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Eukaryotic PrimPol is a recently discovered DNA-dependent DNA
primase and translesion synthesis DNA polymerase found in the
nucleus and mitochondria. Although PrimPol has been shown to be
required for repriming of stalled replication forks in the nucleus, its
role in mitochondria has remained unresolved. Here we demon-
strate in vivo and in vitro that PrimPol can reinitiate stalled mtDNA
replication and can prime mtDNA replication from nonconventional
origins. Our results not only help in the understanding of how mi-
tochondria cope with replicative stress but can also explain some
controversial features of the lagging-strand replication.
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PrimPol is an unusual mammalian primase-polymerase be-
longing to the archaeo-eukaryotic primase superfamily of

primases (1, 2). The superfamily includes all known replicative
primases in Archaea and Eukaryotes and is evolutionarily un-
related to the bacterial topoisomerase-primases (TOPRIMs) (3,
4). Similarly to the related archaeal PriS/L replicative primases (5,
6), PrimPol has a clear preference for dNTPs over NTPs, allowing
it to synthesize DNA primers and function as a DNA-dependent
DNA polymerase (2). It has been suggested that the priming, as
well as primer extension activities, are required for DNA damage
tolerance, such as translesion synthesis (TLS) across lesions such
as 8-oxo-7-hydrodeoxyguanosine (2, 7), abasic sites, and UV le-
sions (8–10). Concordantly, PrimPol-KO cells are viable (1, 2, 9),
but have an increased sensitivity to DNA-damaging agents such as
UV and hydroxyurea (11). In addition, PrimPol contributes to the
repriming of replication forks that are arrested at G-quadruplex
structures in the template (12).
Like many DNA repair proteins (13), PrimPol is known to be

localized in the nucleus and mitochondria (2), suggesting that it
may play similar roles in the maintenance of mtDNA as it does
with nuclear DNA. Although PrimPol has been proposed to be
involved in multipriming events on mtDNA (2), no specific role for
PrimPol in mtDNA maintenance has been experimentally dem-
onstrated to our knowledge. In contrast to the nucleus, mito-
chondria are thought to have a limited set of DNA repair pathways;
for example, they are unable to repair cyclobutane pyrimidine di-
mers caused by UV damage (14). Repair of DNA lesions repre-
sents only a subset of genome maintenance mechanisms, and the
most dangerous types of DNA damage can result from complica-
tions during DNA replication. This seems to also be the case in
mitochondria, as replication fork stalling has been implicated as the
main cause of pathological mtDNA rearrangements (15, 16).
mtDNA replication can stall as a result of mutations in TWNK
helicase and the catalytic subunit of DNA polymerase γ (Pol γA)
(16–18), chain-terminating nucleoside analogs such as 2′-3′-
dideoxycytidine (ddC) (19), and DNA template damage (20).
Unlike some catalytic mutations or ddC interference, oxidative
or UV damage-induced stalling does not result in mtDNA copy
number depletion, indicating that mitochondria have effective
mechanisms to cope with such damage (21).
To our knowledge, nothing is known about the fate of stalled

replication forks in mitochondria, and evidence suggests that the

outcomes might be different in different tissues (15). Mitotic
cells, like those used in tissue culture, mainly employ a highly
strand-asymmetric replication mechanism, whereby the lagging-
strand DNA is synthesized with a considerable delay (22). This
replication mechanism results in typical patterns on 2D agarose gels
used in DNA replications studies (23, 24). Although there is still
debate about the details, the two proposed models for strand-
asymmetric replication mechanism are very alike with the excep-
tion of the displaced strand being coated with preformed RNA (23)
or the mitochondrial single-strand binding protein mtSSB (25). As
there is evidence for (24) and against (26) RNA covering the dis-
placed mtDNA strand in vivo, we use “strand-asymmetric mecha-
nism” as a general term without differentiating between the two
models. The main origin of leading-strand replication in the strand-
asymmetric mechanism is the origin of heavy-strand replication
(OH) in the noncoding region (NCR) of mtDNA (27). Replication
from OH is assumedly primed by mitochondrial RNA polymerase
(MTRPOL) transcribing from one of the two light-strand pro-
moters (28). A major origin for the lagging-strand synthesis is at the
origin of light-strand replication (OL), two thirds of the genome
downstream of OH, and is also initiated by MTRPOL (16, 29),
although there is evidence for other light-strand origins (25).
In the present work, we examine the role of PrimPol in the restart

