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N-fixing nodules are new organs formed on legume roots as a result of the beneficial interaction with soil bacteria, rhizobia. The
nodule functioning is still a poorly characterized step of the symbiotic interaction, as only a few of the genes induced in N-fixing
nodules have been functionally characterized. We present here the characterization of a member of the Lotus japonicus nitrate
transporterl/peptide transporter family, LiNPF8.6. The phenotypic characterization carried out in independent L. japonicus
LORE1 insertion lines indicates a positive role of LjNPF8.6 on nodule functioning, as knockout mutants display N-fixation
deficiency (25%) and increased nodular superoxide content. The partially compromised nodule functioning induces two striking
phenotypes: anthocyanin accumulation already displayed 4 weeks after inoculation and shoot biomass deficiency, which is
detected by long-term phenotyping. LjNPF8.6 achieves nitrate uptake in Xenopus laevis oocytes at both 0.5 and 30 mm external

concentrations, and a possible role as a nitrate transporter in the control of N-fixing nodule activity is discussed

Nitrate (NO; ) and ammonium (NH,") represent the
main forms of inorganic nitrogen source for plant
growth and metabolism, with NO3 ™~ being the largely
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dominant supply form in temperate climates (Miller
and Cramer, 2005). Higher plants possess two NO3~
transport systems to cope with a wide range of external
concentrations, the low-affinity transport system
(greater than 0.5 mv) and the high-affinity transport
system (less than 0.5 m.), both including constitutive
and inducible types of transport (Tsay et al., 2007). In
higher plants, low-affinity transport system proteins
are represented mainly by the Nitrate Transporterl/
Peptide Transporter Family (NPF), which includes a
large number of genes (53 members in Arabidopsis
[Arabidopsis thaliana] and 80 in rice [Oryza satival),
divided in eight subfamilies and able to transport
different substrates (Léran et al., 2014). To date, ni-
trate transport activity has been reported for 17 out
of 53 NPF proteins in Arabidopsis (Corratgé-Faillie
and Lacombe, 2017), with AtNPF6.3 being the only
exception, as it displays dual affinity for nitrate in the
high and low concentration ranges (Liu et al., 1999).
Dual affinity for NO3™ uptake in Xenopus laevis oocytes
also has been reported for the Medicago truncatula
MtNPF6.8 (Morere-Le Paven et al., 2011) and MtNPF1.7
(previously named Numerous Infection and Polyphe-
nolics/Lateral root-organ Defective; NIP-LATD) pro-
teins (Bagchi et al., 2012). Moreover, Minpf1.7 knockout
(KO) mutant plants display more defective lateral root
responses in planta at low KNO; concentrations than at
higher concentrations, indicating a high-affinity trans-
port physiological function (Bagchi et al., 2012). The
specificity of the spatiotemporal patterns of AtNPF
expression and their regulatory profiles ensure nitrate
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uptake from soil, long-distance transport within the
plant body, and distribution from source to sink tissues
(Krapp et al.,, 2014; Noguero and Lacombe, 2016).

It is well known that nitrate also plays a role as a signaling
molecule involved in the control of many physiological
processes, including gene regulation (Wang et al., 2004)
and root development (Walch-Liu et al., 2006). A crucial
role in the nitrate signaling pathway governing root sys-
tem architecture and modulation of the expression of
many genes has been demonstrated for AtNPF6.3, which
functions as a nitrate transceptor (Ho et al., 2009; Krouk
et al., 2010). In particular, the control exerted by AtNPF6.3
on lateral root development, in response to different ex-
ternal nitrate concentrations, is mediated by its action as an
auxin transport facilitator (Krouk et al., 2010; Bouguyon
et al,, 2015). Plant NPF members encompass proteins ca-
pable of transporting different substrates other than ni-
trate, such as di/tripeptides, amino acids, glucosinolates,
malate, auxin, abscisic acid (ABA), GA,, and jasmonic acid
(Frommer et al., 1994; Jeong et al., 2004; Waterworth and
Bray, 2006; Krouk et al., 2010; Kanno et al., 2012; Nour-
Eldin et al., 2012; Saito et al., 2015; Tal et al., 2016). In
particular, the multitransport feature recently reported for
some NPF proteins displaying phytohormone transport
capacities may suggest additional roles played by these
proteins in regulatory cross talk linking different physio-
logical signals (Krouk et al., 2010; Kanno et al., 2012; Chiba
et al.,, 2015; Saito et al., 2015; Tal et al., 2016). However, the
different transport capacities are distributed among the
eight NPF subclades identified in plants (Léran et al., 2014),
as sequence homologies do not correlate with substrate
specificity and the determination of the transported sub-
strate cannot be determined from the sequence data alone.

