged between 29 kcal/mol and 49 kcal/mol. Among them,
exemestane has displayed a higher score of 48.27 kcal/mol.
Therefore, the -CDOCKER interaction energy of this known
drug was considered as reference to screen 81 ligands, Table 1
and Supplementary 2. Subsequently, further studies were
performed taking exemestane as a reference molecule. This
is one indication that proves the efficacy of the 81 ligands.
Accordingly, 14 inhibitors have shown higher dock score than
the exemestane, Table 1 and Figure 4. Furthermore, it was
observed that the 14 inhibitors have aligned in the same
binding pattern as that of the cocrystal and the reference
compound, Figure 5 and Supplementary 3. The obtained 14
compounds were used to generate the pharmacophoremodel
for the subsequent extraction of the novel inhibitors against
the aromatase enzyme, a process that occurs in approach 2.

3.2. Approach 2

3.2.1. Pharmacophore Generation. The 14 compounds that
have generated the higher dock scores were employed to
generate the pharmacophoremodel using the common feature
pharmacophore protocol implemented on the DS. These 14
compounds exhibited a range of IC

50
values and were struc-

turally diverse. All the parameterswere selected as default and
selection of the best pharmacophore hypothesis was based
upon the rank and the maximum number of features showed
by the hypothesis. Out of the 10 generated pharmacophores,
seven have displayed one ring aromatic, two hydrogen
bond acceptors, and one hydrophobic feature, while the
remaining three have displayed one hydrophobic and three
hydrogen bond acceptors, Supplementary 4. Furthermore, it
can therefore be understood that the hydrophobic and the
hydrogen bond acceptors are the most important features.

Subsequently, a pharmacophore comprising four features was
generated consisting of one hydrophobic, one aromatic ring,
and two hydrogen bond acceptors; Figure 6 was selected
as it displayed a higher rank of 134.98. The ranking is a
measure of how well the molecules map onto the proposed
pharmacophores, as well as the rarity of the pharmacophore
model. The best pharmacophore model is more likely to map
with the active compounds thus generating the higher rank.
Further screening of the database was performed based on
the fit value≥ 4.Additionally, themost active compound from
the test set was superimposed onto the pharmacophore. It was
noticed that the most active compound (compound 7) has
mapped with all the features of the pharmacophore, Figure 7.

3.2.2. Validation of the Pharmacophore. The generated phar-
macophore was validated by utilizing the ROC curve, which
was computed simultaneously during the pharmacophore
generations and by the decoy set method. The ROC curve
validation was proceeded by taking the known 14 active
compounds and the 6 known inactive compounds. The 6
known inactive compounds were systematically chosen and
are shown in Supplementary 5. Logically, the chosen phar-
macophore should map with the active compounds leaving
away the known inactive compounds. The generated plots
imply the accuracy of the model in distinguishing between
true positives and the true negatives. The resultant ROC
plot indicated that the pharmacophore model was efficient
in identifying the true positives from the true negatives and
thus the quality of themodel was pronounced to be goodwith
0.88, Figure 8. As a second method, the decoy set method
was initiated, Table 2, for which an external dataset (𝐷) com-
prising 107 compounds was instituted, consisting of 14 active
compounds. The ligand pharmacophore mapping protocol
available on the DS was executed. The Güner-Henry (GH)
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Figure 4: 2D structures of the inhibitors that showed higher dock score than the reference compound. The figures are placed in the order of
their CDOCKER interaction energies.
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Figure 5: Binding patterns of 14 inhibitors along with the reference compound (pink) and the cocrystal (blue). Bluemesh indicates the closed
surface. Picture on the left demonstrates the overlying of the compounds and picture on the right is its enlarged form.
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Figure 6: Pharmacophore model with four features and its geom-
etry. Green represents the hydrogen bond acceptor; orange denotes
the aromatic ring and cyan refers to hydrophobic feature.