of stalled mtDNA replication forks and its significance for mtDNA
maintenance after damage. We find that PrimPol is not only
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responsible for the replication reinitiation downstream of DNA le-
sions, but that it is also involved in the completion of partially ss
mtDNA molecules. We conclude that, even though PrimPol is not
essential for mtDNA maintenance, it provides an adaptational
mechanism against genotoxic stress in mitochondria and might also
enable origin-independent initiation of lagging-strand synthesis.

Results
PrimPol Is Required for Repriming of Stalled mtDNA Replication.
Chain-terminating nucleoside analogs (CTNAs) represent a
very specific type of problem for DNA replication that can be
mainly resolved via repriming and not, for example, by a TLS-
type of activity. As PrimPol was recently shown to be important
in maintaining nuclear DNA replication in the presence of
CTNAs (11), we wanted to investigate whether this is also the
case for mtDNA replication. In fact, Pol γ is the only mammalian
replicative polymerase capable of incorporating ddC during
DNA synthesis (30), resulting in specific blockage of mtDNA
replication that can be detected by using 2D agarose gel elec-
trophoresis (AGE; Fig. 1 and Fig. S1; further details are pro-
vided in SI Results and Discussion). Although Primpol-KO MEFs
do not show any obvious replication phenotype under normal
conditions (Fig. 1C), a 48-h treatment with 175 μM ddC results
in complete replication stalling and depletion of mtDNA copy
number (Fig. 1D and Fig. S2), revealing major differences in the
replication responses between the WT and KO cells (Fig. 1E).
WT MEFs showed a strong increase in replication bubbles, in-
dicating increased replication initiation within the OH-containing
region of mtDNA (explained in Fig. 1B and Fig. S1). In contrast,
Primpol−/− cells seem to lose their replication intermediates
upon ddC treatment (Fig. 1E), demonstrating that the com-
pensatory increase in replication initiation is fully dependent on
the presence of PrimPol. As replication cannot be completed in
either cell type as a result of the recurrent ddC incorporation,
the WT MEFs show a similar depletion of mtDNA copy number
under ddC as Primpol−/− (Fig. 1D). However, when ddC is re-
moved from the growth medium, mtDNA copy number recovery
is significantly delayed in Primpol−/− cells compared with WT
MEFs (Fig. 1D). No difference in mtDNA integrity was observed
between the two cell lines (Fig. S2C).
To confirm that PrimPol can reinitiate replication when strand

elongation is blocked at the mtDNA replication fork, we simu-
lated the situation in vitro by using M13mp18 ssDNA template,
purified recombinant Pol γAB2 (for simplicity, hereafter re-
ferred to as Pol γ), and PrimPol. When provided with a normal
oligonucleotide primer, Pol γ was able to efficiently synthesize
[α-32P]dGTP-labeled full-length (7.3-kb) product from M13mp18
template (Fig. 2A, lane 2, black arrowhead). The shorter DNA
bands observed in this reaction are the result of Pol γ pausing in
front of secondary DNA structures, which form on this ssDNA
template in the absence of single-strand binding proteins. The
addition of PrimPol to the reaction resulted in additional DNA
products (Fig. 2A, lane 3, white arrowheads), which differ from the
ones caused by Pol γ pausing (Fig. S3). PrimPol alone cannot
generate these species because PrimPol is unable to synthesize
long DNA fragments as a result of its low processivity (Fig. 2A,
lane 1). In agreement with the published data on inefficient re-
moval of chain terminators by Pol γ proofreading activity (30), Pol
γ was unable to elongate a primer with a 3′ ddC-monophosphate
(ddCMP) (Fig. 2A, lane 5). The observed faint full-length DNA
product is likely to result from ddCMP-oligonucleotide impurity.
When PrimPol is added to the reaction, it will provide new pri-
mers for Pol γ and enables DNA synthesis, with the majority of
products arising from specific priming events on the M13mp18
template (Fig. 2A, lane 6, white arrowheads). It should be noted
that Pol γ is unable to initiate DNA synthesis in the absence of a
primer (Fig. 2A, lane 8), but the addition of PrimPol to the re-
action enables the synthesis of full-length DNA products (Fig. 2A,