Symbiotic nitrogen fixation (SNF) is part of a multi-
step mutualistic relationship, mainly restricted to le-
gumes, in which plants provide a niche (represented by
root nodule organs) and fixed carbon to the microor-
ganism partner (Rhizobium spp.) in exchange for fixed
nitrogen. The establishment and functioning of an ef-
fective SNF consists of the reciprocal recognition of
symbiotic partners, penetration, stimulation of cortical
cell division (nodule primordium), invasion of divided
cells, differentiation of the endosymbiont, N fixation,
and nodule senescence. As for the root system, nitrate,
both as nutrient and signal, plays a regulative role in the
nodulation program, and high external concentrations
inhibit different steps of SNF, although the mechanisms
involved are still controversial (Carroll and Gresshoff,
1983; Carroll and Mathews, 1990; Fujikake et al., 2003;
Barbulova et al., 2007, Omrane and Chiurazzi, 2009;
Jeudy et al., 2010). The addition of 5 mm nitrate quickly
stops nodule growth, and this effect seems to be linked
to a decrease in photoassimilate supply to growing
nodules (Fujikake et al., 2003). Furthermore, N-fixation
activity is almost completely lost after a short exposure
to high nitrate concentrations (Schuller et al., 1988;
Vessey and Waterer, 1992), and several hypotheses
have been offered to explain such a strong impact of
nitrate on nodule activity (Vessey and Waterer, 1992;
Minchin, 1997; Naudin et al., 2011; Cabeza et al., 2014).
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In N-fixing nodules, bacteria that enter root nodule
cells are surrounded by a plant-derived membrane,
the peribacteroidal membrane (PBM), which encloses
the intracellular bacteria in a symbiosome. Inside the
symbiosome, bacteria differentiate into bacteroids
with the ability to fix atmospheric N, via nitrogenase
activity. A primary nutrient exchange across the PBM
is the transport of carbon energy as products of plant
photosynthates to bacteroid in exchange for fixed
nitrogen. N fixation is an energy-intensive process
that also requires oxygen for respiration to generate
ATP and reducing equivalents for the reduction of N,
to NH,. At the same time, as bacteroid nitrogenase is
inactivated by oxygen, a microaerophilic condition
must be maintained in rhizobia-containing nodule
cells. This is achieved by limiting the rate of oxygen
influx through the outer uninfected cell layers of the
nodule (Witty and Minchin, 1998) and by maintaining
high rates of respiration in mitochondria and bacte-
roids of invaded cells (Bergensen, 1996). High respi-
ration rates are ensured mainly by the presence at
millimolar concentrations of the high-affinity oxygen-
binding protein leghemoglobin, which delivers oxy-
gen efficiently to mitochondria and bacteroids for
respiration while buffering free oxygen at the re-
quired level (Appleby, 1984). This extremely high rate
of respiration in the invaded nodule cells is the main
reason for reactive oxygen species (ROS) generation,
whose steady-state concentrations must be strictly
controlled, as these represent not only toxic by-products
of aerobic metabolism but also key signals for nodula-
tion. Nodule-specific metabolic pathways are completed
by redox reactions involved in the control of concentra-
tions of ROS generated in N,-fixing nodules (Evans et al.,
1999; Hernandez-Jimenez et al., 2002; Puppo et al., 2005;
Becana et al., 2010; Matamoros et al., 2013). The distinct
metabolic pathways of N,-fixing nodules reflect changes
in gene expression for related metabolic enzymes.
Genome-wide transcriptomic analyses have allowed the
classification of genes induced in nitrogen-fixing nod-
ules, and among these, a significant percentage of genes
encoding for transporter proteins have been found
(Colebatch et al., 2004; Hogslund et al., 2009; Takanashi
et al., 2012). NPF proteins are largely represented in this
category of transporters, and at least eight members
have been recently subclassified as nodule-induced (INI)
genes in Lotus japonicus (Valkov and Chiurazzi, 2014).

Here, we report the functional characterization of
LjNPF8.6, an NI gene that plays a specific positive role
on nodule functioning controlling nitrogenase activity
and nodular ROS content.

RESULTS

LjNPF8.6 Expression Is Induced Progressively in
N-Fixing Nodules

We previously reported the identification of a large
L. japoniicus NPF family consisting of more than 70 mem-
bers, 39 of which have a complete sequence that can be
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retrieved from the L. japonicus whole-genome sequence
resource (Sato et al., 2008; Valkov and Chiurazzi 2014;
http:/ /www.kazusa.or.jp/lotus/). Transcriptomic data
provided through gene-specific and GeneChip approaches
(Hogslund et al., 2009; Criscuolo et al., 2012; Takanashi
et al., 2012) allowed the identification of a subclass of
eight NPF genes with a clear-cut NI level of expression
(Valkov and Chiurazzi, 2014). Among these, the gene
Lj3g3v2681670.1 (genomic assembly build 3.0, classi-
fied as chr2LjT15101.230.r2.d in build 2.5) has been
subclassified in clade 8 and provisionally named
LjNPF8.6 (Valkov and Chiurazzi, 2014), which encodes
for a 561-amino acid protein with a molecular mass of
62.4 kD.

In order to further characterize the profile of expres-
sion of LiNPF8.6, we first analyzed the distribution of the
LjNPF8.6 transcript in different organs of L. japonicus
by quantitative reverse transcription (qRT)-PCR. Seed-
lings were germinated on Gamborg B5 medium with-
out N sources, inoculated with Mesorhizobium loti, and
RNA extracted from different organs after 4 weeks. The
LjNPF8.6 gene is expressed strongly in mature nodules,
with an amount of transcript about 10-fold higher than
in roots, whereas it is barely detectable in stems, leaves,
and flowers (Fig. 1A). LjNPF8.6 expression also has been
tested through a time-course experiment in roots of
L. japonicus inoculated with M. loti at 1 week after sow-
ing. The LiNPF8.6 expression pattern is not induced in
roots at early times after M. loti inoculation when com-
pared with the well-known early symbiotic marker
NODULE INCEPTION (LjNIN) gene (Schauser et al.,
1999). Moreover, a progressive increase of the amount of
LjNPF8.6 transcript is detected in nodule tissue at 10 and
28 d after inoculation (Fig. 1B). This profile of induction,
starting after the onset of N fixation and induced pro-
gressively during nodule maturation, resembles that of
the late nodulin genes, suggesting an involvement in
nodule functioning rather than development.

Isolation of LORE1 Insertion Null Mutants and
Phenotypic Characterization

To determine the in vivo function of LiNPF8.6, three
independent LOREI1 insertion mutants have been iso-
lated from the LORE]1 line collection (Fukai et al., 2012;
Urbanski et al., 2012; Malolepszy et al., 2016). Lines
53155, 49638, and 19899, bearing retrotransposon in-
sertions in the second and third exons (Fig. 2), have
been genotyped by PCR, and plants homozygous for
the insertion event into the LiNPF8.6 gene were selected
and transferred to the plant chamber for seed produc-
tion. End-point reverse transcription-PCR revealed no
detectable LjNPF8.6 mRNA in mature nodules of ho-
mozygous plants screened from lines 53155, 49638, and
19899; hence, these can be considered null mutants
(Supplemental Fig. S1). Initially, two individual ho-
mozygous mutant plants from each line were selected
for analyses, and because their growth phenotypes did
not differ significantly, the data obtained with the selected
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Figure 1. LjNPF8.6transcriptional regulation. A, Expression in different
organs. RNAs were extracted from wild-type plants grown on Gamborg
B5 derivative medium without N source at 4 weeks post inoculation
(wpi). Mature flowers were obtained from L. japonicus plants propa-
gated in the growth chamber. B, Time course of expression in root and
nodule tissues after M. loti inoculation. RNAs were extracted from roots
of wild-type seedlings grown in N starvation conditions at different
times after inoculation (RO, 24 h, and 72 h) and from young (10 d post
inoculation) and mature (28 d post inoculation) nodules. Expression
levels are normalized with respect to the internal control ubiquitin (UBI)
gene and plotted relative to the expression of flowers (A) and RO (B).
White bars, LiNPF8.6; gray bars, LiNIN. Data bars represent means and
sp of data obtained with RNA extracted from three different sets of plants
and three real-time PCR experiments.

