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Abstract

The current work aims to identify patients with atopic dermatitis for inclusion in genome-wide 

association studies (GWAS). Here we describe a machine learning-based phenotype algorithm. 

Using the electronic health record (EHR), we combined coded information with information 

extracted from encounter notes as features in a lasso logistic regression. Our algorithm achieves 

high positive predictive value (PPV) and sensitivity, improving on previous algorithms with 

low sensitivity. These results demonstrate the utility of natural language processing (NLP) and 

machine learning for EHR-based phenotyping.

I. Introduction

Atopic dermatitis (AD) is a chronic inflammatory disease associated with intense itch 

and skin hyper-reactivity to environmental triggers that are innocuous in non-atopic 

individuals [1]. Although AD usually presents in early infancy and childhood, it commonly 

persists into or begins in adulthood. Recent population-based studies estimated that 

AD and/or eczema affect 7.2%–10.2% of adults living in the United States [2], [3]. 

AD has a complex etiology and considerable heterogeneity with respect to skin lesion 

distribution (e.g., flexural, extensor, head and neck areas, generalized) and morphology (e.g., 

oozing, scaling, lichenification, prurigo nodules, ill-demarcated, psoriasiform), intensity 

and time-course (e.g., intermittent, chronic persistent disease, seasonal variation, episodic 

flares) and associated symptom burden and comorbidities. This heterogeneity can pose 

diagnostic challenges, and misdiagnoses are common due to the multi-dimensional clinical 

presentation.

The complexity of this phenotype hinders the identification of large-scale cohorts necessary 

to undertake clinical, epidemiological, and genetics research. Genetics studies, such as 

genome-wide association studies (GWAS) contribute to our understanding of the genetic 

bases of particular phenotypes, a principle goal of the NIH-funded Electronic Medical 

Records and Genomics (eMERGE) network [4]. In the current work, we used a registry of 
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AD patients as a gold standard to develop a EHR-based phenotype algorithm, which can 

be used to identify AD cases for clinical research and recruitment. Our goal is to apply the 

algorithm across eMERGE network sites to identify potential cases for inclusion in GWAS.

To develop the algorithm, we utilized data collected from the Northwestern Medicine 

Enterprise Data Warehouse (NMEDW), which houses the electronic health records (EHR) 

of roughly 6 million patients undergoing treatment or involved in research at Northwestern 

Medicine [5]. The EHR contains two types of information: structured, coded data and 

unstructured, clinical narratives (such as notes from clinical encounters). Coded data about 

patients, including demographics, International Classification of Disease (ICD-9 or ICD-10) 

codes, medication prescriptions, and laboratory results provide substantial information about 

patients that is useful for clinical research. Previous phenotype algorithms for eMERGE 

projects have relied exclusively on coded data [4], [6]. However, narrative data (e.g., 

free-form text in encounter notes written by physicians) is an additional rich source 

of information about disease history (e.g., symptoms, age of onset, longitudinal course) 

and clinician assessment (e.g., physical exam, diagnosis, and severity assessment). This 

information is not readily accessible without the use of natural language processing (NLP). 

A growing number of phenotype algorithms make use of both structured and unstructured 

sources of information [7].

Another development in EHR-based phenotyping has been a move towards machine learning 

to create predictive models. While rule-based phenotype algorithms are still commonly used 

successfully [8], machine learning can be more appropriate for complex phenotypes, when it 

is not straightforward to combine criteria using manually constructed Boolean operators over 

EHR-based criteria. The heterogeneity of AD, and the corresponding diversity of relevant 

AD data in the EHR, make it a good candidate for a machine learning approach.

II. Related Work

A previous study developed a phenotype algorithm based only on billing (ICD-9) codes for 

primary diagnoses of AD or contact dermatitis (CD)/eczema and secondary diagnoses of 

asthma, hay fever, and food allergy [9]. The algorithm achieved a high positive predictive 

value (PPV) of 95.2% when combining primary and all secondary diagnoses in the 

algorithm. However, this algorithm severely limited the number of patients that could be 

included in the cohort, which limits the algorithms effectiveness for GWAS cohort selection. 

The sensitivity of this best performing algorithm was extremely poor (8.7%). These results 

motivate the development of an improved and more sophisticated algorithm incorporating 

features derived from structured data and NLP of encounter notes, as well as machine 

learning of a predictive model over these features.