lane 9), further corroborating that PrimPol can provide DNA
primers for Pol γ (2).
During in vivo experiments, addition of ddC to the cell growth

media results, after several phosphorylation steps, in a mixed
deoxycytide/di-deoxycytidine triphosphate (dCTP/ddCTP) cellular

Fig. 1. PrimPol is required for replication restart in mitochondria. (A) A sche-
matic illustration of mousemtDNA showing the canonical replication origins (OH,
OL) and BclI restriction sites adjacent to the probed fragment, marked with an
asterisk. (B) An interpretation of 2D-AGE patterns from BclI-digested mouse
mtDNA with an illustration of the corresponding replication intermediates.
Linear fragments corresponding to the restriction fragment size (1n) will con-
stitute the majority of the molecules. Replication that has initiated within the
fragment forms replication bubbles, migrating as a bubble arc (marked as “b”),
whereas replication that has exited the fragment (or initiated elsewhere) will
form the Y-arc (“y”). The bubble arcs can be partially single-stranded or fully
double-stranded (SI Results and Discussion). Replication intermediates resistant
against restriction digestion (#) migrate in high molecular weight arcs (“r”) and
recombination intermediates on the x-arc (“x”). (C) Two-dimensional AGE of BclI-
digested mtDNA from WT (Primpol+/+) and Primpol-KO (Primpol−/−) MEFs, pro-
bed for the OH-containing fragment as illustrated in A. No differences in the
replication intermediates can be observed. Signal intensities were quantified
with a PhosphorImager, and autoradiographic films shown here represent
comparable exposures. (D) ddC treatment causes a dramatic depletion in the
mtDNA copy number in both cell types, with Primpol−/− cells still showing
delayed recovery at 72 h after the removal of the drug [n = 9; P < 0.01, one-way
ANOVA with post hoc Tukey honest significant difference (HSD) test; error bars
represent SD]. (Lower) Quantification of the copy number recovery, standardized
against mtDNA copy number, after 48 h ddC treatment to demonstrate the
differences in recovery kinetics. Note that mtDNA depletion in Primpol−/− cells is
not as strong, and that mtDNA steady-state levels are lower than in WT. (E) A
48-h treatment of cells with 175 μM ddC causes an accumulation of replication
intermediates in WT cells, but a notable decrease in all replicative forms in
Primpol−/− MEFs. Note especially the strong increase in dsDNA replication bub-
bles (ds-b) in the WT MEFs after ddC treatment and the degradation of stalled
intermediates. Longer exposure of the same gel is given as a comparison.
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pool. To recapitulate the situation in vitro, we next performed
replication reactions with a mixed population of free ddCTP and
dCTP. Under these conditions, DNA synthesis by Pol γ is weak as a
result of the frequent termination of polymerization when ddCTP is
incorporated (Fig. 2A, lane 11). The addition of PrimPol leads to
substantially more DNA synthesis in the presence of ddCTP (Fig.
2A, lane 12). Unlike Pol γ, PrimPol’s polymerase activity is not
significantly inhibited by ddCTP (Fig. S4A). More importantly,
primer synthesis by PrimPol is only slightly affected by the presence
of ddNTPs (Fig. S4B). Such a strong discrimination in favor of a
3′-OH group in the incoming nucleotides guarantees that the primers