individual mutants were pooled in this study. The initial
phenotyping of the three LOREI mutant lines included
measurements of shoot lengths and fresh weights of
4-week-old plants with and without inoculation with
M. loti. As shown in Figure 3, in the absence of N sources
(no N) or in the presence of KNO, concentrations (100 uMm,
1 mm) compatible with full nodulation capacity, the
three lines did not present significant differences,
when compared with wild-type plants, in terms of
shoot biomass and nodule number (Fig. 3). In order
to test whether LjNPF8.6, which also is expressed at a
significant level in the root tissue, could be involved in
the nitrate-dependent inhibitory pathways controlling the
nodule formation process, nodulation capacity also was
tested in the presence of high external concentrations of
KNO; (10 mm). As expected, the number of nodules is
reduced strongly in L. japonicus wild-type plants (85%;
Barbulova et al.,, 2007), and an identical inhibitory re-
sponse is observed in the Ljnpf8.6 mutants (Fig. 3C).
However, a careful analysis of phenotypes of the in-
oculated plants allowed us to detect a visible accumu-
lation of anthocyanin, conferring deep purple color, in
stems of mutant plants in symbiotic conditions when
compared with wild-type plants (Fig. 4, A and B). The
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Figure 2. Exon/intron organization of the LjNPF8,6
LjNPF8.6 gene. Insertion sites and relative
orientations of the LORET retrotransposon el- 53155

ement in the 53155, 19899, and 49638 lines
are indicated.

100 bp

anthocyanin accumulation starts to be easily detectable
in inoculated Ljnpf8.6 plants at 17 to 20 d after inocu-
lation, and the spreading of pigments increases pro-
gressively up to the third internode (40%—45% of the
stem length) at 4 wpi, whereas in wild-type plants,
traces of pigmentation are observed only at the base of
the stem structure (Fig. 4, A and B). A quantitative
analysis performed through anthocyanin extraction
from stem tissues at 4 wpi revealed a content 210% to
250% higher in nodulated KO than in wild-type plants
grown either under no N or 1 mm KNO; conditions (Fig.
4C). A significant systemic increase of anthocyanin
content also is revealed in roots of mutant plants inoc-
ulated with M. loti (Supplemental Fig. S2A). Con-
versely, uninoculated mutant plants did not display
anthocyanin accumulation in stems and roots, as no
quantitative differences were detected in wild-type and
mutant plants grown in the presence of 1 or 5 mm KNO,
(Fig. 4C; Supplemental Fig. S2A). Line 53155 was
analyzed only for plants inoculated on 1 mm KNO,
conditions and not utilized further for phenotypic
characterization, because of the segregation of the
nod”~ phenotype due to the additional LORE1 insertion in
the CERBERUS gene (Yano et al.,, 2009). However, the
identical phenotype displayed by the 53155, 49638, and
19899 lines confirms that the LORE1 insertion in the
LjNPF8.6 gene is the causal mutation of the increased
anthocyanin content observed exclusively in symbi-
otic conditions. In addition, heterozygous plants for
the LOREL insertion in the LiNPF8.6 gene, isolated in
the three lines, did not display high levels of antho-
cyanin in the stem (data not shown).

Ljnpf8.6 Nodule Mutants Display Nitrogenase Activity
Deficiency under Permissive Low-Nitrate Conditions,
Associated with a Long-Term Shoot Biomass
Reduction Phenotype

The accumulation of anthocyanin is a clear marker of
plant response to different stress conditions such as low
N availability (Diaz et al., 2006). In order to investigate
whether the anthocyanin accumulation detected in the
Ljnpf8.6 mutant in symbiotic conditions is correlated
with reduced nodule functionality, we compared
N-fixation activity in nodules of wild-type and mutant
plants at 4 wpi. A significant 25% decrease of acetylene
reduction activity (ARA) is detected in nodules of
Ljnpf8.6 mutants grown either in the absence of N or in
the presence of 1 mm KNO; (Fig. 5A). However, the
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reduction of N-fixation capacity detected in the Ljnpf8.6
KO genetic background is not correlated with any evi-
dent shoot phenotype other than anthocyanin accu-
mulation during in vitro growth, which must be limited
to a short period of analysis (4 wpi; Fig. 3). In order to
check whether a more severe shoot biomass phenotype
could be displayed by the Ljnpf8.6 mutants, 4-week-old
nodulated plants were transferred in growth conditions
compatible with long-term phenotypic analyses. We
first tried to transfer the 4-week-old nodulated plants
to pots filled with inert material, but the phenotyp-
ing analyses were biased by a random, genotype-
independent stress response due to bad adaptation
to the new conditions of growth. Conversely, the
transfer of nodulated plants to hydroponic condi-
tions minimizes this unpredictable plant phenotype,
and all the plants could be scored for reliable shoot
phenotypes after another 4 weeks. Figure 5, Band C,
shows the striking shoot biomass-deficient pheno-
type displayed by the Ljnpf8.6 mutants 4 weeks after
transfer to hydroponic conditions (8 wpi). The two
main representative phenotypes observed in all the
inoculated mutant plants are stunted shoots with
pale green and/or abscised leaves (Fig. 5, B and C).

Ljnpf8.6 Mutant Nodules Display Superoxide Overproduction

In M. truncatula, the NIP/LATD protein has been as-
sociated, through the characterization of the weak allelic
mutant nip-3, with defects in bacteria release or prolif-
eration within NI cells, where fewer bacteria are ob-
served (Teillet et al., 2008). Therefore, we tested whether
the deficient N fixation activity observed in the Ljnpf8.6
nodules (Fig. 5A) is associated with a reduced invasion
capacity. Seedlings grown in N starvation conditions
were inoculated with an M. loti strain carrying a consti-
tutively expressed hemA::lacZ reporter gene fusion for
the staining of young and mature nodules. As shown in
Figure 6, A to D, no differences were observed in the
density of the invading M. loti strain in wild-type and
mutant nodules.