A growing number of studies have utilized machine learning and NLP to develop algorithms 

for phenotypes such as rheumatoid arthritis (RA) [10], [11], bipolar disorder (BD) [12], 

and cerebral aneurysms (CA) [13]. A study of RA applied lasso logistic regression as 

a technique for detecting cases based on a combination of features from structured and 

unstructured sources [10]. As a starting point for developing the algorithm, Liao et al. 

obtained an enriched set of potential RA patients by searching the EHR for patients with at 
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least one occurrence of the ICD-9 code for RA or related diseases or had been checked for 

anti-cyclic citrullinated peptide. Using a randomly selected set of patients from this enriched 

cohort, the phenotype algorithm was trained using a gold standard diagnosis assigned by 

two rheumatologists following a chart review. The algorithm included features from both 

structured and unstructured sources. To extract information from unstructured sources (e.g., 

provider notes, radiology reports, discharge summaries), an NLP tool identified relevant 

terms, such as mentions of diagnoses of RA (and its comorbidities), RA medications, and 

relevant laboratory test information. Due to high dimensionality of the set of NLP-derived 

features, clinicians collapsed similar mentions into broader categories. Dimensionality was 

reduced further following training of the lasso regression model, which preserves only the 

most informative features in the final model. When combining these NLP-derived features 

with features from unstructured sources (e.g., diagnosis codes), the phenotype algorithm 

outperformed algorithms with only one or the other type of features (5–6% difference in 

PPV). Furthermore, the regression algorithm drastically outperformed traditional code-based 

algorithms (38–49% difference in PPV). A subsequent study demonstrated that the RA 

machine learning-based algorithm generalized well to data from other institutions [11]. Such 

cross-institutional validation is a critical step in the process of developing high quality 

phenotype algorithms and GWAS within the eMERGE network.

Other studies have demonstrated similar success building phenotype algorithms using lasso 

logistic regression. Similar to the RA algorithm described above, the development of an 

algorithm for identification of patients with cerebral aneurysms (CA) began by selecting an 

enriched set of patients with ICD-9 codes for various aneurysm subtypes, relevant procedure 

and CPT codes, or mentions of the term aneurysm in close proximity to terms such as 

cerebral, cranial, brain, among others [13]. Following chart review of a random subset of the 

enriched set, an adaptive lasso logistic regression was trained using gold standard diagnoses. 

NLP features were derived by extracting a set of clinically relevant terms from clinical 

notes. Dimensionality of the NLP-derived feature set was initially reduced by including only 

features present for at least 10% of the patients, and further reduced during training. As was 

the case for the RA algorithm, the best performing model for selecting a CA cohort from 

EHR data included both NLP and coded features.

Finally, lasso logistic regression has been applied successfully to algorithms for psychiatric 

disorders, such as bipolar disorder (BD) [12]. Development of the BD algorithm followed 

similar procedures as for RA and CA, with initial identification of an enriched set of patients 

and chart review of a subset of those patients to create a gold standard. Clinicians identified 

relevant terms in the clinical narratives during chart review, which were then systematically 

extracted from notes using NLP. No model-independent dimensionality reduction was 

attempted for the set of NLP-derived features. Consistent with other phenotype algorithms, 

the BD algorithm incorporating NLP-derived features outperformed code-based algorithms 

(6–35% difference in PPV).

For the AD phenotype algorithm, we adopted methodologies similar to those utilized for 

developing phenotype algorithms for RA [10], [11]. We used the same cohort of patients 

used for developing a previous code-only AD algorithm [9]. For the current study, we 

developed a machine learning approach to EHR-based AD identification relying on NLP-
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derived features. Our goal is to match the high PPV of the existing algorithm, but to do so 

while improving its peformance with respect to sensitivity.

III. Methods

A. Data Source

We utilized an existing registry of potential AD cases created for a previous study [9]. To 

create this registry, patients with at least one occurrence of an ICD-9 code for AD or CD/

eczema between January 2001 and November 2014 (end point of [9], for which the registry 

was originally created) were drawn from the set of patients available in the NMEDW (N > 

2.5 million). From that set of patients (AD: n = 41,162; CD/eczema: 2,106), 577 cases who 

had a visit documented in the last year were selected. The final set of cases included 562 

patients who had encounter notes of the appropriate type within the desired time window 

(through December 2015; see below). Figure 1 summarizes the cohort creation procedure.

As part of the previous study [9], the entire EHR of these patients were reviewed by 

four independent reviewers (dermatologists). During this chart review (completed December 

2015), the reviewers documented the presence of each of the Hanifin and Rajka (HR) major 

and minor criteria [14] and UK Working Party (UKWP) criteria [15] (see below), along with 

other information not relevant to the current study.

