
Breakthrough Technologies

PaCeQuant: A Tool for High-Throughput Quantification of
Pavement Cell Shape Characteristics1[OPEN]

Birgit Möller,a,2 Yvonne Poeschl,a,b Romina Plötner,c and Katharina Bürstenbinderc,2

aInstitute of Computer Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
bGerman Integrative Research Center for Biodiversity (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
cDepartment of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale),
Germany

ORCID IDs: 0000-0002-7146-043X (B.M.); 0000-0002-3493-4800 (K.B.).

Pavement cells (PCs) are the most frequently occurring cell type in the leaf epidermis and play important roles in leaf growth and
function. In many plant species, PCs form highly complex jigsaw-puzzle-shaped cells with interlocking lobes. Understanding of
their development is of high interest for plant science research because of their importance for leaf growth and hence for plant
fitness and crop yield. Studies of PC development, however, are limited, because robust methods are lacking that enable
automatic segmentation and quantification of PC shape parameters suitable to reflect their cellular complexity. Here, we present
our new ImageJ-based tool, PaCeQuant, which provides a fully automatic image analysis workflow for PC shape quantification.
PaCeQuant automatically detects cell boundaries of PCs from confocal input images and enables manual correction of automatic
segmentation results or direct import of manually segmented cells. PaCeQuant simultaneously extracts 27 shape features that
include global, contour-based, skeleton-based, and PC-specific object descriptors. In addition, we included a method for
classification and analysis of lobes at two-cell junctions and three-cell junctions, respectively. We provide an R script for
graphical visualization and statistical analysis. We validated PaCeQuant by extensive comparative analysis to manual
segmentation and existing quantification tools and demonstrated its usability to analyze PC shape characteristics during
development and between different genotypes. PaCeQuant thus provides a platform for robust, efficient, and reproducible
quantitative analysis of PC shape characteristics that can easily be applied to study PC development in large data sets.

Leaves are the major sites of photosynthesis in most
plants and play central roles in carbon fixation and
energy supply. In addition, leaves control gas exchange
and transport of water and nutrients from roots to
shoots (Kalve et al., 2014). From a morphological per-
spective, leaves are remarkably diverse structures. The
diversity is reflected in numerous species-specific
shapes, which are reliable traits for taxonomic identifi-
cation and classification of species (Viscosi and Cardini,

2011; Tsukaya, 2014). Leaf size and shape are not solely
determined by genetic variability but also change during
development and adapt to environmental conditions
(Sultan, 1995, 2000; Cho et al., 2007; Bar and Ori, 2014).
Phenotypic plasticity of leaf morphology helps plants to
optimize sunlight harvesting, CO2 gas exchange, and ac-
climatization to changing ambient temperatures (Nicotra
et al., 2010; de Casas et al., 2011). Hence, understanding
the cellular and molecular mechanisms of growth regu-
lation is of central importance to improve plant yield,
quality, and resource use efficiency.

Because of its high relevance in plant biology, leaf
development has been extensively studied in the past
decades inmany plant species (Bar andOri, 2014, 2015),
including maize (Zea mays; Freeling, 1992), tomato
(Solanum lycopersicum; Gray, 1957), andMedicago truncatula
(Wang et al., 2008). Genetic and phenotypic analyses,
mostly in the model species Arabidopsis (Arabidopsis
thaliana), provide insights into the dynamics of cellular
events that underlie the development from primordia to
the final flat and polar organ (Tsukaya, 2010, 2013;
Vanhaeren et al., 2015). Growth and development are
controlled by complex molecular networks that integrate
internal and external signals (Cho et al., 2007; Wolters and
Jürgens, 2009). A central role in regulation of expansion is
played by the leaf epidermis, which forms a rigid outer
coat of the leaf (Savaldi-Goldstein et al., 2007; Kutschera,
2008; Bai et al., 2010; Marcotrigiano, 2010). In several plant
species, including Arabidopsis, the leaf epidermis is
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composed of three different cell types, which are derived
from specialized epidermal progenitor cells: pavement
cells (PC), stomatal guard cells, and trichomes, also called
leaf hairs (Glover, 2000). Out of these three cell types, PCs
are always present in the epidermis and usually the most
frequently occurring cell type in the epidermis. PCs can
develop highly interlocked, jigsaw-puzzle-like shapes
during expansion and provide a structural barrier against
mechanical insults. This epidermal barrier is interrupted
only by stomata, which form small pores required for gas
exchange and transpiration (Glover, 2000).
At the macroscopic level, studies of leaf geometry

were one of the first applications for shape analysis in
biology (Dale et al., 1971; Ghent, 1973; Kalyoncu and
Toygar, 2015). For example, shapes were quantified by
use of Fourier-based descriptors (McLellan and Endler,
1998), moments, geometric codes, and margin statistics
(Kalyoncu and Toygar, 2015), and leaf serration was
quantified using hierarchy analyses (Biot et al., 2016).
With improving imaging techniques, several studies
addressed the dynamics and changes of PC shape
during leaf development and expansion (Iwata and
Ukai, 2002; Andriankaja et al., 2012; Elsner et al., 2012;
Barbier de Reuille et al., 2015; Vanhaeren et al., 2015).
Key regulators of PC interdigitation were identified by
mutant phenotyping (Xu et al., 2010; Lin et al., 2012; Li
et al., 2013; Guo et al., 2015). In many cases, PC char-
acteristics were described by global descriptors, such as
area or circularity, or by skeleton-based approaches
(Horiguchi et al., 2006; Staff et al., 2012). These methods
oversimplify PC shape and contain no informational
value on the number and degree of lobes (Ivakov and
Persson, 2013; Wu et al., 2016). To quantify lobe num-
bers, two main approaches are widely used: skeleton-
based detection and manual quantification, which
typically underestimate the number of lobes or calcu-
late the number of lobes per area rather than per cell,
respectively (Xu et al., 2010; Gao et al., 2015). More re-
cently, a MATLAB-based tool was developed, which
aims to provide a platform for objective and robust
quantification of lobe number and shape characteristics
by analysis of a refined convex hull (Wu et al., 2016).
The number of features extracted by these tools, how-
ever, is limited to only a few parameters and thus is
not capable to cover the shape variability observable
in PCs.
In addition, most methods that quantify PC shape

rely on manual segmentation of individual cell
outlines. The manual preparation has two major
disadvantages. First, it is very time consuming and
laborious and prevents high-throughput analysis of
PC shape. Second, unless segmentation is carried out
in blind studies, it is prone to bias by the experi-
menter (Vanhaeren et al., 2015). Hence, for objective
quantification of PC shape characteristics, robust and
fully automatic techniques for the segmentation of
cell regions, as well as meaningful and clearly de-
fined shape descriptors are required. Powerful de-
scriptors combined with an unbiased automatic
segmentation would enable comparative analysis of

PC shapes not only within a single set of experiments
but also between data from independent studies
(Ivakov and Persson, 2013). Ideally, such tool should
be user-friendly and run on publicly available open
source platforms.

Here, we present our newly developed tool,
PaCeQuant, for fully automatic segmentation of indi-
vidual PCs from confocal input images and simulta-
neous extraction of 27 different shape parameters. In
addition, PaCeQuant optionally offers the analysis of
shape characteristics of individual lobes at two-cell and
three-cell contact points. The tool is implemented as
plugin for the widely used open-source image analysis
software ImageJ and publicly available under GPL v3.0.
It features a graphical user interface for user-friendly
data input of large data sets. We provide a supplemental
R script for extended data analysis (including statistical
analysis) and comfortable data visualization by boxplots
or violin plots. Extensive comparative evaluations prove
that PaCeQuant is able to produce high-quality seg-
mentations of PCs and to provide robust, reliable, and
reproducible quantification of PC shape characteristics
suitable for shape analysis during development and for
mutant phenotyping.

RESULTS

Overview of PaCeQuant Workflow

The workflow for cell segmentation and feature ex-
traction implemented in PaCeQuant is composed of
two parts. In the first part, we offer an optional auto-
matic segmentation of PCs from confocal microscopy
input images, which consists of four basic stages cov-
ering (I) improvement of the image quality, (II) cell
boundary enhancement, (III) binarization and morpho-
logical postprocessing, and (IV) region filtering. In the
second part, we provide a pipeline for feature extraction
from segmented cell regions, which runs on cell regions,
either defined by the automatic segmentation, after
manual correction of automatic segmentation results or
from manually segmented input images (Fig. 1).