Reduction of N-fixation activity in mature nodules
also has been associated with oxidative damage pro-
voked by ROS overproduction, which can be due to
natural aging or to exposure to different stress condi-
tions (Becana et al., 2010). We monitored superoxide
(O, ") production at different stages of nodulation using
the ROS-reactive dye nitroblue tetrazolium(NBT). The
nascent nodule primordia are strongly stained in both
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Figure 3. Quantitative analysis of shoot biomass and nodulation ca-
pacity of L. japonicus wild-type (wt) and LjNPF8.6 null mutant plants,
grown in the presence of different KNO, concentrations, in symbiotic
and nonsymbiotic conditions. A, Shoot length per plant. B, Fresh shoot
weight per plant. C, Nodule numbers per plant. The different KNO,
concentrations and, when determined, M. loti inoculations are indi-
cated. Bars corresponding to wild-type and different LORE1 plants are
indicated. Data bars represent means and st of measures from three
experiments (12 plants per experiment per condition). Data in A and B
were scored 25 d after sowing (21 d after transferring the plants from
water agar). Data in C were scored 28 d after inoculation.

the wild type and mutants (Fig. 6, E and F), while, as
nodules mature and enlarge in size, the staining inten-
sity decreases strongly in both genotypes but remains
more intense in mutant nodules (Fig. 6, G and H). In
60% of wild-type big nodules, the staining is not even
detectable in whole-mount samples, whereas in all the
comparable mutant nodules, this is still clearly visible.
In whole-mount samples, NBT staining is confined to
the lenticel structure on the nodule surface (Fig. 6, G
and H). Longitudinal nodule sectioning has confirmed
these differences of staining intensity in the paren-
chyma region (Fig. 6, I and J). The quantitative analysis
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conducted on mature nodules confirms a significant
overall increase of O, content in the 49638 line com-
pared with wild-type plants (25%; Fig. 6K). Oy~ content
also was quantified on root and stem tissues of inocu-
lated plants, where no significant differences were ob-
served (Supplemental Fig. 52B). These results indicate a
local Oy~ increase in the nodule organ.

LjNPF8.6 Is a Nitrate Transporter

Nitrate transport activity has been reported for 17 out
of 53 NPF proteins in Arabidopsis (Corratgé-Faillie and
Lacombe, 2017), which have been characterized as low-
affinity transporters, with the exception of AtNPF6.3/
NRT1.1, which is a dual-affinity nitrate transporter (Ho
etal., 2009; Krouk et al., 2010). In clade 8 of the plant NPF
family (Léran et al., 2014), the only NPF member
characterized up to now as a nitrate transporter when
expressed in X. laevis oocytes is the rice OsNPF8.9
protein, which shares 45% amino acid identity with
LjNPF8.6 (Lin et al., 2000). In order to assess whether
LiNPF8.6 encodes a nitrate transporter, in vitro-
synthetized LiNPF8.6 complementary RNA (cRNA)
was injected into X. laevis oocytes for functional assay.
Two days after the injections, oocytes were tested
for nitrate "N, uptake activity at two different nitrate
concentrations at pH 5.5: low (0.5 mm) and high (30 mm).
LjNPF8.6 cRNA-injected X. laevis oocytes were compared
with the AtNPF6.3-injected oocytes. Both batches of
oocytes display NPF-dependent ’NO, accumulation
in 30 mm as well as 0.5 mM external nitrate (Fig. 7).
Within this range of concentrations, a Michaelis-Menten
fit leads to a K, of 7.8 mu, indicating an LjNPF8.6 low-
affinity transport capacity (Supplemental Fig. S3), while a
high-affinity capacity (low NO,~ concentrations) range
was not tested.

The uptake activity observed in X. laevis oocytes (Fig.
7) prompted us to test for possible roles of LjNPF8.6
associated with the nitrate transport function important
for nodule activity. Therefore, we checked whether
LjNPF8.6 could play a role in the inhibitory pathway
responsible for the abrupt decrease of nodule activity
described after exposure to external high nitrate con-
centrations (Schuller et al., 1988; Vessey and Waterer,
1992). Wild-type and mutant nodulated plants (4 wpi)
were transferred for 3 d in the presence of 10 mm KNO;,
and nodule activity was analyzed by ARA. The nitro-
genase activity is inhibited at the same level in both
wild-type and Ljnpf8.6 plants, ruling out the hypothesis
of LjNPF8.6 involvement in the signaling pathway
inhibiting nodule functioning at high external nitrate
concentrations (Fig. 5A).

Jeong et al. (2004) reported the identification of an NPF
gene (AgDCAT1) expressed in nodules of Alnus glutinosa
that encodes for a protein capable of malate transport in
heterologous systems. Therefore, we also tested the ca-
pacity of LjNPF8.6 to transport malate, the carbon source
supplied to bacteroids for metabolism and nitrogen fix-
ation (Day and Copeland, 1991). LjNPF8.6 was cloned
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Figure 4. Analysis of anthocyanin content. A, Three representative
wild-type and 49638 plants are shown on the right and left sides of the
petri dish, respectively. B, Higher magnification showing intense purple
colors in the stems of mutant plants (on the left). C, Anthocyanin content
in stems of wild-type (wt) and LORET lines. The different KNO, con-
centrations and, when determined, M. loti inoculations are indicated.
Bars corresponding to wild-type and different LORE1 plants are indi-
cated. Data bars represent means and st of measures from three ex-
periments (12 plants per experiment per condition). Data in C were
scored 28 d after inoculation. Asterisks indicate significant differences
(P < 0.001) from wild-type levels.

into the Escherichia coli expression vector pKK223-3
under the control of the tac promoter (Brosius and
Holy, 1984), and the resulting plasmid was used to
transform the dicarboxylate transport mutant CBT315
strain (dctA; Lo et al., 1972). Functional complemen-
tation was tested on M9 medium with 10 mm malate as
the sole carbon source with or without isopropylthio-
B-D-thiogalactoside as an inducer of the tac promoter,
and the Arabidopsis gene AtALMT6 (At2G17470),
encoding a member of the aluminum-activated malate
transporter family, was used as a positive control
(Meyer et al., 2011). We did not observe any growth of
the CBT315 strain transformed with the LjNPFS8.6-
expressing plasmid, while At2G17470 was able to com-
plement the malate transport defect (Supplemental Fig.
S4). This negative result suggests that LiNPF8.6 does not
encode for a malate transporter, although we cannot
exclude that the L. japonicus protein is not correctly
expressed and/or addressed to the plasma mem-
brane in E. coli.
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Ljnpf8.6 Mutants Have Unaltered Nitrate Content in
Different Plant Organs