Figure 7: Overlay of the most active compound onto the four-
featured pharmacophore. The compound was shown to map with
all the four features.
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Figure 8: ROC curve obtained considering 14 higher docked score
compounds as known active compounds.

scoring method was used to evaluate the pharmacophore
hypotheses and was calculated employing the formula GH =
{[Ha ∗ (3𝐴 + Ht)]/(4Ht𝐴)} ∗ [1 − (Ht − Ha)/(𝐷 − 𝐴)]. The
GH score may range from 0 to 1 signifying the quality of
the model to be between null and ideal [46]. Consequently,
the pharmacophore could map with a total of 15 Hits (Ht)
which had 13 active molecules (Ha) and the corresponding
GH score was calculated to be 0.76 indicating the generated
pharmacophore model to be a good one [47]. The other
results of the decoy set validation are tabulated in Table 2.
The quality of the pharmacophore model was proved by the
two validations and further this affirms that the model has an
ability to retrieve the active molecules from a given database.
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Hit 1
Hit 2

Figure 9: Overlay of the Hits onto the pharmacophore features. The Hits are seen to map with all the features of the pharmacophore.

Table 2: Details of the decoy set method of validation. The GH
values obtained conclude that the pharmacophoremodel is of a good
quality.

Parameters Values
Total number of molecules in database (𝐷) 107
Total number of active compounds in database (𝐴) 14
Total number of Hit molecules from the database (Ht) 15
Total number of active molecules in Hit list (Ha) 13
% yield of active compounds (Ha/Ht) 0.8
% ratio of active compounds [(Ha/𝐴) × 100] 92
Enrichment factor (EF) 6.0
False negatives (𝐴 −Ha) 1
False positives (Ht −Ha) 2
Goodness of fit score (GF) 0.76

3.2.3. Virtual Screening of the Chembridge Database. The
validated pharmacophore has been used as a query to screen
the Chembridge database in pursuit of obtaining the lead
molecules. Ligand pharmacophore mapping protocol was
initiated to screen the database containing 50,000 com-
pounds during which all the parameters were set as default.
The pharmacophore model was successful in mapping with
17,388 compounds, which were forwarded to Lipinski’s Ro5
and the ADMET studies. Rule of five (Ro5), according to
Christopher A. Lipinski, is a rule of thumb to determine if
a biologically active compound possesses the properties that
could make it an ideal orally active drug in humans [48].
Therefore, an ideal chemical compound should have nomore
than 5 hydrogen bond donors, less than 10 hydrogen bond
acceptors, log𝑃 no greater than 5, and a molecular weight
less than 500 Daltons. Additionally, the ADMET properties
were calculated to understand the pharmacokinetics of a
prospective drug molecule in the human body. Accordingly,
the blood brain barrier (BBB) penetration, hepatotoxicity,
solubility, adsorption, plasma protein binding (PPB), and
CYP450 2D6 inhibition were assessed. Corresponding upper

limit for the BBB, solubility, and the absorption were duly
set as 3, 3, and 0. A total of 3,050 compounds have obeyed
the aforementioned criteria and were escalated to molecular
docking studies to further gain insight into their binding
modes.

3.2.4. Molecular Docking Mechanism. Molecular docking
protocol was initiated as described earlier with the screened
3,050 compounds along with compound 22 (obtained from
approach 1) and the reference compound. All those com-
pounds that have displayed a higher CDOCKER interaction
energy than the reference and the ligands that satisfied the
necessary interactions with the active site compounds were
chosen, Table 3. Eventually two compounds have obeyed the
above criteria and havemappedwell with the pharmacophore
features, Figure 9. These Hits were therefore forwarded to
the MD simulations and further the binding free energy
calculations.

3.2.5. Molecular Dynamics Simulations. To further validate
the superiority of compound 22 and the Hits, they were
forwarded to the MD simulation and binding free energy
calculations along with the reference compound. MD run
of 50 ns was therefore performed to elucidate the conforma-
tional variation, their behaviour, and further their binding
stability. Accordingly, the RMSD calculations were executed
for the reference and Hits for the protein backbone atoms
to assess their overall stability. The RMSD of the reference,
compound 22, Hit1, and Hit2 were found to be 0.16 Å,
0.2 Å, 0.27 Å, and 0.2 Å, respectively, during 50 ns MD run.
Additionally, the RMSD further revealed that the stability for
all the four systems was attained after 12,000 ps without any
further deviation thereafter, Figure 10. The stability of the
protein was additionally assessed by computing the potential
energy and the radius of gyration. The radius of gyration
enables understanding the compactness of the protein [49,
50] and thus its folding.The result, Figure 11, is suggestive that
compound 22 and the Hits were stably folded throughout the
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Table 3: Dock scores of the Hits and the reference compound.