made by PrimPol do not abort and can be elongated by the Pol γ
replicase. The ability of PrimPol to assist Pol γ by reinitiation of
efficient DNA polymerization is hampered only when relatively
high concentrations of ddCTP are used (Fig. S4B). In summary, Pol
γ cannot continue DNA synthesis after ddC insertion and requires
the priming activity of PrimPol for replication restart (Fig. 2A). As
long as ddCTP is present, recurrent replication stalling will occur
despite the presence of PrimPol, resulting in accumulation of par-
tially replicated molecules in vitro and depletion of mtDNA copy
number in vivo (Fig. 1 D and E).

Sequence-Specific Priming by PrimPol. The concentration of Prim-
Pol used (200 nM) equals approximately 40 monomers of the
enzyme per M13mp18 template with a potential priming site every
180 nt. As noted earlier, instead of observing a range of elongation
products, only a major DNA species was observed, indicating a
preferred priming site on the offered template. This priming site
became dominant over a 32P-labeled synthetic primer at PrimPol
concentrations greater than 50 nM, whereas, at higher concen-
trations (500–1,000 nM), more and smaller replication products
were obtained (Fig. 2B, lanes 8 and 9). However, this does not
mean that excess of PrimPol is inhibiting DNA synthesis in these
reactions. When the same DNA products are separated over a
neutral Tris-borate-EDTA (TBE) gel, instead of a denaturing gel,
it is possible to visualize all DNA products, regardless of gaps
between labeled primer and PrimPol-primed DNA synthesis,
demonstrating that high PrimPol levels actually support more
DNA synthesis (Fig. S5A). The observed main priming site on
M13mp18 was highly specific, as the size of the main PrimPol-
primed product was dependent on the position of the ddCMP-
oligonucleotide primer (Fig. S5B). To map this site, we used a
modified method for 5′-RACE and discovered that DNA priming
started opposite the 3′-GTCC-5′ sequence (Fig. 2C), indicating that
PrimPol has an identical sequence preference as HSV1 primase
(31) and similar to known prokaryotic primases (32).

PrimPol Is Required for UV-Induced mtDNA Replication Initiation.
Because UV damage induces similar accumulation of replica-
tion intermediates as ddC treatment (21), we sought to identify
whether this is also a consequence of PrimPol-dependent repli-
cation reinitiation. Whereas UV exposure caused a rapid in-
crease in replication bubbles in normal MEFs, this reaction was
completely absent in Primpol−/− cells (Fig. 3C). Our interpreta-
tion is that UV exposure induces a PrimPol-dependent increase
of replication initiation in OH-containing fragments and must
be regulated by some damage-response pathway. In contrast to
the ddC treatment, in which replication intermediates were lost
(Fig. 1E), UV exposure had no effect on the replication intermedi-
ates in Primpol−/− cells (Fig. 3C) or mtDNA copy number (Fig. S6).

PrimPol Overexpression Increases Lagging-Strand Initiation During
mtDNA Replication. As PrimPol is able to synthesize primers on
ssDNA, which Pol γ can elongate (Fig. 2A, lane 9), we decided to
next analyze whether PrimPol expression alone could modify ss
mtDNA replication intermediates in vivo. We found this plau-
sible, as PrimPol interacts with TWNK and Pol γ in mitochondria
(Fig. S7). Furthermore, TWNK is also reported as a PrimPol (as
CCDC111) partner in the BioPlex database (33). To get a view of
the whole mitochondrial genome, long-range 2D-AGE analysis
of full-length mtDNA, cut once downstream or upstream of OH,
was performed (Fig. 4 and Fig. S8). Although PrimPol over-
expression notably decreased the levels of the partly single-
stranded circles (“ssc” in Fig. 4), it also generally increased all
replicative molecules and, more specifically, dsDNA intermedi-
ates, such as the double-y forms (“dy” in Fig. 4). These changes
in replication intermediates are dependent on mitochondrially
localized PrimPol and, more specifically, on its primase activity,
as demonstrated by a primase-deficient variant of PrimPol (Fig. S8).