We implemented PaCeQuant in a platform-
independent fashion in Java as part of the Microscope
Image Analysis Toolbox (MiToBo; Möller et al., 2016).
Most of the individual algorithms and processing steps
that are part of the complete workflow are directly
implemented as operators in MiToBo. If external func-
tionality is used, it is explicitly indicated below. The
PaCeQuant tool is publically available under GPL
License 3.0 as part of the MiToBo distribution at
MiToBo’s website (http://www.informatik.uni-halle.
de/mitobo/) and integrates seamlessly in ImageJ/Fiji
(Schindelin et al., 2012) via MiToBo’s own update site
(see “Installation and Usage of PaCeQuant” in “Mate-
rials andMethods” formore information). The source code
of MiToBo and the PaCeQuant plugin is available from
the MiToBo website or on Github (https://github.com/
mitobo-hub/mitobo); detailed documentation can be found
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Figure 1. Workflow of cell segmentation and feature extraction. A, Workflow implemented in PaCeQuant for automatic de-
tection of cell outlines (part 1, light gray) and extraction of shape features (part 2, dark gray). In the first part, input images are
processed in four basic stages (image quality improvement [I] to region filtering [IV], left column) via nine individual processing
steps (panels on the right). In the second part, the feature extraction (step 10) is performed. B, Example of an input image (step 0),
the processed image after outline extraction (step 7), and an image containing identified and filtered regions (step 9) used for
feature extraction. For an overview of all image-processing steps, see Supplemental Figure S1.

1000 Plant Physiol. Vol. 175, 2017

Möller et al.

http://www.plantphysiol.org/cgi/content/full/pp.17.00961/DC1


on PaCeQuant’s webpage (http://mitobo.informatik.
uni-halle.de/index.php/Applications/PaCeQuant).
PaCeQuant takes full benefit of all built-in features of
MiToBoand its core libraryAlida (Posch andMöller, 2017).
Alida provides a framework for the development of data
analysis applications in a modular fashion and supports
the automatic generation of graphical user interfaces for
operators (Möller and Posch, 2013). Since Alida also pro-
vides command line interfaces for all implemented oper-
ators, PaCeQuant can be run optionally without graphical
interaction, e.g. remote on a server.

Cell Boundary Segmentation and Region Filtering

To develop an automatic segmentation method, we
used confocal images as input (Fig. 1B), which is a
common method for cell shape analysis (Xu et al., 2010;
Wu et al., 2016). We initially focused our studies on
cotyledons of 5-d-oldArabidopsis seedlings. Cotyledons
resemble the characteristics of true leaves in many as-
pects and have therefore been developed into a popular
model system to study leaf development (Tsukaya et al.,
1994). Cell outlines were visualized by staining of coty-
ledons with the lipophilic dye FM4-64 and imaged as
single optical sections covering groups of adjacent epi-
dermis cells at a resolution of 2.2 to 3.2 pixels/mm.
To extract cell boundaries, images are processed as

follows. First, we use a global contrast stretching to
enhance the contrast of the input images (step 1), fol-
lowed by applying a Gaussian filter (with SD s = 1) for
noise removal (Fig. 1A; Supplemental Fig. S1; step 2). In
stage (II), we further enhance the cell structures by
vesselness enhancement filtering (step 3), which is used
typically to enhance thin elongated structures, such as,
e.g. blood vessels, in digital images (Chaudhuri et al.,
1989; Zhang et al., 2010; Fraz et al., 2012). Here, we
apply a filter kernel, as proposed in Sofka and Stewart
(2006). The rectangular kernel mask is composed of a
Mexican hat profile in normal and a constant profile in
tangential direction. The Mexican hat profile is defined
by a second-order Gaussian derivative (Fig. 1A;
Supplemental Fig. S1). Each image is convolved with
the filter mask in 18 different orientations from 0° to
170°, in successive steps of 10° increase. The resulting
18 filter responses are joined into a single filter response
image by selecting for each pixel themaximal response to
any of the 18filterswhile setting negativemaxima to zero.
The filtered image is postprocessed with a local

median filter of radius r = 1 pixel to account for locally
varying contrasts. To segment cell boundaries, in stage
(III) a local Niblack binarization is applied to the filter
response images (Niblack, 1986; Fig. 1A; Supplemental
Fig. S1; step 4). The Niblack algorithm only yields reli-
able thresholds if intensity variance is present within the
local slidingwindow. Thus, we introduced an additional
test for local variance prior to threshold extraction, and
thresholds are only calculated for window positions
with sufficient local variance. All other positions are
classified as background. To account for small breaks in

the boundaries, the resulting binary image is dilated (r = 3
pixels) and eroded (r = 5 pixels). Very small components
(e.g. dots, linear structures, etc.), whichmost likely refer to
noise artifacts, are eliminated and the detected boundary
components are thinned to a width of 1 pixel (step 5).

An optional gap-closing step may be subsequently
performed on the 1-pixel-boundary images to eliminate
larger gaps in the cell boundaries (step 6). For this, two
different heuristics are implemented in PaCeQuant, a
very simple heuristic based on end-point distances and
a second heuristic, relying on a watershed transforma-
tion on binary images. In the first case, all boundary end
points with an empirically determined maximum dis-
tance of d = 20 pixels are linked to close gaps in between.
In the second case, we apply a Euclidean distance
transformation to the binary image, followed by a wa-
tershed transformation on the distance image using the
implementation available in ImageJ according to
Leymarie and Levine (1992). To remove implausible
boundaries resulting from oversegmentation of the
watershed segmentation, we apply a combination of
different criteria for filtering boundary segments. A
segment is preserved only if it existed in the binary
image already, if it is shorter than 40 pixels and its end
points are located close to previously detected end
points, if it extends a skeleton branch with a sufficient
length, or if it crosses an image region with sufficiently
dark intensity values most likely referring to a cell
boundary. In the resulting binary image, individual cell
regions are segmented according to the postprocessed
watersheds detected in the distance image. To ensure
that neighboring cell regions are not merged, bound-
aries are dilated (radius r = 3 pixels) and holes within
regions are filled (step 7). This is achieved by applying a
component-labeling algorithm to each detected region,
where the region is treated as background and poten-
tial holes are identified as foreground components. By
adding their pixels to the corresponding region, holes
are eliminated. In the final step of stage (III), cell
boundaries are thinned again to a width of 1 pixel using
the skeletonization algorithm of ImageJ (Zhang and Suen,
1984), short open branches are removed, and boundaries
are extended to a final width of three pixels. As a result,
the grayscale input image is converted into a binary
output image where the cell boundaries are represented
by black pixels and the cell regions by white pixels.

Stage (IV) starts with assigning a unique identifier to
each detected cell region by applying component la-
beling to the binary image resulting from the previous
stage (Fig. 1B; step 8). Regions with boundaries that
exceed the image border are removed since these reflect
incomplete cells (Fig. 1; Supplemental Fig. S1; step 9).
The remaining regions are filtered for size to remove un-
specific regions that likely reflect noise from the data set.

Quantification of Shape Characteristics

To analyze and quantify shape characteristics, we
implemented the automatic extraction of 27 features for
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each segmented cell in part 2 (or alternatively stage IV)
of our PaCeQuant workflow (Figs. 1 and 2; part 2 (or
alternatively stage IV), step 10). The features cover four
major groups: (A) global features, (B) contour-based
features, (C) skeleton-based features, and (D) special
features of PCs, e.g. the number and length of lobes
(Fig. 2A; Supplemental Table S1). Group A features
characterize the cell as awholewith a focus on its global
shape (e.g. circularity, degree of elongation). In group
B, we quantify the boundary characteristics, such as
changes in local contour concavity and tangent orien-
tations, which correlate with the degree of contour
folding. The third group of features analyzes shape
characteristics relative to the skeleton of the cell, which
we extract using the algorithm of Zhang and Suen
(1984). The skeleton is defined as the 1-pixel-wide main
axis or backbone of a cell region. It consists of a set of
branches, end points, and branch points and is fre-
quently used to quantify morphological characteristics
of regions in images (Marchand-Maillet and Sharaiha,
1999; Xiong et al., 2010). In the set of group C features,
we included the length of the longest path in the skeleton,
the number of branches (as a rough estimate for the
number of lobes), the average branch length, and the
average radius of the lobes associated with detected
branches. In group D, we extract specific features for PCs,
i.e. their lobe and neck characteristics.

Definition of PC-Specific Features

The automatic extraction and analysis of features
suitable to characterize PC shapes requires a unique
definition of relevant components of PCs involved in
the calculation of shape features, e.g. of lobes or neck
regions. So far, however, most PC shape characteristics
lack such clear definitions, and only vague ideas are
reported in the existing literature that discuss how lobes
are localized along a contour or how their exact di-
mensions are quantified. Similarly, a clear definition for
the neck width of PCs, which is a common measure for
the growth restriction at neck regions, is lacking. In-
stead, the neck width is calculated based on manually
selected line segments that appear reasonable to the
individual user (Li et al., 2003; Bannigan and Baskin,
2005; Fu et al., 2005). This quantification is highly biased
since the selection and definition of the line segments is
highly variable. Thus, we first provide clear definitions
of all relevant components of a PC, which form the
fundament for the set of PC-specific features automat-
ically extracted by PaCeQuant.