B. Gold Standard Classification

Several criteria have been developed and validated for clinical diagnosis of AD. The 

Hanifin and Rajka (HR) criteria [14] is comprised of a detailed set of signs, symptoms, 

and comorbidities present in patients with AD. Major criteria include pruritus, flexural 

dermatitis, chronic or relapsing dermatitis, and a personal or family history of atopic disease 

(e.g., asthma, hay fever). HR minor criteria include facial symptoms or diseases (e.g., 

infraorbital darkening, conjunctivitis), environmental or emotional triggers (e.g., anxiety, 

depression, wool intolerance), common complications (e.g., skin infections, cataracts), and 

other symptoms and diseases (e.g., dry skin, ichthyosis, white dermatographism). Patients 

meet the diagnostic criteria for AD if they possess at least three major and three minor 

criteria.

The UK Working Party (UKWP) criteria [15] is an abridged modification of the HR criteria. 

Patients must have a documented itchy skin condition and least three of the following 

symptoms: skin crease involvement, personal history of atopic disease, dry skin, flexural 

dermatitis, or an early age of onset.

To create a gold standard for algorithm development in the current study, each patient was 

assigned definite, probable, or negative status according to the HR and UKWP diagnostic 

criteria and information documented during chart review (Table I). For the HR criteria, 

patients with at least three major and minor HR criteria were definite for AD. Patients 

with at least two major and minor criteria were classified as probable for AD. For the 

UKWP criteria, patients with pruritus and at least three minor criteria were definite for AD, 

while those with pruritus but only two minor criteria were probable for AD. Patients who 

met fewer criteria were classified as not having AD. Patients with definite and probable 
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classifications were grouped to a single AD-positive class, while negative classifications 

comprised the AD-negative class.

C. Coded EHR Data

We included counts of the following structured codes from the EHR as features for the 

phenotype algorithm: ICD-9 and ICD-10 codes for AD, eczema, and AD comorbidities 

(Table II), laboratory values, coded medications, and demographic information (age, sex, 

race). We imposed no restriction on provider type for coded data in the EHR. All structured 

codes were de-duplicated so that any given value was only counted once per day (regardless 

of the number of encounters on that day).

Counts of structured codes associated with a patient were transformed in a number of ways 

for inclusion in the machine learning algorithm. Diagnosis code counts were normalized 

in two ways: dividing by the total number of (de-duplicated) codes in the EHR for each 

patient and natural-log transformation. Laboratory values were included as a binary variable, 

indicating whether any laboratory test relevant to AD diagnosis was performed (e.g., skin 

prick test). AD-relevant medications were also included as a single, grouped category 

and represented as a binary variable. These medications include topical corticosteroids, 

topical calcineurin inhibitors, prescription emollients, antihistamines, oral corticosteroids, 

phototherapy, cyclosporine A, interferon gamma, doxepin, azathioprine, methotrexate, and 

mycophenolate mofetil [14], [16]. Patient ages were calculated by subtracting date of birth 

from March 15, 2017. Patient sex was dummy coded with female equal to 1 and male equal 

to 0. Finally, due to many missing values and indications not to disclose race, race was 

broadly grouped and dummy coded as white (1) vs. non-white (0).

D. Narrative EHR Data and NLP

Many types of narrative data exist in the EHR, some with more useful information than 

others for developing phenotype algorithms. For the current purposes, we focused on 

progress notes generated by both inpatient and outpatient encounters with physicians (with 

no restriction on provider type). We excluded telephone encounter notes, procedural notes, 

and nursing notes, among others. We queried the NMEDW for progress notes generated by 

encounters through December 2015 (the end point of chart review). Of our cohort of 577 

AD cases, only 562 patients had encounter notes of the appropriate type within the specified 

time window. Our analyses, therefore, included only these 562 patients.

Encounter notes contain mentions of many concepts (e.g., diagnoses, signs, symptoms, 

medications) that are irrelevant for the target phenotype. To focus our NLP efforts, we 

identified a set of target AD concepts with the help of an AD domain expert clinician (JS). 

We curated a set of key terms based on the clinicians experience with AD patients and 

the specific HR and UKWP criteria. These terms were then mapped to Unified Medical 

Language System (UMLS) [17] concept unique identifiers (CUIs) and were used to create 

a custom dictionary of concepts. Alternate phrasings of each term were included based on 

UMLS entries for CUIs associated with the term. For example, for the target term pruritus 

(CUI: C0033774), there were several alternate phrasings in the UMLS entry, including 

itching (pruritus), itchy skin, and pruritic dermatitis. These alternate phrasings ensure the 

Gustafson et al. Page 5

Proc (IEEE Int Conf Healthc Inform). Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



named entity recognition (NER) component can cope with variations in how concepts are 

expressed. Common misspellings (e.g., ichthyosis icthyosis and pruritus pruritis) were added 

to the dictionary manually based on the guidance of our AD domain expert (JS). Finally, the 

same set of medications targeted in the coded data were included in the dictionary. Our final 

dictionary contained 437 unique concepts.