Compound -CDOCKER energy
(kcal/mol)

-CDOCKER interaction energy
(kcal/mol)

Reference 10.25 48.76
Hit1 27.14 64.64
Hit2 32.77 60.04
Compound 22 22.54 55.76

Table 4: Interacting residues of the protein and the compounds.

S number Name Hydrogen
bonds (<3.0 Å) van der Waals interactions Alkyl/𝜋-alkyl

interactions

1 Reference Arg115, Met374
Phe134, Ile305,

Ala306, Asp309, Thr310,
Leu372, Leu477, Ser478

Ile133, Trp224,
Trp224, Val370,

Val373

2 Compound 22 Thr310, Met 374
Phe134, Phe221, Trp224,
Asp309, Val374, Leu372,

Ser478
Ile133, Val370

3 Hit1 Arg115, Met374

Ile132, Trp224, Ala306,
Ile305, Asp309, Thr310,
Val369, Val370, Val373,

Ala438, Gly439

Ile133, Phe134,
Gly436, Cys437,

Leu477

4 Hit2 Arg115, Met374

Ile132, Phe134, Phe148,
Leu152, Trp224, Met303,
Ala306, Asp309, Thr310,
Val369, Leu372 Phe430,

Gly431, Ser478

Ile133, Phe221,
Val370, Val373,

Leu477
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Figure 10: RMSD plot to assess the overall stability of the system for
50 ns of MD simulations.

MD simulation and was similar to the reference. Moreover,
the potential energy ofHits and the reference compoundwere
seen to be unvarying throughout the simulation, Figure 12.
The binding mode analysis was conducted on last 5 ns
trajectories for the reference, compound 22, and the Hits,
correspondingly. Upon superimposition of the correspond-
ing representative structures of the reference and the Hits,
it was noticed that the reference and the Hits converged
in similar pattern, Figure 13. Moreover, the intermolecular
interactions of the reference and the Hits have revealed the
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Figure 11: Radius of gyration profiles of the reference and the Hits.

presence of the key residues, Table 4 and Figure 14. The
reference molecule has formed two hydrogen bonds with
Arg115 and Met374 correspondingly. The HH11 of Arg115 has
joined with the O1 of the reference compound with a bond
length of 2.7 Å and the HN of Met374 has interacted with O1
of the exemestane with an acceptable bond length of 1.8 Å.
Further delineating the intermolecular interactions reveals
that the Phe134, Ile305, Ala306, Asp309, Thr310, Leu372,
Leu477, and Ser478 have been involved in the van der Waals
interaction and Ile133, Trp224, Trp224, Val370, and Val373
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Figure 12: Potential energy of the reference and the Hits. All the
systems are well converged.
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Figure 13: Binding mode analysis of the reference and the Hits.
Picture on the left represents the superimposed structure and on the
right is its enlarged form.

have formed the alkyl/𝜋-alkyl bonds. Compound 22 has
rendered hydrogen bond interactions with two key residues,
Thr310 and Met374, and was represented by two hydrogen
bonds. HN atom of Met374 has formed hydrogen bonds
with the ligand O26 atom displaying a bond length of 2.8 Å,
respectively. HG1 atom of Thr310 has interacted with O13
atom of the ligand with a bond distance of 2.2 Å. Moreover,
the Phe134, Phe221, Trp224, Asp309, Val374, Leu372, and
Ser478 have interacted with the van der Waals interactions.
The alkyl/𝜋-alkyl bonds were formed with Ile133 and Val370,
respectively. Hit1 has formed two hydrogen bond interactions
withMet374 andArg115 with a bond length of 2.7 Å and 2.2 Å,
respectively. The NH atom of the Met374 was observed to
join with the O16 of the ligand and the HH21 atom of the

protein has interacted with the O11 of the ligand. The HH21
atom of Arg115 has interacted with O11 atom of the ligand
with a bond length of 2.2 Å. Furthermore, Hit2 has formed
three hydrogen bonds with Met374 and Agr115. Met374 has
exhibited one hydrogen bond with HN atom and O11 of the
ligand with a bond distance of 2.2 Å. The O12 atom of Hit2
has formed hydrogen bonds with HH12 and HH22 atoms of
Arg115 with a bond distance of 2.8 Å and 2.4 Å, respectively.
The details of the interactions are tabulated in Table 4 and
the corresponding 2D structures of the Hits are represented
in Figure 15. Furthermore, their systemic IUPAC names were
generated from Biovia draw and are represented in Figure 15.