Fig. 2. PrimPol can prime Pol γ-dependent DNA synthesis. (A) In vitro DNA
synthesis incorporating 32P-radiolabeled dGTP on M13ssDNA. PrimPol alone
is unable to synthesize long DNA products in the absence of Mn2+, even
when provided with a synthetic annealed DNA primer (lane 1). In contrast,
Pol γ (lanes 2 and 3) can effectively utilize the annealed primer and synthesize
a full-length product (black arrow). The addition of PrimPol results in addi-
tional DNA products (white arrows), assumedly originating from sequence-
specific priming downstream of the provided primer. As expected, Pol γ is
unable to elongate an annealed primer containing a 3′ ddCMP (lane 5), but
can synthesize long DNA products on this template in the presence of PrimPol
(lane 6). Similarly, PrimPol can prime DNA synthesis in the absence of addi-
tional synthetic annealed primers (lane 9). The addition of ddCTP inhibits Pol γ
DNA synthesis, which can partially be rescued by PrimPol (lanes 11 and 12). (B)
Pol γ extension of 5′ radiolabeled primer in the presence of increasing PrimPol
concentrations visualized on a denaturing alkaline gel. Whereas PrimPol can
synthesize only products shorter than 500 nt (lane 1), Pol γ can extend the
annealed primer to give rise to full-length DNA products (lane 2). Shorter DNA
products are also visible as a result of Pol γ stalling at assumed secondary DNA
structures. Pol γ-dependent primer extension is unaffected at low PrimPol
concentrations (12.5–50 nM; lanes 3–5). At 100–200 nM PrimPol, the synthesis
of the 7.3-kb full-length DNA product is reduced, but an abundant DNA
product migrating at ∼3.7 kb (lanes 6 and 7) is generated. At high PrimPol
concentrations (500–1,000 nM), synthesis from the annealed primer decreases
and new stalling sites appear (lanes 8 and 9, white arrows). (C) Schematic view
of the preferred PrimPol priming site on M13ssDNA, positioned relative to the
28-nt primer used in A. The preferred PrimPol priming site (3′-GTCC-5′; nu-
cleotides 3,086–3,089) was mapped by using an adapted 5′-RACE method.

11400 | www.pnas.org/cgi/doi/10.1073/pnas.1705367114 Torregrosa-Muñumer et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705367114/-/DCSupplemental/pnas.201705367SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705367114/-/DCSupplemental/pnas.201705367SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705367114/-/DCSupplemental/pnas.201705367SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705367114/-/DCSupplemental/pnas.201705367SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705367114/-/DCSupplemental/pnas.201705367SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705367114/-/DCSupplemental/pnas.201705367SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705367114/-/DCSupplemental/pnas.201705367SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705367114/-/DCSupplemental/pnas.201705367SI.pdf?targetid=nameddest=SF8
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705367114/-/DCSupplemental/pnas.201705367SI.pdf?targetid=nameddest=SF8
www.pnas.org/cgi/doi/10.1073/pnas.1705367114


Taken together, PrimPol overexpression increases ds mtDNA
forms at the expense of partially single-stranded forms (Fig. S9C),
demonstrating that PrimPol can also prime DNA synthesis on a
single-stranded template in vivo.