We define lobes and necks along the cell contour
based on local curvature orientation (Fig. 2, B–E). First,
the local curvature is estimated for each point along the
contour by applying the robust algorithm of Freeman
and Davis (1977) available in MiToBo. Resulting cur-
vature values are convolved with a Gaussian filter
mask to smooth the profile, which increases the quality
of feature extraction from curvature values. Values
for positions where no curvature is extracted are

interpolated by a nearest neighbor approach. The
resulting contour contains concave and convex seg-
ments that are defined by positive and negative cur-
vature values, respectively. Lobes and necks are
detected by analyzing the signs of local curvature (Fig.
2B). Points where signs change refer to inflection points
connecting the apical parts of lobe contours (Fig. 2C).
We define a neck point as the center point of a convex
contour segment (Fig. 2E). This definition turned out to
be more robust than selecting the point with a maximal
curvature value since local curvature values may suffer
from noise and numerical instabilities due to dis-
cretization. The distance between two adjacent neck
points, termed lobe baseline, represents the basal width
of an individual lobe. If the lobe baseline intersects with
the background of the image (Fig. 2E), we heuristically
adapt the positions of the boundary points of a lobe
section, resulting in virtual neck points. In detail, the neck
points defining a lobe section are virtually shifted to-
ward each other along the contour until the baseline
connecting the two virtual points no longer intersects
with the image background. By shifting a neck point to
a new virtual position, the original neck point is ex-
panded to a neck region, which is flanked by the original
neck point and the new virtual neck point. If shifts for
both adjacent lobe regions of a neck point are necessary,
two virtual neck points will flank the neck region.

A lobe is defined as the contour segment between
two adjacent neck points. To increase detection ro-
bustness and to distinguish lobes from unspecific cur-
vature variations due to segmentation inaccuracies, we
set the threshold for lobe detection by default to contour
segments with a length of $8 pixels. If necessary, the
threshold can be adjusted by the user. The number of
inflection points divided by two refers to the number of
lobes. The line connecting the two inflection points of a
lobe defines the lobe equator and represents the equator
width of a lobe (Fig. 2C). The lobe length is calculated as
the maximal distance between the lobe baseline and the
lobe contour (Fig. 2D). In addition, we calculate the
distances between baseline and equator, and equator
and contour as estimates for the basal and apical lobe
lengths (Supplemental Table S1).

The area enclosed by the baseline and the contour
segments of the lobe represents the lobe region. As a
measure for the relative proportion of lobes to the total
cell area, we calculate the nonlobe area, which yields a
first estimate of the growth restriction/expansion of the
core cell region (i.e. the region between the necks). The
nonlobe area is the area of a cell enclosed by the lobe
baselines and, if neck points were virtually shifted,
by additional pixels of the resulting neck regions
(Supplemental Table S1). As an additional value for the
size of the cellular core region, we quantify the width of
the core region. For this, we utilize the parts of the re-
gion skeleton not belonging to any branch, i.e. the core
skeleton, as an estimate of the cellular core region (Fig.
2F). We exclude the skeleton branches as they usually
refer to lobes of a region. For each pixel of the core
skeleton, the Euclidean distance to the background
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is calculated, and the width of the core region is
double the Euclidian distance. To characterize the core
region more globally, we sort all distances along the
core skeleton in ascending order. Since the region
skeleton is very sensitive to changes in contour shape,
extreme values of this sorted list, i.e. the minimum
and maximum distances, often refer to outliers. To
increase the robustness of the core width values, we
thus extract the first and third quartile entries as

estimates for the minimum and maximum core widths,
respectively.

Accuracy of the Automatic Detection

To assess the quality of PaCeQuant’s segmentation
approach, we compared the results from the fully au-
tomatic cell segmentation with manually extracted cell

Figure 2. List of PaCeQuant cell shape features and basic definitions of PC-specific features. A, List of cell shape features extracted
by PaCeQuant and their units. For a detailed description of feature characteristics, see Supplemental Table S1. B to F, Basic
definitions used for the quantification of PC-specific shape features, including (B) apical and basal parts of a lobe, (C) lobe equator,
(D) lobe baseline, (E) neck point and neck point correction, and (F) core region dimensions.
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outlines. For a subset of 15 individual cells from one
input image (data set 1) we calculated recall and pre-
cision measures of segmented cell areas and distance
measures between manually and automatically
extracted cell contours (Fig. 3; Supplemental Table S2).
The recall quantifies the fraction of the cell area in the
manually segmented cell, which has also been extracted
by the automatic approach. Vice versa, precision
quantifies the ratio of the area detected by automatic
segmentation, which is also part of the manually seg-
mented cell. For both measures, a value of 1 represents
an optimal fit. To compare the similarity of the two
samples, we calculated the F1-score (also known as
Sørensen-Dice index), which is the harmonic mean of
recall and precision and ranges from 0 to 1, with 1 rep-
resenting highest similarity. To compare the accuracy of
the detected contours, we computed the Hausdorff
distance, which measures the (dis)similarity between
two sets of points. For each point of one set it extracts
the minimal distance to a contour pixel in the second
set, and vice versa. Next, the maximum over all mini-
mal distances is identifiedwithin the two sets, hence the
Hausdorff distance refers to the maximal distance that
occurs between two contours at any position.

For the 15 cells in our evaluation set (Fig. 3A) we
found an average recall of 0.976 6 0.0088 (SD) and an

average precision of 0.973 6 0.0121, resulting in an
average F1-score of 0.9756 0.0079 (Supplemental Table
S2). The values are consistent, with a large overlap be-
tweenmanual and automatic segmentation (Fig. 3B, left
and middle). For 12 of the 15 test cells, the Hausdorff
distance was smaller than 6.5 pixels. For 3 cells, dis-
tances of 12.2, 11.7, and 44.2 pixels were found, result-
ing in contour changes of maximum 1 or 2 mm. These
are due to short contour segments where larger devia-
tions between manual and automatic segmentation
appear, often caused by low contrasts along the contour
or by stomata accidentally classified as part of a cell
(Fig. 3B, right).

To further validate the accuracy of the automatic
segmentation and to assess the impact of differences in
segmentation on feature values, we performed a pair-
wise comparison of all 27 extracted features between
manually and automatically segmented cells (Fig. 3C;
Supplemental Fig. S2). For the 11 global features (group
A), the values from manual and automatic segmenta-
tion are almost identical in all 15 cells, as revealed by
straight diagonal lines in the scatterplots. Thus, short
sections at which automatically segmented boundaries
deviate from manual cell boundaries have only minor
effects on this feature class. The three other groups of
contour-based (group B), skeleton-based (groupC), and

Figure 3. Comparison between automatic and manual segmentation of cells based on PaCeQuant features. A, Sample image
containing 15 individual cells, which were segmented fully automatically and manually. Numbers correspond to cell identifiers.
B, Overlay of cell outlines detected by automatic (red) andmanual (blue) segmentation for sample cells with high congruence and
different cell sizes (left, ID 1, large cell; andmiddle, ID 7, small cell) andwith local deviations (right, ID 10). C, Scatterplots of one
exemplary feature for each of the four feature groups (see Fig. 2 and Supplemental Table S1) from a pairwise comparison between
automatic and manual segmentation of all 15 cells. Cells shown in B are highlighted in red (for a summary of all features, see
Supplemental Fig. S2).
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PC-specific (group D) features are slightly more sensi-
tive to the different segmentation methods. A tendency
for higher values in manually segmented cells is seen
for margin roughness (group B), as indicated by an
accumulation of points below the diagonal. Variation
without a clear tendency toward the segmentation
method is seen for “average branch length” and “av-
erage end point distance” (group C), and “average lobe
length” (group D; Supplemental Fig. S2). Notably,
feature values sometimes differ significantly even for
cells with a high overlap of cell boundaries between
manual and automatic segmentation, as seen e.g. in cell
ID 7 for “average branch length” (group C) or “average
lobe length” (group D; see Fig. 3B; Supplemental Fig.
S2; Supplemental Table S2). The differences are con-
sistent with a general sensitivity of skeleton-based fea-
tures (group C) to even small changes in region shape
(Gonzales and Woods, 1996). Likewise, the quanti-
fication of contour-based features (group B) and
PC-specific features (group D) relies on analyzing cur-
vatures and concavities of the region boundary and
thus is sensitive to small variations in shape contours
(e.g. Utcke, 2003).
Variance can be generated by manual segmentation

due to bias caused by different persons and even by a
single person between segmentations generated at dif-
ferent time points (Vanhaeren et al., 2015). The accuracy
of manual segmentation further depends on the sam-
pling density, i.e. the frequency of sampling points
along the cell boundary. To reduce the impact of geo-
metrical discontinuities in manual segmentation,
extracted contours are commonly smoothed, e.g. using
ImageJ’s spline fitting (Wu et al., 2016), which addi-
tionally affects the curvature of the contour. Automatic
segmentation, on the other hand, mostly depends on
the image quality. Local regions of low contrast are
prone to segmentation inaccuracies, and the optional
watershed gap closing potentially leads to over-
segmentation of actual cell borders. In a direct com-
parison, however, bias introduced by PaCeQuant is
identical for all images, and PaCeQuant reproducibly
detects cell regions from experiments conducted at
different times. Thus, our first experiment suggests that
PaCeQuant is suitable to detect cell outlines automati-
cally and to quantify cell shape characteristics with a
very high quality.
The automatic segmentation step works best with