3.2.6. Time Dependent Binding Free Energy Calculations.
MM/PBSA was adapted for the execution of the binding free
energy calculations. 20 snapshots were evenly generated from
1 to 50 ns MD trajectories [51, 52]. The binding free energy
value, Δ𝐺, is the sum of protein fluctuations in the complex
and the conformations of the ligand, a measure employed to
secure an appropriate positioning of the ligand within the
binding site [53, 54]. To accomplish this step, the MM/PBSA
was executed which renders information on van der Waals
energy, electrostatic energy, polar solvation energy, SASA
energy, and the binding energy. The corresponding results
generated favorable Δ𝐺 values for the reference and the Hits
that ranged between −80 kJ/mol and −40 kJ/mol as depicted
in Figure 16. Minor deviations in the corresponding snap
shots were observed as the conformational space was not
sampled enough to render the converged results [55]. These
findings showed that the Hits have displayed a favorable van
derWaals energy, electrostatic and polar solvation, and SASA
energetic terms as compared with the reference compound.
Moreover, the average binding energy of the reference was
computed to be −56.88 kJ/mol, while compound 22, Hit1,
and Hit2 have exhibited −77.20 kJ/mol, −77.77 kJ/mol, and
−82.58 kJ/mol, respectively. The polar solvation was found
to have been contributed positively to binding energies,
Figure 17.

3.2.7. Gene Network and Disease Complexity. To further
understand the association of aromatase gene with differ-
ent disease, the query was given as CYP19A1. Information
pertaining to top 10 diseases associated with the query gene
and the top 10 genes that share diseases with this gene was
retrieved, Tables 5 and 6. CYP19 has been involved with
multiple diseases related towomen andmore particularly was
seen to be associated with cancer. However, osteoporosis was
also found to be influenced by CYP19 that is predominant
in elderly women, Table 5. The same has been noted when
probing into the genes that share diseases with CYP19.
Additionally, it was evident that the CYP19 is crucial in
several cancer aliments, Table 6.

4. Discussion

With an objective of identifying most potential aromatase
inhibitors, the article proceeds taking into consideration the
small molecules as described by Su et al. and accordingly
they were drawn on Marvin sketch. CDOCKER protocol
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Figure 14: Hydrogen bond interactions between the protein and the ligands. Green dashed lines indicate the hydrogen bonds.
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Figure 15: Two-dimensional structures of the Hit compounds. The IUPAC name is provided for each compound.
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Table 5: Disease associations for query gene.

Disease Entry name Score PMIDs
umls: C0014175 Endometriosis 0.24 35
umls: C0032460 Polycystic ovary syndrome 0.228 23
umls: C1970109 Aromatase excess syndrome 0.207 16
umls: C1458155 Mammary neoplasms 0.199 40
umls: C0033578 Prostatic neoplasms 0.133 7
umls: C0029456 Osteoporosis 0.13 11
umls: C0001418 Adenocarcinoma 0.125 4
umls: C0021361 Female infertility 0.125 3
umls: C0029928 Ovarian diseases 0.123 13

Table 6: Genes that share diseases with the query gene.

Gene Gene name Diseases
ESR1 Estrogen receptor 1 135
TNF Tumor necrosis factor 124
IL6 Interleukin 6 123
TP53 Tumor protein p53 115
VEGFA Vascular endothelial growth factor A 115
AR Androgen receptor 113
TGFB1 Transforming growth factor, beta 1 113
IGF1 Insulin-like growth factor 1 (somatomedin C) 111
MTHFR Methylenetetrahydrofolate reductase (NAD(P)H) 108

PTGS2 Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H
synthase and cyclooxygenase) 102
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Figure 16: MM/PBSA estimated binding free energies of the
corresponding systems.

available on theDS v4.5 was recruited to perform the docking
along with the known breast cancer inhibitors. The pro-
duced dock results were analyzed based on the -CDOCKER
interaction energy; 14 ligands have displayed the higher
dock scores as compared to the known drugs. Therefore,
these 14 drug candidates have been employed to generate
the pharmacophore model of superior quality. Additionally,
the best candidate from the 14 compounds was considered
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Figure 17: Graphical demonstration of different energetic compo-
nents computed by MM/PBSA.