In order to check whether LjNPF8.6 plays any role in
the uptake of external nitrate and /or the distribution of
this nutrient to different plant tissues, we compared the
nitrate content of different organs in wild-type and
Ljnpf8.6 mutant plants. The analyses were conducted at
4 wpi in plants grown in the presence of 1 mm KNO,.
The comparison of nitrate content either in roots or
leaves of wild-type and mutant plants did not show
significant differences, confirming that LjNPFE8.6 plays
a role strictly related to nodule functionality (Fig. 8A).
In the microaerophilic condition associated with the
nodule environment, the efficiency of N fixation is as-
sociated largely with nitrate-dependent respiration
pathways in the NI cells (Kato et al., 2003; Meilhoc
et al., 2010; Horchani et al., 2011). Therefore, we tested
whether the reduced nitrogenase activity observed in
the Ljnpf8.6 mutants in low nitrate-permissive condi-
tions (Fig. 5A) might be associated with a different ni-
trate content in nodules of wild-type and mutant plants.
The nitrate content was quantified in detached wild-
type and mutant nodules of plants inoculated on no
N and 1 mm KNO; conditions and displaying the an-
thocyanin accumulation phenotype. The results shown
in Figure 8B indicate that, independent of the presence
of external nitrate supply, a significant content of this
nutrient is detectable in nodule tissues and that no
significant differences are observed on nitrate accu-
mulation in nodules of wild-type and mutant plants.
However, since the nitrate-dependent respiration
pathway for the maintenance of the nodule energy
status becomes more important in hypoxic than in
normoxic conditions (Horchani et al., 2011; Hichri et al.,
2015), we also tested whether the stressful phenotype
displayed by the Ljnpf8.6 null mutants at 4 wpi could
qualitatively worsen in hypoxic conditions. Two-week-
old wild-type and 46938 plants with the same number
of nodules that do not show any anthocyanin accu-
mulation symptoms were transferred in hydroponic
cultures to reproduce the water-logged conditions that
provoke hypoxic stress. Interestingly, mutant plants
grown for an additional 2 weeks in hydroponic condi-
tions show a clear-cut increase of the anthocyanin ac-
cumulation phenotype, which is clearly visible throughout
the length of the stem tissue almost up to the shoot apex
(80%—85% of the stem length versus 40%—45% displayed in
normoxic conditions; Fig. 4, A and B), whereas wild-type
plants did not show such evidently stressful symptoms
(Supplemental Fig. S5).

DISCUSSION

We report here the functional characterization of a
member of the L. japonicus NPF family, LjNPF8.6, which
plays a positive role in the symbiotic interaction
through a nodule-associated function. NPF proteins
represent a signiﬁcant number of the NI transporters,
and the qRT-PCR analysis shown in Figure 1 indicates
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Figure 5. A, ARA per nodule weight of wild-type and 49638 plants. The different KNO, conditions are indicated. Data bars
indicate means and st of three independent experiments (n = 8 plants per experiment). Asterisks indicate significant differences
(P < 0.005) between wild-type and 49638 nodules in no-N and 1 mm KNO, conditions. The asterisk over the bracket across the
10 mm condition indicates a significant reduction of ARA activity in nodules of both plant genotypes shifted onto high-nitrate
conditions compared with nodules of plants maintained on low permissive conditions (P < 0.001). B and C, Representative shoot
phenotypes of 8-wpi wild-type and 49638 plants transferred onto hydroponic conditions in the presence of 0.5 mm KNO, at
4 wpi. Wild-type and mutant plants were maintained in the same vessels (four vessels, 16 plants).

that LjNPF8.6 is strongly induced in nodule tissue, al-
though it cannot be considered a strict late nodulin
gene, as it is also expressed in root tissues. This result is
consistent with the analysis reported by Hogslund et al.
(2009), indicating that most genes functioning in ma-
ture nodule also are expressed elsewhere in the plant.
The induced profile of LjNPF8.6 expression in nodules
is consistent with the specific symbiotic phenotypes
displayed by independent KO Ljnpf8.6 LORE1 insertion
mutants. In particular, a striking anthocyanin accu-
mulation is observed in stems and roots of Ljnfp8.6
mutants compared with the wild type only after M. loti
inoculation, as no increase of pigmentation is observed
in uninoculated plants grown in the presence of dif-
ferent nitrate concentrations (Fig. 4; Supplemental Fig.
S2A). This result clearly indicates that the role played
by LjNPF8.6 is strictly associated with the symbiotic
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program and is not related to the N nutritional status of
plants linked to external nitrate availability. This is also
confirmed by the analyses of nitrate content in roots
and shoots that show no significant differences between
wild-type and mutant plants (Fig. 8A). The production
of anthocyanin is considered a hallmark of the plant
response to unfavorable growth conditions (Chalker-
Scott, 1999), and N limitation has been reported to
trigger different anthocyanin biosynthetic pathways
and accumulation in various plant tissues (Diaz et al.,
2006; Rubin et al., 2009; Kovinich et al., 2014).

In the case of SNF, anthocyanin accumulation in the
stem is a symptom normally exhibited by mutant plants
showing an impaired N-fixation activity (Krusell et al.,
2005; Ott et al., 2005; Bourcy et al., 2013). The anthocy-
anin accumulation phenotype is displayed in the inoc-
ulated Ljnpf8.6 mutants by 17 to 20 d post inoculation,
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Figure 6. Phenotypic symbiotic characterization of Ljnpf8.6 mutants. A to D, Histochemical detection of B-galactosidase activity
to test M. loti (carrying the hemA::lacZ-expressing plasmid) density in young and mature nodules of wild-type (A and C) and
49638 (B and D) plants. E to H, Whole-mount NBT staining for O, anion detection of wild-type (E and G) and 49638 (F and H)
nodule primordia and mature nodules. I and J, Sections (100 um) of wild-type (1) and 49638 (J) mature nodules stained with NBT.
Arrows indicate staining in the parenchyma (p) and nodular vascular bundles (vb). K, Quantification of NBT staining in wild-type
(wt) and 49638 mutant lines. Data bars represent means and st of nodules from three independent samples (eight plants per
experiment). Asterisks indicate significant differences from wild-type values (P < 0.05). FW, Fresh weight.