input images with a high image quality, which some-
times is difficult to obtain, e.g. when leaves are curled or
wavy. In such cases, results from the automatic seg-
mentation can be exported from PaCeQuant and can be
manually corrected in ImageJ to remove local inaccur-
acies. PaCeQuant supports two formats for exporting
segmentation results. Segmented cell regions can be
saved as ImageJ ROI files or exported as label images,
which can be edited directly in ImageJ via the ROI
manager or allow for manual corrections by editing
pixel intensities in, e.g. programs like Gimp, respec-
tively. Alternatively, if only a few cells are detectable in
the input image or if input images are not compatible

with the automatic segmentation method implemented
in PaCeQuant, as is the case, e.g. for agarose imprints of
cell outlines, segmentation can be conductedmanually in
ImageJ. In both cases, manually corrected or manually
defined cell regions can be imported into PaCeQuant for
automatic feature quantification and data analysis.

Precision of Lobe Detection

The formation of lobes and indentations is a specific
property of PCs. Thus, lobes are quantified commonly
to describe shape characteristics, mostly by manual
counting or by skeleton-based approaches, which are
prone to bias and often inaccurate. Recently, the Lobe-
Finder program was released, which automatically
measures lobe numbers by analysis of a refined convex
hull (Wu et al., 2016). However, the LobeFinder tool still
relies on manual segmentation of individual cells and
tends to underestimate lobes when compared to man-
ual counting (Wu et al., 2016). To investigate the quality
and suitability of lobe detection based on sign changes
of curvature, which we implemented in PaCeQuant, we
compared the efficiency of PaCeQuant’s lobe detection
with LobeFinder and with manual lobe counting using
the sample set of 15 cells (Fig. 4). For manual counting,
lobes were quantified in the original input image by
four individualswith expertise in PC shape analysis in a
blind study. To compare PaCeQuant with LobeFinder,
cell boundaries automatically extracted by PaCeQuant
were used as input, and all features for which quantifi-
cation algorithms are implemented in both tools (e.g. area,
solidity, and circularity) were quantified and compared.

For all three approaches, a tendency for increased
lobe counts was detected with increasing cell size (Fig.
4A). Notably, manual counting resulted in large dif-
ferences between individual persons in the number of
detected lobes for some of the analyzed cells (Fig. 4, A
and B). The deviations within the four sets of manually
detected lobes increased with increasing size and
complexity of the analyzed cells. For some cells (e.g.
cell ID 15, ID 14, and ID 6) manual counting resulted
in differences of 8 to 11 lobes per cell, which refers
to a deviation of up to 100% for single cells. Neverthe-
less, a significant number of lobes is consistently
detected in all four manual annotations and by both
tools, as shown for cell ID 2 (Fig. 4B). PaCeQuant and
LobeFinder are in the range of lobe numbers counted
by the four individuals. In general, PaCeQuant tends
to detect more lobes than LobeFinder, and lobe num-
bers detected by PaCeQuant are in the upper range
of manual lobe counts (Fig. 4, A and C). For all
other features, such as area, solidity, and convex hull
characteristics, we obtained identical results with
LobeFinder and PaCeQuant, as expected for identical
input contours (Fig. 4C; Supplemental Fig. S3). Thus,
we conclude that PaCeQuant is suitable to quantify
lobes efficiently. The comparison of the three methods
further highlights the subjectivity of manual lobe
counting and demonstrates a requirement for automatic
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Figure 4. Evaluation of lobe detection accuracy by comparison between PaCeQuant results with LobeFinder and manual
lobe counting. A, Number of lobes detected in the 15 sample cells (ID 1–ID 15) after automatic segmentation by
PaCeQuant (orange), LobeFinder (black), and by manual lobe counting (gray). For manual counting, lobes were ana-
lyzed by four independent researchers. The gray line represents the mean lobe number per cell of the four measure-
ments; the gray strip represents the range of the independent measurements. Cells are sorted by their area from small
(left) to large (right). B, Lobe count results in one exemplary cell (ID 2) analyzed with PaCeQuant (left, 20 lobes),
LobeFinder (middle, 16 lobes), and manually (right, 13–20 lobes). Lobes identified by PaCeQuant or LobeFinder are
marked in red. Lobes identified manually are marked in red (nine lobes), blue (eight lobes), pink (four lobes), and
turquoise (three lobes) if identified by four, three, two, or at least one person, respectively. C, Pairwise comparison of
features computed by PaCeQuant and LobeFinder in the sample set of the 15 automatically segmented cells. Scatterplots
are shown for area, solidity, and lobe count (for a summary of all features, see Supplemental Fig. S3). The cell shown in B
is highlighted in red.
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lobe quantification to generate comparable and repro-
ducible data with a constant bias.

Application of PaCeQuant to Large Data Sets

The main goal of PaCeQuant is to enable high-
throughput analysis of PC characteristics. We thus
validated the quality of PaCeQuant results on a larger
data set (data set 2) consisting of 14 individual images
of PCs from cotyledons of 5-d-old wild-type seedlings
(Supplemental Fig. S4). In total, 373 cellswere identified
in the sample set within a time span of 10 min, starting
from data input to result output, which refers to 1.6 s
per cell. As seen for the initial set of 15 cells (see Fig. 3),
some cells, in particular cells adjacent to stomata or
with regions of low contrast, were not detected cor-
rectly (Supplemental Fig. S4B). To study the impact of
such detection inaccuracies on the overall feature
quantification we manually filtered the automatic
PaCeQuant segmentation results. Thirty-one cells
showed locally incorrect cell borders and failed to pass
the manual quality control, which represents #10% of
all detected cells. A pairwise comparison of the distri-
butions for all 27 features between the unfiltered data
set, and the manually filtered data set revealed that the
manual filtering step has only minor effects on feature
distributions and set properties, which are not statisti-
cally significant (P values of 0.623–0.997; Supplemental
Fig. S4A). Thus, detection errors within individual cells
are compensated by the analysis of large data sets,
which can easily be generated with PaCeQuant, and
time-intense manual filtering is not required for reliable
PC shape quantificationwith PaCeQuant. Compared to
manual segmentation, PaCeQuant offers the advantage
of a much faster and unbiased segmentation. Thus,
PaCeQuant is capable of increasing the amount of
quantitative data, which improves the power of statis-
tical analyses and guarantees a larger objectivity and
reproducibility of extracted data.

Analysis of Cell Shape Characteristics
during Development

To assess the usability of high-throughput cell shape
analysis in a biological context, we applied PaCeQuant
to a developmental series of Arabidopsis cotyledons
(Fig. 5). We analyzed PCs of the adaxial side of wild-
type cotyledons at stages of early cell expansion (3 d
after germination [DAG]), of rapid expansion (5 DAG),
and at a stage with first fully expanded cells (7 DAG;
data set 3; Zhang et al., 2011). At 3 DAG, cells range in
size between 245 and 2,320 mm2, with 90% of the cells
being smaller than 1,400 mm2 (Fig. 5, A and B). At
5 DAG, cells span sizes between 245 and 6,367 mm2. At
this stage, 90% of the cells are smaller than 4,042 mm2,
and approximately 50% of all detected cells range in
size between 1,400 and 4,042 mm2. The number of small
cells decreased to ,40% when compared to 3-d-old

seedlings. At 7 DAG, roughly one-third of the detec-
ted cells belongs to the groups of small and medium-
sized cells each, and the last third consist of cells with
sizes larger than 4,040 mm2, ranging up to 12,600 mm2.
The detected cell sizes are in the range of previous re-
ports (Zhang et al., 2011), which further demonstrates
the accuracy of the PaCeQuant measurements. In
leaves, neighboring cells differ largely in their shapes
ranging from small and simple-shaped cells to large
and highly complex cells (Elsner et al., 2012). Consistent
with large differences in cell size and cell differentia-
tion, we observed high variability within the feature
values calculated from analysis of the complete set of
detected cells as input (Fig. 5, C–E, Supplemental Fig.
S5A). The variability increases with increasing age of
the analyzed cotyledons (Supplemental Fig. S5) and
reflects the increasing diversity of cell shape and size
during later stages of cotyledon (Zhang et al., 2011) and
leaf growth (Elsner et al., 2012).