Concepts were extracted from encounter notes using the dictionary look-up NER component 

of the clinical Text Analysis and Knowledge Extraction System (cTAKES) [18] with our 

custom dictionary of AD-relevant concepts. In cases where cTAKES assigned multiple CUIs 

to a single mention (approximately 3.5% of mentions), we selected the first CUI assigned. 

cTAKES assertion annotation modules were also included in the NLP pipeline in order 

to capture the subject of concepts (i.e., referring to the patient or a family member), the 

status of concepts (e.g., relation to patient history), and the polarity of concepts (asserted 

or negated). Therefore, a concept such as pruritus (C0033774) could appear in the feature 

set multiple times (e.g., negated mention of pruritus regarding patient history vs. positive 

mention of pruritus for patient in present). Extracted concepts were converted into features 

by calculating the number of mentions of each concept for each patient. These concepts 

were then grouped into broader categories to reduce the dimensionality of the feature 

set. These broader categories were based on the HR and UKWP criteria from which the 

concepts were originally derived. Following this grouping, there were 56 narrative-based 

features remaining for inclusion in the machine learning algorithm. Each feature was natural 

log transformed. Concepts related to medications and laboratory tests described within the 

clinical narrative were transformed to binary variables to mirror their coded counterparts.

E. Lasso Logistic Regression

We used lasso logistic regression to develop an algorithm to predict whether patients 

had AD. The lasso logistic regression technique has been used for previous phenotype 

algorithms [10]–[13] due to its ability to eliminate non-influential features from the model 

during training and generalizability to unseen data from novel sources. The result is an 

easily interpretable model with a relatively small set of influential features.

Prior to training, we created three non-overlapping data subsets stratified by class label: 

training (60%), validation (20%), testing (20%). The training set was used for model 

selection and fitting, using the glmet implementation of lasso logistic regression in R [19], 

which includes a cross-validation (CV) training function that selects the optimal value of the 

tuning parameter lambda. We fit the model using 10-fold CV, and used the optimal lambda 

value to evaluate the model on the held-out validation set. We do not report here results 

on the held-out test set, as we plan further improvements to the NLP pipeline and machine 

learning approach (see below).

F. Evaluation Measures

The primary goal of phenotype algorithms within eMERGE projects is to identify a cohort 

of patients for which there is high confidence the selected patients represent true cases of 

the phenotype. The secondary goal is ensure the high precision cohort of patients is large 

enough to perform GWAS. To achieve these goals, we evaluated the performance of our 
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phenotype algorithm in terms of PPV, sensitivity, and F-measure. PPV was calculated as the 

total number of positive cases accurately identified by the algorithm (true positives) divided 

by the total number of predicted positive cases (true positives and false positives). Sensitivity 

was calculated as the total number of true positives divided by the total number of positive 

cases (true positives and false negatives). F-measure was calculated as the harmonic mean of 

PPV and sensitivity.

IV. Results

We report two sets of results based on each of the two gold standards, the HR and UKWP 

criteria. As shown in Table I, our gold standard classification procedure using the HR criteria 

identified 278 AD-positive patients and 284 AD-negative patients. Characteristics of the 

HR training set are summarized in Table III. The HR training set is quite balanced across 

classes (AD positive vs. AD negative) for each of our demographic variables (age, sex, and 

race) and for the mean number of diagnosis codes in the EHR (a proxy measure of the 

approximate size of each patients health record).

HR model performance on the validation set is summarized in Table IV. While there 

was little difference between the PPV achieved by models including NLP-based features 

(code+NLP and NLP-only), these models outperformed the model including only coded 

data from the EHR (10.5–10.8% difference). Similarly, models with NLP-based features had 

comparable levels of sensitivity, both were substantially higher than the code-only model 

(19.6–21.4% difference). The highest performing model, taking all evaluation measures 

into account, is the model including both structured and unstructured sources, although 

both models including NLP-based features performed quite well. These models provide 

reasonably good PPV, but crucially a close to 10-fold improvement on sensitivity compared 

to a previous AD phenotype algorithm based solely on ICD-9 code counts using the same set 

of patients [9].

The final model contained 26 features, with features from both data sources. The top ten 

features with highest predictive value are summarized with regression coefficients in Table 

V. This set of best features are noteworthy for a number of reasons. First, the normalized 

count of AD diagnosis codes coded in the EHR has the highest predictive power in the 

model, indicating that AD diagnosis codes contribute important information to the model. 