after the observed induction of LjNPF8.6 expression in than development. Interestingly, further information
nodule tissue (Fig. 1B) and the onset of N fixation, sug- about the spatial profile of LjNPES8.6 in mature L. japonicus
gesting a role in the control of nodule functioning rather nodules came from a tissue-specific profiling carried out by
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laser microdissection and microarray analysis, which
revealed a specific expression of six NI NPF members,
including LjNPE8.6, in the central infection zone
where N fixation takes place (Takanashi et al., 2012). In
particular, the LjNPF8.6 expression was not detected
in the inner cortex and vascular bundle zones, sug-
gesting for this NPF member a function associated
specifically with N fixation (Takanashi et al., 2012).
Consistently, Ljnpf8.6 mutants do not show any dif-
ference, compared with wild-type plants, in the nodule
formation capacity at different KNO, concentrations or
in the early steps of nodule primordia invasion (Figs. 3C
and 6, A-D). The direct involvement of LjNPF8.6 in the
control of nodule functionality is demonstrated by the
analysis reported in Figure 5A, where a significantly
reduced quota of N-fixation activity (25%) is measured
in mutant nodules. We also demonstrate that LjNPF8.6
does not play any role in the quick transport of external
high nitrate concentration to the nodule tissues and/or
sensing, which must be involved in the nitrate-
dependent N-fixation inhibitory pathway (Fig. 5A;
Arrese-Igor et al., 1998; Cabeza et al., 2014).
Nitrogen fixation is an extremely expensive process
for legume plants, as root nodules are optional C sink
organs that exploit large amounts of photosynthate
resources. The partially compromised N-fixation ac-
tivity displayed by the Ljnpf8.6 mutants in the presence
of low-concentration N sources (Fig. 5A) is certainly a
stressful condition, which is responsible of the antho-
cyanin accumulation (Fig. 4; Supplemental Figs. S2A
and S54), but it is still sufficient at 4 wpi to sustain a
normal shoot biomass phenotype (Fig. 3, A and B).
However, when plants are maintained for a longer time
in symbiotic conditions, clear-cut N deficiency symp-
toms such as stunted shoots with pale green and/or
abscised leaves are clearly displayed by the Ljnpf8.6
mutants (Fig. 5, B and C). These phenotypes have been
classified as Fix+/Fix—, associated with mutant plants
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with a less efficient N-fixation activity, which display
N-deficiency phenotypes not as severe as in the fix—
mutants (Pislariu et al., 2012).

The reduction and loss of N-fixation activity is asso-
ciated with oxidative stress during the natural senes-
cence of nodules, and similar correlated phenotypes can
be observed in early senescence induced by exposure to
stress conditions (Puppo et al., 2005). Therefore, the
N-fixation deficiency and increased O,  content phe-
notypes displayed in mature nodules of Ljnpf8.6 mu-
tants (Figs. 5A and 6K) are strictly associated with each
other, although a cause-effect relationship can be diffi-
cult to establish. The pattern of O, production during
nodule growth and maturation, shown in the time-
course experiment displayed in Figure 6, is consistent
with previous reports where NBT staining revealed
O™ accumulation in nodule primordia of indetermi-
nate as well as determinate nodules (Fig. 6, E and F;
Santos et al., 2001; Montiel et al., 2016). To our knowl-
edge, the pattern of Oy  accumulation reported in
Figure 6, G to J, has never been described in mature
determinate nodules. The NBT staining indicates a
predominant localization on the lenticel structures,
characterized as the choke points controlling the gase-
ous exchanges in determinate nodules (Frazer, 1942;
Pankhurst and Sprent, 1975; Jacobsen et al., 1998; Fig. 6,
G and H) and the parenchyma regions (Fig. 6, I and J).
Biochemical and transcriptomic analyses indicate that,
in mature determinate nodules, most of the ROS-generating
processes, which occur during natural or early senes-
cence induced by exposure to stress conditions, origi-
nate in the central infected region and then spread
outward (Evans et al, 1999; Puppo et al, 2005;
Matamoros et al., 2013). Therefore, it is reasonable to
predict the Oy~ diffusion and accumulation in lenticel
structures and parenchyma tissue, which are located a
few cells apart from the infected zone. Furthermore,
we demonstrate that the increased content of Oy~
detected in the mutant plants is restricted to nodular
tissue (Supplemental Fig. 52B) and, therefore, that the
systemic pattern of anthocyanin accumulation (Fig. 4;
Supplemental Fig. S2A) is likely not associated with a
direct action of scavenging (Yamasaki et al., 1996).

Members of the NPF family may encompass different
putative strategic roles associated with the control of
nodule functioning, as they can transport nitrate, amino
acids, peptides, dicarboxylic acids, and ABA (Frommer
et al., 1994; Jeong et al., 2004, Waterworth and Bray,
2006; Kanno et al., 2012). Malate is the carbon source
supplied to bacteroids for metabolism and nitrogen fixa-
tion (Day and Copeland, 1991), and in isolated soybean
(Glycine max) symbiosomes, a carrier for monovalent
dicarboxylate ions with a higher affinity for malate than
for succinate has been identified (Udvardi and Day, 1997).
Jeong et al. (2004) also reported the identification of an
NPF gene (AgDCAT1) expressed in nodules of A.
glutinosa encoding for a protein capable of malate transport
in heterologous systems, but no further functional char-
acterization of AgDCATT1 has been provided. The failure
of LjNPF8.6 to complement the malate transport defect of
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the E. coli dctA mutant (Supplemental Fig. S4) does not
allow us to conclude that it is not involved in the C source
supply to bacteroids (Day and Copeland, 1991), as we
cannot exclude a nonfunctional expression of the L. japo-
nicus transporter in E. coli. Another function that must be
taken into account to explain the critical role played by
LiNPF8.6 in nodule activity is related to the peptide/
amino acid transport capacity. The transport of these
substrates may play a positive role in supplying branched-
chain amino acids necessary for bacteroid development
and persistence (Prell et al., 2009) and/or for support-
ing polyamine biosynthesis for nitric oxide production
(Gupta et al., 2011). ABA signaling also has been shown
to be involved in the control of nodule functionality.
However, ABA has been reported to negatively regu-
late N fixation in L. japonicus, as its reduced content
obtained in low-sensitivity mutants as well as wild-
type plants treated with abamine (a specific inhibitor
of 9-cis-epoxycarotenoid dioxygenase) resulted in in-
creased N-fixation activity, making unlikely the in-
volvement of LjNPF8.6 in the nodular ABA transport/
signaling pathway (Tominaga et al., 2009).
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The preliminary biochemical characterization of
LjNPE8.6 carried out in our work indicates that it is
capable of achieving nitrate uptake in X. laevis oocytes
at high (30 mm) and low (0.5 mMm) external nitrate
concentrations (Fig. 7). Importantly, the positive role
played by LjNPF8.6 in nodule activity, indicated by the
nitrogenase deficiency phenotype displayed by Ljnpf8.6
mutants (Fig. 5A), is observed in plants grown in the
chronic absence of N or in low permissive KNO; con-
ditions (1 mMm or less), which is consistent with the
reported capacity of enhancing nitrate uptake in X.
laevis oocytes at 0.5 mm external nitrate concentration
(Fig. 7). NPF members are represented significantly
in the protein fraction associated with the PBM and
characterized either in L. japonicus or soybean nod-
ules (Wienkoop and Saalbach., 2003; Clarke et al.,
2015). In particular, the recent comprehensive sampling
reported for PBM proteins in soybean has allowed
the identification of five NPF members associated with
PBM. Interestingly, the retrieved GmNPF8.6 protein
(Glyma02g38970.1) also is a member of clade 8 and
shares 69% amino acid identity with LjNPF8.6 (Clarke
et al., 2015). A nitrate flux through the PBM, critical for
nodule activity, was proposed previously. Anion
transporters, members of the Major Facilitator Super-
family, with a selectivity preference for nitrate, have
been identified in the PBM of soybean and L. japonicus
nodules (GmN70 and LjN70), and their role in the
control of ion and symbiosome membrane potential
homeostasis has been postulated (Udvardi et al., 1991;
Vincill et al., 2005). In addition, nitrate transport
through the PBM has been proposed to be crucial for the
nitrate-nitric oxide respiration process reported in
nodules in microaerobic conditions, which is important
for the maintenance of the energy status required for
nitrogen fixation in normoxic and hypoxic conditions
(Igamberdiev and Hill, 2009; Kato et al., 2010; Sanchez
et al., 2010; Horchani et al., 2011). Nitrate in the cytosol
and symbiosomes of invaded plant cells is produced at
elevated rates (Herold and Puppo, 2005; Meilhoc et al.,
2010; Horchani et al., 2011), and our analysis of nitrate
content in nodule tissues confirms the presence of an
active nitrate biosynthetic pathway within nodules in-
dependently of external supply (Fig. 8B), which may
justify the symbiotic phenotypes detected in the Ljnpf8.6
mutants even in the absence of external N sources (Figs.
4 and 5A). Therefore, LjNPF8.6 might play an active role
in the control of nodule activity by participating in
nitrate flux through the PBM (Udvardi et al., 1991;
Horchani et al., 2011). In this context, the unchanged
nitrate content observed in whole detached nodules
of wild-type and mutant inoculated plants (Fig. 8B) is
expected, as is the distribution of nitrate between
different compartments of N-fixing nodule cells to be
affected in the Ljnpf8.6 background. Interestingly, we
have observed an increased stressful phenotype as-
sociated with anthocyanin accumulation in Ljnpf8.6
mutants grown under hydroponic hypoxic conditions,
where achieving nitrate reduction into nitrite consti-
tutes the main route for nitric oxide biosynthesis
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(Supplemental Fig. S5; Horchani et al., 2011; Hichri
et al., 2015).