We next aimed to analyze PC shape transitions dur-
ing development of cotyledons in more detail. To
quantify shape characteristics in cells at similar stages
of cellular expansion, we categorized them into small,
medium, and large cells by applying the 90% thresholds
from 3 DAG and 5 DAG as small size threshold (ts) and
medium size threshold (tm), respectively (Fig. 5B). We
analyzed the 27 PC shape features in the three sets and
in the three size categories and compared the feature
distributions by applying the Dunn’s test and by
adjusting P values with the Benjamini-Hochberg pro-
cedure (Fig. 5, C–E; Supplemental Fig. S5). As expected,
values of parameters such as perimeter, length, width,
convex hull perimeter, lobe count, and lobe width
increased significantly (P , 0.001) with increasing
cell size (Fig. 5C; Supplemental Figure S5, A and B).
Consistent with increased lobe formation and growth,
inversely related parameters such as solidity, circular-
ity, or convex hull roundness decreased significantly
(P , 0.001). Other parameters, in particular cellular
eccentricity, were unaffected by cell size or by the de-
velopmental stage (Fig. 5E). Within the individual de-
velopmental stages, we observed highly significant
differences between small and medium and small and
large cells for almost all analyzed features. Between
medium and large cells, significant differences were
visible at 7 DAG (P, 0.001). Within the 5 DAG set, only
a few features differed significantly (P , 0.01) between
medium and large cells. The tendencies, however, were
identical to those measured at 7 DAG.

To analyze geometries of similar-sized cells during
leaf growth, we next compared the three cell popula-
tions (small, medium, and large) across the three de-
velopmental stages. Small cells at 3 DAG differed
significantly from small cells at 7 DAG in 23 out of the
27 analyzed parameters (P , 0.05). Large differences
were observed for PC-specific features such as lobe
count and lobe length and for circularity and solidity
(Supplemental Fig. S5, A and B). Similarly, medium-
sized cells differed between the analyzed develop-
mental stages. Only weak differences were observed
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Figure 5. Analysis of pavement cell shape characteristics during development. A, Epidermal pavement cell shape in the adaxial
side of cotyledons from wild-type (Col-0) seedlings 3, 5, and 7 DAG. The color gradient represents the area of the detected cells
(red, small to yellow, large). B, Relative distribution of cell areas in cotyledons of 3-, 5-, and 7-d-old seedlings. Cells were
categorized into small cells (threshold ts # 1400 mm2, which includes 90% of the cells in 3-d-old seedlings), medium-sized cells
(threshold tm # 4042 mm2, which includes 90% of the cells in 5-d-old seedlings that exceed ts), and large cells ($tm), which
represent the different stages of cell differentiation. C to E, Quantification of cell shape features during differentiation. Cells were
grouped according to (B) or treated as a single input set (all). Numbers on the x axis refer to the number of cells analyzed per
sample set. Feature values are shown in box plots. Results aremedians; boxes range fromfirst to third quartile. For a summary of all
features and statistical analysis of feature values, see Supplemental Figure S5. (C) Solidity decreases with increasing cell size and
differentiation, which is consistent with (D) an increased number of lobes, while other parameters, as shown for (E) eccentricity
are largely unaffected during differentiation.
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between the shape characteristics of large cells at 5 DAG
and 7 DAG samples, and differences were restricted
mostly to PC-specific shape features. These results are
consistent with previous studies, which revealed age-
dependent differences in cell shape of similar sized cells
throughout development (Zhang et al., 2011; Wu et al.,
2016). Differences in shape characteristics are more
pronounced in expanding cell populations and disap-
pear once cells are fully expanded. Thus, our data
provide the first evidence that automatic analysis of
large populations of PCs with PaCeQuant in combi-
nation with size filtering is a suitable approach to
quantify developmental changes of PC shape.

Analysis of Lobe Type Characteristics

Most interdigitations are formed at two-cell contact
points between two adjacent cells and form lobes re-
ferred to as type I lobes (Wu et al., 2016). In addition,
some lobes form at three-cell contact points, referred to
as type II lobes. So far, however, analyses of type I and
type II lobe characteristics are limited because lobe
classification has to be done manually, andmethods for
the quantification of lobe characteristics are missing.
With its automatic segmentation and feature extraction
capabilities, PaCeQuant provides a framework for
the automatic classification of lobe types and shape
quantification.We implemented an optional analysis of
shape characteristics of individual lobes within single
cells, which allows discriminating between lobes at
two-cell contact points (TYPE-1) and three-cell contact
points (TYPE-2; Fig. 6).
We classify lobes into TYPE-1 or TYPE-2 based on the

analysis of their neighborhood in fields of adjacent cells
(Fig. 6A). All lobes for which information on neigh-
boring cells is missing, e.g. at border regions or adjacent
to stomata, and which thus cannot be sorted in either of
the two groups, are classified as UNDEFINED. For
classification, we use the output label images generated
during stage (IV) of the image analysis workflow
implemented in PaCeQuant (see Supplemental Fig. S1,
image 9). In these images, cell boundaries are repre-
sented as a black line with a width of 3 pixels that refers
to the background of the image, and regions belonging
to individual cells are defined by unique labels. In a first
step, cell regions are expanded by dilation with a mask
size of #5 using a built-in MiToBo function. The dila-
tion locally stops as soon as two adjacent cell regions
touch, which removes the boundaries between two
adjacent cells and prevents the fusion of individual cell
labels. Remaining black pixels thus exclusively refer to
background regions, which do not belong to a cell
boundary nor to any cell. Subsequently, for each indi-
vidual lobe within each analyzed cell, the total number
of different labels in its vicinity, defined by an 11 3
11 pixel-sized neighborhood around each pixel of the
lobe, is counted and yields the base for type classifica-
tion. If two different labels are present, i.e. the label of
the analyzed lobe region and one additional neighboring

region, the lobe is classified as TYPE-1 (Fig. 6A). In case
of three labels present at the vicinity of a single lobe, it
belongs to the TYPE-2 group of lobes. The presence of
one or more background pixels at the lobe indicates that
it is located close to an undefined image regionwhere no
further information is available, and the lobe thus is
classified as UNDEFINED.

We applied the lobe classification approach to the
developmental series (see Fig. 5) and quantified the
number of type I and type II lobes within the small-,
medium-, and large-sized cells at 3 DAG, 5 DAG, and
7 DAG (Fig. 6B; Supplemental Figure S6A). We ob-
served only small increases in the number of type II
lobes per cell between small (average lobe number of
1 to 2)- andmedium-sized cells (average lobe number of
2 to 3.5), and only weak differences between small,
medium, and large cells (averaeg lobe number of 1 to
3.8), respectively, during development (Fig. 6B). In
contrast, the number of type I lobes increased during
cellular expansion from an average lobe number of 2 to
an average lobe number of 10 in small- and large-sized
cells, respectively. In medium- and large-sized cells,
most lobes form at two-cell junctions (Fig. 6B). Thus,
consistent with earlier studies, our data suggest that
type II lobes are established mostly during cytokinesis,
while most of the lobes formed during cellular expan-
sion are type I lobes (Jura et al., 2006; Wu et al., 2016).

To quantify shape characteristics of individual lobes,
PaCeQuant extracts five lobe features per lobe, in-
cluding the equator length, the baseline length, the
apical and basal lengths, and the contour length of each
lobe (Supplemental Fig. S6B). In addition, for type II
lobes, we quantify the distance of the contour segments
from the equator to the three-cell-junction point. To
estimate the bending of a lobe from these features, we
calculated the ratio of the lobe equator length to the
total length of the lobe contour (Supplemental Fig. S6,
C–E). In a direct comparison, type II lobes displayed a
larger contour length relative to the equator than type I
lobes, as indicated by log(Equator Length/Total Lobe-
Contour Length) values of #1 and $1 in type II and
type I lobes, respectively (Fig. 6C). This points to a
higher degree of asymmetric expansion at three-cell
junctions. We measured the length of the lobe contour
segments corresponding to the contact sides with the
two neighboring cells and compared the ratio of the
short versus the long contour segments (Fig. 6D;
Supplemental Fig. S6, E and F). Our data revealed a
tendency for a more similar length of the two lobe
contours in small cells when compared to large cells,
which suggests that different levels of expansion of the
two neighboring cells contributed to these changes in
type II lobe characteristics. During development, the
difference between the two nonuniformly growing
parts of the lobes increased further. Our results suggest
that predominant expansion of one the two neighbor-
ing cells contributes to the higher degree of asymmetric
expansion at type II lobes, which is consistent with
previous reports (Jura et al., 2006). Together, we con-
clude that our novel method robustly detects and
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Figure 6. Analysis of type I and type II lobes and quantification of lobe characteristics. A, Image of an exemplary group of
adjacent PCs after neighborhood analysis of individual lobes. Apical contours of type I and type II lobes are shown in blue
and red, respectively. In type II lobes, three-cell contact points (shown as black dots) separate the lobe contours corre-
sponding to the contact sides with the two neighboring cells (referred to as short and long contour segments). B to D,
Analysis of lobe characteristics in PCs from the three developmental time points (3 DAG, 5 DAG, and 7 DAG) and the three
size categories (small, medium, large; see Fig. 5). For an overview of quantified lobe features and statistical analysis, see
Supplemental Figure S6. B, Bar plots showing the average number of type I (TYPE_1) and type II (TYPE_2) lobes per PC. C,
Average ratio of lobe equator length to total contour length in type I and type II lobes in a logarithmic scale. D, Analysis of
the length of the two parts of type II lobe contours that span the distances from the lobe equator to the three-cell contact
point. Scatterplots of all individual type II lobes compare the short (ApicalContourShort) and long (ApicalContourLong)
fragments.
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classifies type I and type II cells based on the analysis of
the lobe neighborhood and quantifies characteristics of
individual lobes, which provides a platform to study
effects of, e.g. gene functions specifically involved in the
formation of type II lobes.