Discussion
Almost all recently discovered mtDNA maintenance proteins are
shared with the nucleus (13), making it difficult to dissect their
specific importance for the mitochondrial compartment. Further-
more, nuclear DNA damage activates a number of signaling path-
ways that block cell proliferation or target the cell for apoptosis,
making any simultaneous damage in the mitochondrial compart-
ment trivial. The same also applies for the role of PrimPol. Although
not essential for life (9), PrimPol is beneficial for nuclear genome
maintenance, as its loss influences the mitotic checkpoint responses
after damage (34). However, mitochondria also require efficient
DNA repair and damage-tolerance mechanisms for long-term sur-
vival. Mitochondria have formidable intrinsic sources of DNA
damage, most notably reactive oxygen species originating from the
electron transport system (35), capable of causing oxidative damage
that can block mtDNA replication (20, 21). mtDNA replication can
also stall as a result of impaired replisome proteins (17, 18) or
sequence-specific replication pause sites (36). Unless the replication
is reinitiated, stalling can lead to replication fork collapse and
double-strand breaks, resulting in the formation of pathological de-
letions (16). Our experiments provide direct evidence that PrimPol is
required for replication reinitiation in mitochondria, identifying it as
a central player in mtDNA replication fork rescue.

PrimPol Is Required for Increased Replication Initiation After DNA
Damage. The increase in replication intermediates, especially
when accompanied by a decrease in mtDNA copy number, has

Fig. 3. PrimPol is responsible for increasedmtDNA replication initiation after UV
exposure. (A) Schematic illustration of mouse mtDNA as in Fig. 1. (B) Two-di-
mensional AGE of BclI-digested mtDNA from untreated Primpol WT (+/+) and
Primpol-KO (−/−) MEFs. Comparative exposures of the gels are shown. (C) After 4 h
recovery from a 30-s exposure to 305 nm UVB, the control WT cells show a sig-
nificant increase in partially single-stranded replication bubbles (pps-b; SI Results
and Discussion), whereas Primpol-KO MEFs are unaffected. Longer exposure
(Bottom) was given to illustrate the qualitative and quantitative differences in the
replicative forms.

Fig. 4. PrimPol overexpression in human T-REx 293 cells induces spe-
cific changes in the replication intermediates, corresponding to increased
lagging-strand priming. (A) Schematic illustration of human mtDNA showing
the canonical replication origins, BamHI (downstream of OH) restriction site,
and probe location (asterisk). (B) Illustration of BamHI-restriction fragments
resulting from replicating mtDNA. BamHI cuts directly downstream of OH,
resulting in molecules migrating on the so-called eyebrow arc (ey), which
represent replication intermediates that are cut only on the leading strand
as a result of RNA coverage or single-strandedness of the lagging strand.
After the leading-strand replication is completed, the displaced strand
template will remain uncut until the lagging strand is entirely replicated
(ter1). Fully dsDNA intermediates are cut on both strands and result in y
forms (y) and double-y forms (dy), which convert to termination interme-
diates (ter2) after the replication is completed. Note that the distances
where the replication bubble is converted to y and then double-y forms are
fairly short, resulting in poor separation of the latter. Partially single-
stranded circles (ssc) streak southeast from the uncut double-stranded circles
(c, arrows). (C) A 48-h overexpression of PrimPol (5 ng/mL Dox) depletes the
partially single-stranded circles (ssc) while increasing the dsDNA intermedi-
ates (dy, y). Host cell line with an integrated empty expression vector rep-
resents the control. (D) Under normal conditions (i–iii), the majority of
mtDNA replication intermediates are partially ssDNA as a result of only a few
active lagging-strand origins, such as OL. When PrimPol is overexpressed (iv–
vi), lagging-strand synthesis is initiated at multiple loci, resulting in more
dsDNA intermediates that can be cut by the restriction enzyme (e.g., BamHI).
Note that, despite the general increase in dsDNA, some restriction sites re-
main uncut.
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been treated as a hallmark of replication stalling in a number of
studies that used 2D-AGE (17, 18, 37). However, if the stalled
replication forks are actively processed or turned over, an in-
crease in replication intermediates can be obtained only through
a concomitant increase in replication initiation. In the case of
ddC, the accumulation of replication intermediates is caused by
recurrent initiation and stalling events (Figs. 1 and 2). In the
absence of PrimPol, no reinitiation occurs, resulting in the loss of
replication intermediates (Fig. 1C), further demonstrating that
replication reinitiation is required for replication maintenance in
the presence of ddCTP. As shown here, the primase and poly-
merase activity of PrimPol are not significantly affected by the
presence of ddNTPs, precluding the formation of abortive pri-
mers that could compromise fork restart and progression. De-
spite PrimPol’s ability to reprime replication after a CTNA,
mtDNA will eventually be lost because of the repeated in-
corporation of ddCTP by Pol γ (Fig. S10).
Similar to the situation of treatment with ddC, PrimPol is re-