CONCLUSION

To our knowledge, LjNPES8.6 represents the first NPF
protein playing a specific role in nodule functioning, as
demonstrated by the description of different N-deficiency-
associated phenotypes displayed by independent KO
mutants in symbiotic conditions. Further experiments will
be necessary to interpret its mechanism of action, taking
into account different substrate specificities and the possi-
ble functional redundancy of these transporters in the
nodule organ.

MATERIALS AND METHODS
Plant Material and Growth Conditions

All experiments were carried out with Lotus japonicus ecotype B-129 F14
GIFU (Handberg and Stougaard, 1992; Jiang and Gresshoff, 1997). Plants were
cultivated in a growth chamber with a light intensity of 200 umol m2sTat
23°C with a 16-h/8-h day/night cycle. Solid growth medium has the same
composition as B5 medium (Gamborg, 1970), except that (NH,),SO, and KNO,
are omitted and/or substituted by different concentrations of KNO,. KCl is
added to the medium to replace the potassium source. The medium containing
vitamins (Duchefa catalog no. G0415) is buffered with 2.5 mm MES (Duchefa
catalog no. M1503.0250) and pH adjusted to 5.7 with KOH.

For hydroponic cultures, wild-type and mutant nodulated plants are
transferred in the same vessels with derivative B5 liquid medium with 0.5 mm
KNO; or without N sources (six plants per vessel). The medium is renewed
every 4 d, when also the pH is checked and maintained within close limits (5.6—
5.8) during the entire growth period.

Mesorhizobium loti inoculation is performed as described by Barbulova et al.
(2005). For phenotypic comparisons, unsynchronized seedlings are discarded
after germination. The strain R7A is used for the inoculation experiments and is
grown in liquid TYR medium supplemented with rifampicin (20 mg L™"). The
M. loti hemA::lacZ strain was kindly provided by Dr. Jens Stougaard (University
of Aarhus) and was grown in the same medium supplemented with rifampicin
and tetracycline (20 mg L™).

LOREI1 Line Isolation

LORE1 lines 30053155, 30049638, and 30019899 (hereafter abbreviated as
53155, 49638, and 19899, respectively) were obtained from the LORE1 collection
(Fukai et al., 2012; Urbanski et al., 2012; Malolepszy et al., 2016). The plants in
the segregating populations were genotyped, and the expression of homozy-
gous plants was tested with the primers listed in Supplemental Table S1.

Determination of ARA

Detached roots with comparable numbers of nodules are placed in glass vials.
The vials are filled with an acetylene-air mixture (C,H,:air = 1:9, v/v). After
30 min of incubation at 25°C, the amount of ethylene in the gas phase is de-
termined using a gas chromatograph (PerkinElmer Clarus 580).

For the analysis of ARA activity after a shift to high-KNO, conditions, 4-wpi
nodulated plants are transferred on slanted petri dishes where roots are placed
in a sandwich between two filter papers wet with Gamborg B5 liquid medium
containing no KNO; or 10 mm KNOj;. Plants are maintained for 3 d in these
conditions with filter papers wet with 20 mL of liquid medium. After 3 d, ARA
activity is tested as described above.

Estimation of Anthocyanin

Stem tissues from three plants per assay are weighed and then extracted with
99:1 methanol:HCI (v/v) at 4°C. The ODsy, and ODgg, for each sample are
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measured, and relative anthocyanin levels are determined with the equation
ODs5 - (0.25 X ODg;5;) X extraction volume (mL) X 1/weight of tissue sample
(g) = relative units of anthocyanin per g fresh weight of tissue.

Determination of Nitrate Content

Colorimetric determination of nitrate content in nodule extracts followed the
procedure described by Pajuelo et al. (2002). A total of 200 uL of 5% (w/v)
salicylic acid in concentrated sulfuric acid is added to aliquots of 50 uL from the
crude extracts and left to react for 20 min at room temperature. NaOH (4.75 mL
of 2 N) is added to the reaction mixtures, and the absorbance is read at 405 nm
after cooling. A calibration curve of known amounts of nitrate dissolved in the
standard extraction buffer is used for analytical determinations. Controls are set
up without salicylic acid.