Phenotype Analysis of Cell Shape Mutants

We next applied the PaCeQuant program to analyze
shape characteristics in mutants that differ in PC shape
compared to wild-type seedlings (data set 4; Fig. 7). We
selected a mutant impaired in KATANIN (KTN1)
function. KTN1 encodes a protein with microtubule
severing function, and ktn mutant lines have exten-
sively been studied with respect to microtubule order-
ing and PC shape characteristics (Lin et al., 2013;
Lindeboom et al., 2013; Zhang et al., 2013). In particular,
lobe growth has been shown to be impaired in ktn1
mutants, which results in a reduced length of lobes
(Lin et al., 2013). In addition, we included transgenic
Arabidopsis Pro-35S:IQ67-DOMAIN (IQD)16 lines in our
analysis. IQD16 belongs to a novel class of calmodulin-
binding proteins with potential roles in cellular calcium
signaling (Abel et al., 2005; Abel et al., 2013). Most IQD
family members localize to microtubules, and over-
expression of IQD16 alters microtubule organization
and induces cell elongation (Bürstenbinder et al., 2017a;
Bürstenbinder et al., 2017b). As input, we used 10 im-
ages per genotype of cotyledons from 5-d-old seedlings
(Fig. 7A). We selected 5-d-old seedlings because at this
stage cotyledons are flat, which facilitates fast and easy
image acquisition. In addition, a large number of PCs is
actively expanding at 5 DAG and has developed pro-
nounced lobes (see Fig. 5), which is a prerequisite for
reliable lobe quantification.
We observed comparable distributions of cell sizes in

the two mutant lines when compared to the wild-type
control (Fig. 7B). Since medium- and large-sized cells
are highly similar in cotyledons of Arabidopsis wild-
type seedlings at 5 DAG (see Fig. 5) we assumed that
removal of only small cells from the sample set is suf-
ficient for size filtering and reliable quantification (see
Supplemental Fig. S5B). We thus applied the empiri-
cally determined small size threshold ts from the de-
velopmental analysis of wild-type seedlings (see Fig.
5) to the mutant data set and quantified PC shape
characteristics in all cells larger than 1,404 mm2. After
size filtering, we retained 161, 156, and 226 cells for
wild-type, ktn1-5, and Pro-35S:IQD16, respectively
(Fig. 7B). Thus, approximately 50% of all cells detected
by PaCeQuant are included in the subsequent data
analysis.
Consistent with previous reports, we detected a sig-

nificantly reduced average lobe length in ktn1-5 (P ,
0.001; Fig. 7C; Supplemental Fig. S7B). The lobe length
automatically measured with our novel algorithm re-
sembles lobe length values measured manually by Lin
et al. (2013) and correlates with lobe length values
measured in ktn1 mutants. The total number of lobes is

not altered in ktn1-5 when compared to wild-type
seedlings, which points to roles of KTN1 in lobe
growth, but not in lobe initiation. In addition, we ob-
served increases in cell size (area), but not in cellular
elongation (eccentricity). Nonlobe area as well as min-
imum andmaximum core width are increased in ktn1-5
mutants. Thus, our data suggest that loss of KTN1
promotes isotropic expansion of PCs, possibly by pre-
venting growth restriction at the neck regions. In
transgenic Pro-35:IQD16 lines, lobe length is reduced
even stronger than it is in ktn1-5 (P # 0.001). The re-
duced lobe growth is further reflected by an increased
nonlobe area ratio and by a reduced irregularity of
the cell contour, as reflected by a decreased margin
roughness in Pro-35S:IQD16 , ktn1-5 , Col-0 (Fig. 7C;
Supplemental Fig. S7, A and B). Compared towild-type
and ktn1-5 mutants, we observed a significant elonga-
tion of individual cells in Pro-35:IQD16 seedlings (P ,
0.001), which is represented by increased length (P ,
0.001), reduced width (P , 0.001), and increased ec-
centricity (P, 0.001) values of cells from Pro-35:IQD16
lines. The cell sizes, however, are not altered in Pro-35S:
IQD16 lines, which suggests that IQD16 does not pro-
mote cellular expansion but alters the direction of cel-
lular growth. Thus, our data suggest distinct functions
of KTN1 and IQD16 in regulation of cell growth and
cellular expansion and provide first insights into po-
tential roles of IQD16 in establishment of cellular po-
larity or growth anisotropy. Together, the combined
analysis of 27 shape descriptors provides a platform for
comparative and quantitative analyses with statistical
support suitable for mutant phenotyping and develop-
mental analyses.

DISCUSSION

In this study, we present PaCeQuant, a novel ImageJ-
based tool for automatic segmentation of leaf epidermal
PCs and simultaneous quantification of PC shape
characteristics. The fully automatic segmentation of
individual cells by PaCeQuant is a major advance be-
cause currently all measurements of PCs require man-
ual segmentation. Manual segmentation is very time
consuming and prone to bias introduced by the sub-
jectivity of sample choice and contour labeling
(Vanhaeren et al., 2015; Wu et al., 2016). PaCeQuant
efficiently detects cell outlines in confocal input images
using a combination of contrast and boundary en-
hancement, analysis of skeletons in binary images and
watershed-based gap closing (Fig. 1).

We validated the accuracy of the automatic seg-
mentation implemented in PaCeQuant by comparison
to results from manually segmented cells (Fig. 3;
Supplemental Fig. S2; Supplemental Table S2). In few
cases, PaCeQuant locally determined cell contours with
low accuracy, mostly at regions of lower contrast (Fig.
3; Supplemental Fig. S4). Local regions of deviation
from manually segmented contours, however, only
had weak effects on calculated shape properties of
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individual cells (Fig. 3; Supplemental Fig. S2). When
applied to a larger data set of 373 cells, PaCeQuant
partially failed to segment the contours of less than
10 percent of the cells (Supplemental Fig. S4). Manual
filtering did not affect the calculated feature values
significantly (Supplemental Fig. S4), which suggests
that the large number of analyzed cells generates data
sets robust enough to compensate for minor detection

errors. When compared to manual segmentation,
PaCeQuant reduces the variance in segmentation re-
sults due to its high reproducibility, and bias induced
by PaCeQuant is constant irrespective of when or by
whom segmentations are performed. Thus, PaCeQuant
provides a robust platform for cell segmentation, which
can be used for shape quantification without manual
postprocessing. To account for input data sets with

Figure 7. Phenotypic analysis of pavement cell shape mutants. PC shape analysis in cotyledons of 5-d-old seedlings from wild
type (Col-0) and two mutants, ktn1-5 and transgenic Pro-35S:IQD16 (oxIQD16) plants. A, Inverted confocal images of wild type
and the two mutants stained with FM4-64. B, Relative distribution of cell areas in the three data sets. Numbers in the legend refer
to the total number of cells (Ntotal) from 13 images of the wild type, 13 of ktn1-5, and 17 of oxIQD16. Cells larger than size
threshold ts = 1,400mm2 (N)were used for further analysis (see Fig. 5). C, Violin plots of value distributions for four global (top) and
four PC-specific features (bottom). Circles and crosses refer to medians and means; the vertical black lines in each category
represent the SD (thick lines) and the 95% confidence intervals (thin lines). The width of each violin box represents the local
distribution of feature values along the y axes. For a summary of all features and a statistical analysis, see Supplemental Figure S7.
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medium to low quality of input images and to increase
the compatibility of PaCeQuant with independent
imaging techniques such as agarose imprints or scan-
ning electron microscopy images, we additionally
implemented an optional semiautomatic or manual
segmentation mode, respectively, into PaCeQuant.
The automatic segmentation of individual PCs imple-