for further studies. Computational methods have affirmed
the inhibitory activity of the sulfonanilide derivatives and
therefore their chemical features were employed to retrieve
the compounds from the databases so that identified lead
candidates might be imbibed with the same or enhanced
biological activity. Therefore, these compounds have been
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utilized to construct the pharmacophore model so that
their structural features can be exploited in redeeming the
compounds from the database. To secure the predictive
ability of the pharmacophore, it was subsequently validated
by ROC curve and the decoy set method. The validated
pharmacophore was employed to screen the Chembridge
database and was then filtered by drug-like property filters.
The resultant candidate molecules were subjected to docking.
Owing to the molecular interactions with the key residues
present at the active site, two Hits were chosen from the
database screening. To further delineate the binding mode
analysis, reference, compound 22, and the twoHits proceeded
to MD simulations conducted for 50 ns. These results sug-
gest that the binding modes of compound 22 and the Hit
compounds were in alignment with the reference compound.
The RMSD plots of the backbone of the reference and Hits
were found to be below 0.25 nm throughout the simulations
referring to its stability and the same result was depicted
by the radius of gyration and the potential energy profiles.
Moreover, the binding free energy calculations also suggest
the superiority of theHits demonstrated by the lowest average
binding energies as compared to the reference compound.
van der Waals energy, electrostatic energy, and the SASA
energy have contributed negatively to the binding energy,
while the polar solvation energy has contributed positively
to the binding energy. The average binding energy of the
reference was observed to be −56.88 kJ/mol, while that of
the Hits was computed to be −77.20 kJ/mol, −77.77 kJ/mol,
and −84.58 kJ/mol, respectively, for compound 22, Hit1, and
Hit2. Delineating the SAR studies rendered informative
interpretations which could aid in gaining further insight
into the molecules. Out of the 81 chosen inhibitors that were
designed amending the structure, Figure 2, at positions A, B,
C, and D, it was noticed that the modification of positions B
and C have displayed no greater impact in terms of the dock
scores [1]. All the 14 compounds, Table 1, that exhibited higher
dock scores than the reference molecule were retrieved from
A-position modification. Additionally, it was perceived that
five inhibitors resulting due to themodification of A-position
containing an alkyl group had their IC

50
values ranging

between 1.2 and 3.96microM. A total of eight inhibitors
generated because of the modification of A-position with
aryl group dominated the higher dock score list which
exhibited an IC

50
range from 0.52 to 5.85microM. Moreover,

compound 74 (IC
50

16.66microM) generated as a result of
the modification of D-position was noticed in the top dock
score list. This finding was also in agreement with the results
of Su et al. [1] and further confirms the reliability of the
computational results. It can therefore be deduced that the
A-positions that was modified with alkyl/aryl group plays a
crucial role in imparting high dock scores and further the
inhibition of aromatase. Compound 22 that displayed the
most valuable result was formed because of the insertion of
the aryl group. Furthermore, we evaluated the role of the
sulfonamide moiety and its interaction with active site. This
moiety has played a crucial role in interacting with the key
residues of the active site. The residues Thr310 and Ala306
were observed to form the bonds with the O group of the
sulfamidemoiety. HA atomof Ala306 has joinedwith theO13

Met374 Thr310

Ala306

Figure 18: Pictorial elucidation of the sulfonamide moiety of
compound 22.Thr310 andAla306 residues are involved with theO13
atom of the sulfonamide inhibitor group.

atom of the ligand with carbon hydrogen bond with a bond
distance of 2.6 Å. Thr310 on the other hand has rendered a
strong hydrogen bond as described earlier, Figure 18.