sponsible for the increased replication initiation after UV exposure
(Fig. 3), although the damage seems to be tolerated in cells lacking
PrimPol. It is likely that PrimPol is only one of several players in-
volved in mtDNA damage response and its activities. Despite
PrimPol contributing to the defense against a range of genotoxic
insults, it is not essential for cell survival after acute damage. This is
apparent also from the fact that PrimPol can facilitate recovery after
UV damage to nuclear DNA, but does not influence cell survival
(34). As stalled replication forks pose a great risk for genome in-
tegrity as a result of their tendency to collapse and form double-
strand breaks with potentially catastrophic consequences, cells have
evolved a number of partially redundant mechanisms to avoid such
damage (38).

PrimPol Primes mtDNA Synthesis Independent of the Replication
Origin. Fully dsDNA replication intermediates exist in mitochon-
dria (39, 40) and have been suggested to originate from bi-
directional replication that is initiated downstream of OH (41) (SI
Results and Discussion). Under normal conditions, dsDNA repli-
cation represents the minority of replicative molecules in mitotic
cells, and it remains unsettled to which extent these intermediates
represent an independent replication and not just more frequent
lagging-strand initiation during strand-asymmetric replication.
Interestingly, overexpression of PrimPol results in the generation
of fully dsDNA replication intermediates (Fig. 4). As PrimPol can
provide primers for Pol γ on single-stranded substrate (Fig. 2A,
lanes 7–9), it is also likely to prime the lagging strand during
asymmetric replication. Increased lagging-strand priming would be
the easiest explanation for the reduction of partially single-
stranded circles (“ssc” in Fig. 4C) as well as the increase in fully
dsDNA replication intermediates in PrimPol-overexpressing cells
(e.g., “dy” in Fig. 4 and Fig. S9).
Although replication stalling is acknowledged as an important

culprit behind pathological mtDNA deletions (15, 16), almost
nothing is known about the fate of stalled replication interme-
diates, such as their subsequent processing, and which enzymatic
players are involved. Our finding that PrimPol is required for the
reinitiation of replication in mitochondria will hopefully pave the
way for further understanding of mtDNA replication mecha-
nisms and how the mitochondrial genome is protected against
various intrinsic and extrinsic stressors.

Materials and Methods
Immortalization of MEFs and Generation of Flp-In T-REx 293 PrimPol Cell Line.
WT Primpol (+/+) and Primpol-KO (−/−) cells (Fig. S1A) were generated from
primary MEFs (2) that were immortalized by transfection with an SV40T
antigen expression vector using Lipofectamine 3000 (Thermo Fisher Sci-
entific) according to the manufacturer’s recommendation. After transfection,

the cells were grown to confluence and passaged onto 10-cm tissue culture
dishes, followed by another five 1/10 passages (i.e., a 1/100,000-fold splitting of
the original cells), which exposes the cells to a strong negative selection
against nontransformed cells. Cells that continue growing after 6–10 passages
are considered immortalized. Additionally, an inducible cell line expressing WT
PrimPol was established by using Flp-In T-REx 293 cells. The cloning of PrimPol
cDNA with a C-terminal flag-tag into the pcDNA5FRTO and the generation of
the cell line was performed essentially as in the work of Wanrooij et al. (18). In
this system, the transgene is expressed upon addition of doxycycline (Dox) to
the growth medium. Dox 5–10 ng/mL was determined to give a stable long-
term expression of the transgene (Fig. S7). At these concentrations, Dox is
nontoxic for mitochondrial functions (42).