mented in PaCeQuant provides the basis for high-
throughput shape quantification. To study developmental
shape transitions and molecular and genetic modes of
shape establishment, imaging must be combined with
the quantification of PC shape characteristics. A com-
bination of advanced imaging, automatic quantifica-
tion of shape features, and computational modeling has
been used to study the development of embryos (De
Rybel et al., 2014; Yoshida et al., 2014), of root meri-
stems (Campilho et al., 2006), of shoots apical meri-
stems (Reddy et al., 2004; Kierzkowski et al., 2012;
Serrano-Mislata et al., 2015), and of flower organs
(Tauriello et al., 2015). In these studies, the direction of
cell division and cell expansion is tracked over time
from semi- and fully automatic 3D segmentations of
individual cells using the MorphoGraphX software (de
Reuille et al., 2014; Barbier de Reuille et al., 2015). In
combination with molecular and developmental data
imaging-based analyses enabled the generation of
comprehensive models of the underlying regulatory
processes (Roeder et al., 2011; Sozzani et al., 2014). All
cell types analyzed by these approaches, however, are
simple shaped cubic or cylindrical cells, whereas PCs
form much more complex and diverse cell shapes
during expansion. The algorithms used to track and
measure growth in these model systems cannot directly
be applied to quantify PC characteristics, as they
oversimplify PC shape geometry, and comparable
quantification methods suitable for robust analysis of
PCs are lacking. In most existing studies that analyzed
PC characteristics, differences in PC shape between
mutants and wild type were quantified by the analysis
of single shape parameters only (Tisné et al., 2008; Xu
et al., 2010; Li et al., 2013) or by a combination of a few
select shape parameters (Fu et al., 2005; Guo et al.,
2015). Although sufficient for direct comparison of
phenotypes, the limited shape information reduces the
informational value of the individual measurements
and hampers a comprehensive comparison of pheno-
types identified in different studies and from different
laboratories (Ivakov and Persson, 2013;Wu et al., 2016).
To provide a standardized platform for PC shape

phenotyping, we included the simultaneous quantifi-
cation of 27 different shape parameters in PaCeQuant.
The 27 features include global geometric and morpho-
logical features, such as area, perimeter, and circularity
(Fig. 2; Supplemental Table S1). In addition, we quan-
tify the number, length, and width of lobes, which are
specific characteristics of PCs, by analysis of the local
curvature along the cell contour. In a direct comparison
with the recently released LobeFinder tool (Wu et al.,
2016), PaCeQuant quantifies more shape features than
LobeFinder (27 versus 8, respectively), including the

length of lobes and the degree of cellular elongation.
PaCeQuant detects in average one to three lobes more
per cell than LobeFinder (Fig. 4). The lobe numbers
detected by PaCeQuant are in the range of lobes
detected by individuals (Fig. 4; Supplemental Fig. S3).
The large differences in the lobe numbers measured by
four independent individuals further demonstrate the
high variability of manual image analysis and highlight
the requirement for automated phenotyping platforms.
Another important parameter in PC shape develop-
ment is the degree of growth restriction at neck regions,
sometimes estimated by the quantification of the neck
width (Li et al., 2003; Bannigan and Baskin, 2005;
Fu et al., 2005). The definition of the neck width, how-
ever, is not clear and renders objective measurements
difficult. We thus developed novel objective and well-
defined algorithms to quantify the extent of the cellular
core region. These two features, the minimal and
maximal core width (Fig. 2; Supplemental Table S1),
quantify the widths of narrow and wide parts of
the core region of PCs, defined by distance of the cell
contour to the central skeleton branch. Small values
represent a small neck width, while large values cor-
respond to a larger neck width. In combination with the
analysis of the nonlobe area and the ratio of nonlobe
area to total area, these values provide information on
the growth restriction at neck regions.

Finally, PaCeQuant is the first tool that not only an-
alyzes and quantifies shape features per cell but also
extracts data per lobe. It provides length and width
measurements of various parts of an individual lobe,
e.g. of the overall lobe length as well as of baseline and
equator lengths. PaCeQuant additionally includes an
automatic identification of type I and type II lobes at
two-cell and three-cell contact points, respectively, for
cells with sufficient neighborhood information (Fig. 6;
Supplemental Fig. S6). This allows detailed analyses of
the characteristics in particular of three-cell contacts,
e.g. at different time points during development, with
regard to lobe symmetry. By applying PaCeQuant on a
developmental time series of Arabidopsis cotyledon
PCs, we demonstrate that PaCeQuant accurately
quantifies shape features over a wide range of cellular
sizes and differing shapes (Fig. 5). In our sample sets,
PaCeQuant automatically detected between 21 and
34 cells per image and simultaneously quantified the
27 shape features with an average processing speed of
1.6 s per cell. The supplemental R script enables fast and
easy data visualization, statistical analysis and data
processing, and supports high-throughput data analy-
sis. Thus, PaCeQuant is suitable to generate large data
sets in a short period of time, which are free from biased
selection of individual cells. The data sets contain in-
formation on the number and distribution of cells from
different stages of cellular expansion. To quantify and
compare shape geometries in defined subsets of cells
during development we applied size filters and ana-
lyzed shape features in small-, medium-, and large-
sized cells. Our data reveal age-dependent differences
in cell shape between populations of similar sized cells,
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which likely reflect different stages of differentiation
(Fig. 5). The results are in agreement with previous
studies, which reported changes of shape in actively
expanding PCs during development (Zhang et al., 2011;
Elsner et al., 2012).

Analysis of lobe types and feature characteristics of
individual lobes indicated that, in a direct comparison,
type II lobes are less regular shaped (Fig. 6). These
differences might be caused by higher growth rates of
one of the two neighboring cells, which is consistent
with earlier reports (Jura et al., 2006). The optional
analysis of lobe types implemented in PaCeQuant thus
provides the first tool to study effects of gene functions
specifically involved in the formation of three-cell
junctions and to measure shape characteristics of indi-
vidual lobes. For the phenotypic analysis of mutants
that, e.g. affect PC shape globally it, however, is not
necessary to distinguish between these two lobe types.
If desired, the user thus can optionally activate lobe
type classification and analysis in the graphical user
interface.

We additionally validated the usability of PaCeQuant
for PC shape quantification in mutant phenotyping as
a first proof of concept (Fig. 7). Consistent with pre-
vious reports, we observed a reduced length of lobes
in ktn1-5 lines (Lin et al., 2013), which confirms that
the analysis of contour curvature implemented in
PaCeQuant is suitable for measurements of lobe
characteristics. We provide evidence that the com-
bined analysis of 27 shape features with PaCeQuant
generates information on multiple aspects of PC
shape and growth, including the size of the cellular
core region and the number and characteristics of
lobes. The analyzed features reflect the geometrical
complexity of PCs. Thus, PaCeQuant enables com-
parative analyses between mutants or during devel-
opment even across different laboratories with a
more complex description of PC shapes than other
existing tools.

We will establish a future database where PaCeQuant
results can be uploaded and directly compared to
existing data sets. Such a database will enable the
identification of, e.g. mutants with highly similar de-
fects in shape formation, which might point to similar
cellular functions and could assist the molecular and
physiological characterization. In the long term, we
aim to implement the collected data in systems biology
approaches to model the underlying molecular and
genetic pathways.

In conclusion, our data demonstrate that PaCeQuant
is suitable for automatic segmentation of PCs, which
builds a prerequisite for the generation of objective
and reproducible data. Together with the imple-
mented feature analysis, PaCeQuant offers the pos-
sibility of high-throughput PC shape analysis. It
thus provides a user-friendly platform for large-
scale shape quantification with potential applica-
tion in studies of cell shape changes in response to
external stimuli, during development or in mutant
phenotyping.

MATERIALS AND METHODS

Plant Material and Growth Conditions

Arabidopsis (Arabidopsis thaliana; ecotype Col-0) seeds were originally
obtained from the Arabidopsis Biological Resource Center. Seeds of the ktn1-5
T-DNA line (SAIL_343_D12) were obtained from the Nottingham Arabidopsis
Stock Centre (NASC). Transgenic Pro-35S:IQD16 lines were generated by
Agrobacterium tumefaciens-mediated transformation using the floral-dip method
(Clough and Bent, 1998), as described in Bürstenbinder et al. (2017b). Arabi-
dopsis seeds were surface-sterilized with chlorine gas, and after 2 d of strati-
fication at 4°C grown vertically on square plates containing Arabidopsis salt
(ATS) medium and 0.5% (w/v) agar (Lincoln et al., 1990) at 20°C with cycles of
16 h light and 8 h dark.

Confocal Microscopy

Foranalysisof epidermalpavementcell shape, seedlingswere incubated10 to
30 min in 50 mM FM4-64 dye (Synapto-Red, Sigma). Imaging was performed
with an LSM 700 inverted laser scanning microscope (Carl Zeiss) using a 203
plan neofluar objective. The laser line 555 nm was used for FM4-64 excitation,
and fluorescence emissionwas detected between 560 and 590 nm. Single optical
sections of the adaxial site of FM4-64-stained cotyledons were acquired with
pixel dwell times between 0.8 and 1.3 ms and an averaging of 4 to increase the
signal-to-noise ratio. For each developmental stage and line, 10 to 17 cotyledons
from 5 to 10 individual seedlings were scanned. Groups of adjacent pavement
cells were imaged with a resolution of 3.19 pixels/mm in 3-d-old and 5-d-old
seedlings and with a resolution of 2.24 pixels/mm in 7-d-old seedlings.