LacZ Activity and Histochemical Localization

L. japonicus roots isolated after M. loti hemA::lacZ infection are first gently
rinsed in 50 mm KH,PO, buffer, pH 7.2, and then fixed for 1 h with 1% para-
formaldehyde (w/v) and 0.3 M mannitol in 50 mm KH,PO, buffer, pH 7.2. The
tissues are washed again with 5 mm KH,PO, buffer, pH 7.2, and the histo-
chemical analysis is performed according to Omrane et al. (2009). The stained
nodulated roots are photographed with a Nikon microscope using bright-field
and epipolarization optics.

O,” Staining

For O, staining, NBT (Sigma-Aldrich) was used. Nodulated roots are
submerged in 1 mu NBT in 0.1 mu potassium phosphate buffer (pH 7.5), vac-
uum infiltrated for 30 s, and incubated 30 min at room temperature. NBT
staining solution is removed, and stained roots are washed twice in 80% eth-
anol. NBT staining is repeated three times for a total of 10 nodules per experi-
ment. For longitudinal sections, 12 nodules from independent experiments are
sectioned on 100-um-thick slices. Samples are photographed with a Nikon
microscope using bright-field and epipolarization optics. For O, quantifica-
tion, NBT-stained nodules are first ground into a fine powder and dissolved in
2 . KOH:dimethyl sulfoxide (1:1.16, v/v) followed by centrifugation at 12,000g
for 10 m. Absorbance at 630 nm is immediately measured and then compared
with a standard curve plotted from known amounts of NBT in the KOH:di-
methyl sulfoxide mix (Ramel et al., 2009). Experiments are conducted on three
biological replicates for a total of 40 nodules per genotype.

Real-Time qRT-PCR

Real-time PCR was performed with the DNA Engine Opticon 2 System (M]
Research) using SYBR to monitor double-stranded DNA synthesis. The pro-
cedure is described by Rogato et al. (2008). The UBI gene (AW719589) was used
as an internal standard. The concentration of primers was optimized for every
PCR, and amplifications were carried out in triplicate. The PCR program used
was as follows: 95°C for 3 min and 39 cycles of 94°C for 15's, 60°C for 15 s, and
72°C for 15 s. Data were analyzed using Opticon Monitor Analysis Software
version 2.01 (M] Research). The qRT-PCR data were analyzed using the com-
parative Ct method. The relative level of expression is calculated with the fol-
lowing formula: relative expression ratio of the gene of interest is 27T, where
ACT = CT gy — CTyg;. The efficiency of the LiNPF8.6 primers is assumed to be
2. Analysis of the melting curve of the PCR product at the end of the PCR run
revealed a single narrow peak for each amplification product, and fragments
amplified from total cDNA were gel purified and sequenced to ensure accuracy
and specificity. The oligonucleotides used for the qRT-PCR are listed in
Supplemental Table S1.

Plasmid Preparation

The plasmid for the expression in Xenopus laevis oocytes was prepared in the
following way. cDNA prepared from nodule RNA was amplified with a for-
ward primer containing the BamHI site in combination with a reverse primer
containing the EcoRI site (Supplemental Table S1). The 1,713-bp fragment was
double digested with BamHI-EcoRI and subcloned into the pGEMHE plasmid
containing the 5" and 3’ untranslated regions of the X. laevis B-GLOBIN gene
(Liman et al., 1992), predigested with BamHI-EcoRI to obtain pGEMHES.6. The
correct coding sequence of LjNPF8.6 was verified by sequencing.
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For expression in Escherichia coli, pPGEMHE-8.6 was double digested with
BamHI-EcoRI and subcloned in pKK223-3 plasmid (Brosius and Holy, 1984) to
obtain pKK-8.6. Primers for the subcloning of the Arabidopsis (Arabidopsis
thaliana) At2G17470 gene used as a positive control in the complementation test
are indicated in Supplemental Table S1.

Functional Analysis of LjNPF8.6 in X. laevis Oocytes

pGEMHE-NPF8.6 was linearized with Nhel and capped mRNA transcribed
in vitro using the mMessage mMachine T7-ultra Kit (Life Technologies). Oocyte
preparation has been described (Lacombe and Thibaud, 1998). Defolliculated
oocytes are injected with 20 ng of cRNA and stored in a modified ND96 medium
(2mmKCl, 96 mm NaCl, 1 mm MgCl,, 1.8 mm CaCl,, 5 mm HEPES, 2.5 mm sodium
pyruvate, pH 7.5, supplemented with gentamycin sulfate [50 ug mL]). Two
days after injection, batches of 10 injected oocytes are incubated in 1 mL of
modified ND96 solution at pH 5.5 supplemented with 30 or 5 mm *NO; supplied
as K'®NO, for 2 h at 18°C. Oocytes are then rinsed five times in 15 mL of cold
modified ND96 solution. Batches of two oocytes are then analyzed for total N
content and atomic percent >N abundance by continuous-flow mass spectrom-
etry, using a Euro-EA Eurovector elementar analyzer coupled with an IsoPrime
mass spectrometer (GV Instruments). Oocytes injected with AtNPF6.3 cRNA and
water were used as positive and negative controls, respectively. The results are
presented as NPF-dependent nitrate accumulation (total "N in injected oocytes — "N
in water-injected oocytes) normalized by the accumulation in 30 mM nitrate.

Complementation of E. coli

E. coli K-12 (DCT) and its dicarboxylate transport mutant strain CBR315
(CGS(C5269) were obtained from the E. coli Genetic Stock Center (Yale Uni-
versity). The phenotypes of the transformed strains were compared on M9
medium with malate or Glc as the sole carbon source.

Statistical Analysis

Statistical analyses were performed using the VassarStats ANOVA program.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Homozygous plants for LORE1 insertions into
the LjNPF8.6 gene are null mutants.

Supplemental Figure S2. Analyses of anthocyanin content in roots of wild-
type and 49638 plants and quantification of NBT staining in roots and
stems of wild-type and 49638 inoculated plants.

Supplemental Figure S3. Effects of external nitrate concentration on N
accumulation in LjNPF8.6-expressing oocytes.

Supplemental Figure S4. Complementation test of the E. coli dctA mutant.

Supplemental Figure S5. Anthocyanin accumulation phenotype in hydro-
ponic conditions.

Supplemental Table S1. Oligonucleotide sequences.
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