Cell Culture, ddC, and UV Light Treatment. Flp-In T-REx 293 and MEF cells were
cultured in DMEM containing 4.5 g/L glucose, 2 mM L-glutamine, 1 mM
sodium pyruvate, 50 μg/mL uridine, and 10% FBS at 37 °C in a humidified
atmosphere with 8.5% CO2 atmosphere. No antibiotic agents were added
to the growth medium. After the indicated times, cells were pelleted and
DNA samples were extracted. To induce mtDNA replication stalling, cells
were treated for 48 h with 175 μM of ddC (Sigma-Aldrich) (37). As pre-
viously described for UV damage (21), cells were exposed on the tissue
culture dish with DMEM to a single 30-s dose of 30 J/m2 UVB using a
Benchtop 2UV Transilluminator 302 nm instrument (UVP). UV light doses
were controlled by using a handheld UV radiometer (UM-25; Minolta).

mtDNA Copy Number Analysis. Total cellular DNA was isolated by using pro-
teinase K and SDS lysis followed by phenol:chloroform extraction and ethanol
precipitation (40). mtDNA levels were analyzed by separating 2 μg HindIII-
digested total DNA on a 0.4% agarose gel in 1× TBE 1.2 V/cm for 16 h at room
temperature. Southern blotting and DNA hybridization were carried out as
previously described (40) by using a Cytb (mouse; nucleotides 14,783–15,333)
probe for mtDNA, and an 18S rDNA probe (nucleotides 24–772; National
Center for Biotechnology Information accession no. M10098) as loading con-
trol. Radioactive signal was captured on Kodak storage phosphor screen
SO230, detected by using a Molecular Imager FX (BioRad), and quantified by
using the associated QuantityOne software.

mtDNA Isolation and Analysis of mtDNA Replication Intermediates.mtDNA was
isolated by using 1 h 20 μg/mL cytochalasin (Sigma-Aldrich) treatment for
MEF cells or 30 min for T-Rex 293 cells before cell breakage, followed by
differential centrifugation and sucrose gradient purification (43). The 2D-
AGE analysis was performed essentially as in the work of Pohjoismäki et al.
(37). Further details are provided in SI Materials and Methods.

In Vitro Replication Assays. M13mp18 ssDNA (M13ssDNA) was used as a tem-
plate to assay replication by PrimPol and Pol γ in the presence of dideox-
ynucleotides. Pol γA, Pol γB (forming the holoenzyme Pol γAB2), and PrimPol
were expressed and purified as described previously (20, 44). Standard reaction
mixtures contained 10 mM Bis-Tris propane, 10 mMMgCl2, 1 mMDDT, 200 μM
dNTPs, 1 mM ATP, [α-32P]dGTP as radioactive tracer, and the indicated amount
of ddCTP. When indicated, 12.5 nM Pol γA, 18.75 nM Pol γB (as a dimer), and
200 nM PrimPol was added. The reaction was performed by using 5 nM of
singly- or nonprimed M13ssDNA (the 28-mer primer is complementary to nu-
cleotides 6,218–6,245). Reactions were incubated for 60 min at 37 °C, stopped
with 0.5% SDS/25 mM EDTA, purified with G-25 columns (GE Healthcare), and
loaded on a 1% alkaline (30 mM NaOH, 1 mM EDTA) agarose gel. The gel was
run at 20 V for 16 h (4 °C), dried, exposed to a storage phosphor screen, and
scanned with a Typhoon 9400 device (Amersham Biosciences).

Mapping of PrimPol Priming Site. Mapping of PrimPol priming site was per-
formed by an adapted protocol for 5′-RACE (45). Further details are provided
in SI Materials and Methods.
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