Data Sets

For the evaluation of PaCeQuant, we used four data sets, which were
comprised as follows:

Data set 1: 15 individual cells from one input image of 5-d-old Arabidopsis
Col-0 seedlings.

Data set 2: 373 cells identified from 14 input images of cotyledons from 5-d-old
Arabidopsis Col-0 seedlings. After manual postprocessing, 342 cells were
retained in the curated data set.

Data set 3: 642 cells from 10 input images of Arabidopsis Col-0 seedlings
3 DAG, 373 cells from 14 input images of seedlings 5 DAG, and 356 cells
from 13 images of seedlings 7 DAG.

Data set 4: 302 cells from 13 input images of Col-0 wild type, 274 cells from
13 input images of ktn1-5 mutants, and 414 cells from 17 input images of
transgenic Pro-35S:IQD16 lines from 5-d-old seedlings. After size filtering
for removal of small cells (#1400 mm2), the data set contains 161, 156, and
226 cells from Col-0, ktn1-5, and Pro-35S:IQD16, respectively.

Installation and Usage of PaCeQuant

PaCeQuant is part of theMicroscope ImageAnalysis ToolBoxMiToBo. The
PaCeQuant plugin can be added to ImageJ/Fiji by activation of MiToBo’s
update site via the update site manager of Fiji. Alternatively, binary packages
of MiToBo, including the PaCeQuant plugin for direct use with ImageJ/Fiji,
can be downloaded from MiToBo’s website. A detailed description of
PaCeQuant, including installation instructions can be found at PaCeQuant’s
website (http://mitobo.informatik.uni-halle.de/index.php/Applications/
PaCeQuant).

After installation, PaCeQuant can be found in ImageJ’s plugin menu. After
selection of Plugins . MiToBo . PaCeQuant, a graphical user interface
opens, which allows easy configuration and execution of the tool
(Supplemental Fig. S8).

First, the general workflow and data input format have to be configured. For
this purpose, PaCeQuant offers three options:

SEGMENTATION_AND_FEATURES

In this mode, PaCeQuant uses confocal input images for automatic cell
segmentation and feature quantification. As output, images showing the seg-
mentation results, ImageJROIfiles containing the regiondata and for each image
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a textfile includingall extracted featurevaluesper analyzedcell are exportedand
saved in the result directory.

SEGMENTATION_ONLY

By choosing this mode, PaCeQuant performs automatic segmentation of
individual cells on confocal input images. As output, images and ImageJ ROI
files are exported and saved in the result directory, which subsequently can be
reimported to ImageJ for manual correction of segmentation inaccuracies.

FEATURES_ONLY

In this mode, either manually corrected segmentation data or input ROIs
generated by, e.g.manual segmentation of individual cells, canbe imported, and
for each image or ROI set a text file including all extracted feature values per
analyzed cell are exported and saved in the result directory.

For feature analysis, PaCeQuant accepts the following input formats:

BINARY_IMAGE: a binary image where the background is marked by inten-
sity value 0 and the foreground by intensity value 255.

LABEL_IMAGE: a grayscale image where each cell region is marked by a
unique label.

IMAGEJ_ROIs: ImageJ ROI files with region data, e.g. exported from ImageJ’s
ROI manager

PaCeQuant supports two basic working modes:

INTERACTIVE

Only the image or ROI set currently selected in ImageJ/Fiji is analyzed.

BATCH

All images or region files in a selected directory, and all its subdirectories are
analyzed.

Depending on the chosen option for image analysis and the selectedworking
mode, the configuration of the GUI dynamically changes, and mode-specific
entry fields appear. For segmentation, the user has to specify how the cells in the
images are labeled, i.e. if the boundaries are darker than the background or vice
versa. Note that these are the only settings that are required to run PaCeQuant.
Optionally, PaCeQuant offers to activate a gap-closing heuristic to account for
incomplete cell boundaries due to low contrast and to define thresholds on the
size of valid regions, which we recommend to set properly. For expert users,
further configuration options are available via the parameter “Morphology An-
alyzer Operator.” It allows for changing thresholds and parameter values applied
in lobe detection and enables deactivation of subsets of features. Users, however,
should be aware that any change in these parameters might hamper comparative
evaluations between experiments and thus is not recommended. Finally, the
analysis of lobe types (TYPE-1, TYPE-2, UNDEFINED) and the quantification of
shape features of individual lobes can be activated optionally. These resultswill be
exported to a separate table per cell and can be analyzed separately.At the bottom
of the configuration, window options for generating supplemental results are
provided, e.g. for an image stack including additional intermediate result images
and for a stack with additional images visualizing the feature values of each cell
by mapping them to the intensity values of the cell in the corresponding image.
Lastly, additional verbose output to console can be activated.

Clicking the button “Run” starts the processing. If a single image is ana-
lyzed, the results will directly pop up, while in batch mode, the results are
written to file. For each input image in each processed folder, several files with
segmentation data and an output text file are generated and saved to a new
subfolder “results.” The text files contain row-wise for each cell the set of feature
values extracted by PaCeQuant. If the optional lobe type classification is acti-
vated, additional text files are generated for each individual cell per image.
These files contain information on the lobe type and on lobe-specific feature
values for each lobe of the particular cell. Note that a complete documentation
of all configuration options and all general information about PaCeQuant can
be found at MiToBo’s Web site in the documentation section:

http://mitobo.informatik.uni-halle.de/index.php/Applications/PaCeQuant.

Automatic Cell Shape Analysis and Data
Visualization with R

For analysis of the data output, we provide an R script that visualizes the
features and performs basic statistical evaluations. As data input the path to the

results directory of the PaCeQuant output has to be provided by the user. Each
subdirectory within the results directory defines a sample set. First, all detected
cells are sorted according to size, and a histogram of the size distribution is
generated for each individual sample set. In the next step, size filtering can be
applied to exclude small cells below a manually defined size threshold. Values
between 0 and 1 are considered as percentages of the total number of detected
cells. Values larger than 1 are considered as absolute PC areas in mm2. The size
filtering can be performed on the global level, where the same threshold is
applied to all analyzed sample sets. Alternatively, local thresholds can be set
separately for individual data sets. Since size reflects the developmental stage of
PCs and thus has a large impact on most analyzed features, we recommend
comparing the size distributions of the analyzed sample sets before selecting a
threshold for further analysis. We recommend using global thresholds if all
samples have comparable size distributions. For comparison of, e.g. mutants
with generally reduced cell sizes compared to wild-type seedlings, locally de-
fined thresholds might be useful to compare cells at similar stages of cell dif-
ferentiation. Lastly, we suggest using absolute sizes as threshold, which,
however, requires careful analysis of size distributions and of size impacts prior
to threshold selection. For comparative analyses in Arabidopsis (also across
different laboratories), we recommend to use developmental stages and
thresholds introduced in this work (ts = 1400 mm2). To visualize the data, the re-
sults of all individual features are plotted as histograms, boxplots, or violin plots.

Statistical Analysis

Analysis of the data sets with the Kolmogorov-Smirnov test revealed non-
normal distribution formost sample sets and features. For statistical analysis,we
thus applied the nonparametric Kruskal-Wallis test provided by the R package
stats, which is the equivalent of the parametric one-way ANOVA (Kruskal and
Wallis, 1952). The Kruskal-Wallis test is intended for testing whether samples
originate from the same distribution. Specifically, it tests for the null hypothesis
that the location parameters (medians) of the distributions of the given samples
are the same in each group. The alternative is that they differ in at least one group.
In the latter case, we applied the Dunn’s test (Dunn, 1964) provided by the R
package dunn.test as post hoc test to analyze each pair of samples separately.

Accession Numbers

Sequence data for KTN1 and IQD16 can be found in the EMBL/GenBank
data libraries under accession numbers At1g80350 andAt4g10640, respectively.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Effects of the individual processing steps imple-
mented in PaCeQuant on the input image.

Supplemental Figure S2. Comparison of PaCeQuant features between
manually and automatically segmented cells.

Supplemental Figure S3. Pairwise comparison of features computed by
PaCeQuant and LobeFinder.

Supplemental Figure S4. Comparison of feature values between Raw
PaCeQuant output data and after cell removal by manual filtering.

Supplemental Figure S5. Quantification and statistical analysis of pave-
ment cell shape features during development.

Supplemental Figure S6. Classification and quantification of type I and
type II lobe characteristics.

Supplemental Figure S7. Quantification of pavement cell shape features in
wild-type and mutant lines.

Supplemental Figure S8. Graphical user interface of PaCeQuant.

Supplemental Table S1.Detailed definitions of features analyzed by PaCeQuant.

Supplemental Table S2. Quantitative evaluation of segmentation quality.
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