Additionally, we evaluated the interactions of heme with
the protein and the Hits. It was observed that the heme
was held firmly with Ala306 and Ala438 on one side and
Val370 and Phe430 on the other side holding the four pyrrole
rings and the Fe group has interacted with the Cys437,
Figure 19(a). The HB1 atom Ala306 has interacted with the
first pyrrole ring of the heme by the 𝜋-alkyl hydrophobic
interaction with a distance of 4.2 Å. The CB atom of Ala306
has interacted with the CBC atom of the heme forming an
alkyl hydrophobic interaction with a distance of 3.5 Å. The
second pyrrole ring was held by the HB2 atom of Ala438
forming the hydrophobic 𝜋-alkyl bond with 4.3 Å. The third
pyrrole ring was held by the benzene ring of Phe430 forming
𝜋-𝜋 T shaped interaction with a bond distance of 4.9 Å. The
fourth pyrrole ring was found to interact with Val370. The
CB group of Val370 joins with the heme forming 𝜋-alkyl
hydrophobic interactionwith a distance of 5.0 Å, Figure 19(a).
Additionally, the residues Trp141, Arg145, and Arg375 were
noticed to hold the heme moiety as was represented in the
crystal structure [20]. The Hits along with the reference have
been found to occupy the active site cavity as was seen in
the crystal structure, Figure 19(b). Further we investigated the
interactions between the Hits and the heme moiety. Hit1 has
formed two bonds with the hememoiety.The benzene ring of
Hit1 has interacted with pyrrole ring III of the heme forming
𝜋-𝜋 stacked interaction with a bond distance of 5.1 Å. This
benzene ring additionally has formed a bond with the CMA
group of the heme demonstrated by 𝜋-alkyl bond with 3.7 Å,
Figure 20(a). Hit2 has interactedwith the pyrrole ring IVwith
C30 atom with 𝜋-alkyl hydrophobic interaction displaying
a distance of 3.1 Å. Additionally the C30 atom of Hit2 has
rendered the alkyl hydrophobic interaction with a distance
of 2.3 Å, Figure 20(b). Focusing on Hit1 and Hit2, it can
be understood that the exposed oxygen groups have been
involved in the hydrogen bond interactions, while the ben-
zene rings in both the cases were present away from the active
site residues. Additionally, it was observed that the Met374
and Asp309 were crucial in forming the hydrogen bond
interactions and van derWaals interactions, respectively, with
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Ala306Val370

Phe430

Cys437

Ala438

(a) (b)

Figure 19: Representation of the protein and the heme group. (a) depicts the interaction of the four pyrrole rings with the residues Ala306,
Ala438, Phe430, and Val370, respectively. The four pyrrole rings are labeled in roman numbers; (b) demonstrates the location of the four
ligands. The ligands were found to occupy the active site of the protein.
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C-ter
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N-ter
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Figure 20: Interaction of the ligands with the heme group. (a) represents the interaction of Hit1 with the heme by 𝜋-𝜋 stacked and 𝜋-alkyl
interactions with pyrrole ring III. (b) demonstrates the interaction of Hit2 with pyrrole ring IV by 𝜋-alkyl and alkyl interactions.

all the ligands and Ile133 was noticed to be involved with the
alkyl/𝜋-alkyl as was seen in the reference compounds. It can
therefore be deduced that these three residues are imperative
in inducing the inhibitory activity of the target protein.These
results therefore show that the sulfonanilide derivatives can
be employed to retrieve novel leads from the databases upon
the pharmacophore generation.

Furthermore, the disease gene association and gene-gene
association revealed that the CYP19 is amajor contributor for
several cancer diseases specifically associated with women.
Additionally, it was worth observing that the CYP19A1 gene

demonstrates its role by being associated with the osteoporo-
sis [56]. As the present drug discovery focuses on identifying
the leads against breast cancer, there might be a possibility
that these drugs may render positive impact on other cancers
as well, a concept seen associated with multidrug targets and
drug repositioning [57–61].

5. Conclusion

The current article aims at understanding the binding affini-
ties of 81 ligands employing the ligand-based pharmacophore
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approach. Furthermore, these ligands have ably retrieved
the new drug candidates from the Chembridge database.
Moreover, the putative binding modes of Hits have been
examined upon comparison with the reference compound.
Consequently, the obtained Hits might possess the essential
inhibitory activities as was seen with the reference (exemes-
tane) and compound 22 (assessed against transfected MCF-
7 cells). Furthermore, the MD simulations revealed that
the Hits were stable throughout the simulations with no
aberrations and additionally the gene network interactions
highlight the association of the CYP19 gene with several
diseases and therefore it can be understood that theseHits can
be used against the associated diseases as well. We therefore
believe that the identified Hits are of high therapeutic value
and can be used against several diseases. Additionally, the
81 ligands can act as fundamental scaffolds in identifying
novel lead candidates from different databases. We further
affirm that the adapted methodology can be employed in the
identification of new drugs for different diseases.
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