The high predictive power of this diagnosis code likely contributes to the competitive PPV 

of the code-only algorithm. However, previous work has shown that diagnosis codes alone 

are not enough to achieve high sensitivity with the same cohort of patients [9], a finding 

we replicate here. Eight of the remaining top performing features are derived from applying 

NLP to the free text of clinicians encounter notes, which demonstrates the necessity of NLP 

for achieving high sensitivity in an AD phenotype algorithm.

A somewhat different pattern of results was observed for models trained with the UKWP 

gold standard labels. Characteristics of patients in the UKWP training set are summarized in 

Table III and results are summarized in Table VI. As with the HR models, there was little 

difference in PPV between the code+NLP model and the NLP-only model (3% difference). 

However, the PPV for the code-only model outperformed either model including NLP-based 
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features (5.6–8.6% difference). Similar to the HR model, the UKWP models including NLP-

derived features out-performed the code-only model in terms of sensitivity (12.2–14.7% 

difference). The code+NLP and NLP-only models had the same F-measure, which was 

higher than the code-only F-measure (5.8% difference). Although the code-only model had 

the highest PPV in Table VI, with respect to F-measure (the harmonic mean of PPV and 

sensitivity) the best model was the full model that included features from both structured and 

unstructured sources.

Therefore, the highest performing model included features from both structured and 

unstructured sources. The final UKWP model included 20 features from both data sources. 

Table VII shows the ten features with the highest predictive value with their regression 

coefficients. As in the best HR model, the feature with the highest predictive power in the 

UKWP model was AD diagnosis codes, again a likely contributor to the high PPV of the 

code-only model. There is notable overlap in the features selected for the HR and UKWP 

models, such as mention within the clinicians encounter notes of pytiriasis alba, patient 

history of AD/eczema and ichthyosis.

V. Discussion

The results of the current study indicate that the development of the AD phenotype 

algorithm benefited from including information from both structured and unstructured 

sources within the EHR, and from the use of a machine learning approach. Using NLP, we 

derived a set of features representing important information for identifying patients with this 

phenotype that was not represented by coded information. By including these NLP-derived 

features, we were able to achieve a near 10-fold improvement in the sensitivity reported with 

the same cohort of patients using an algorithm based solely on diagnosis codes [9]. Our 

NLP-derived features were able to capture information about patient history (e.g., history of 

atopic disease, such as asthma and hay fever) and conditions (e.g., pytiriasis alba) used by 

physicians to diagnose AD in clinical settings.

Feature design and gold standard creation relied upon two diagnostic criteria utilized in 

clinical settings to diagnose patients with AD [14], [15]. Our algorithm achieves superior 

performance when gold standard labels were assigned via the HR criteria compared to the 

UKWP criteria (more than 10% higher PPV than UKWP criteria). As discussed previously, 

the UKWP criteria is an abridged modification of the HR criteria, which assigns diagnoses 

based on fewer signs and symptoms than the HR criteria. Our results suggest that the more 

detailed set of signs, symptoms, and comorbidities included in the HR criteria lead to more 

accurate diagnoses. These findings are consistent with the clinical experience and intutions 

of our domain expert (JS). While the high level of detail of the HR criteria may create 

burdens in a clinical setting, it is critical for high performance in our phenotype algorithm.

These algorithm results are a promising start towards our ultimate eMERGE consortium 

goal of using EHR data to assemble a large cohort of patients for GWAS. Once this cohort 

has been created, the genetic bases of AD can be explored using linked biobank samples 

from each participating institution. Our AD phenotype algorithm has further applications for 

the identification of patients for epidemiological research and for inclusion in clinical trials 
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for AD treatment. Treatment of AD is challenging, and large-scale clinical trials with AD 

patients are necessary to develop effective treatments.

The success of our phenotyping approach may not be unique to AD. Rather, it may be 

useful for other complex phenotypes that cannot be adequately characterized with coded 

data alone. Many autoimmune disorders fall into this category. For example, systemic 

lupus erythematosus (SLE) is a systemic autoimmune disease characterized by pronounced 

inflammation that is often difficult to diagnose because of the diverse manifestations that 

occur over time [20]. Another complex phenotype is polycystic ovary syndrome (PCOS), 

a common endocrine system disorder. As is the case with AD, PCOS has high prevalence 

but is commonly misdiagnosed. Further, physicians rely on multiple diagnostic criteria to 

identify patients with PCOS [21]–[24], complicating the process of creating a gold standard 

cohort of patients. Finally, many PCOS symptoms, which are critical to diagnosis, may not 

be codified in the EHR, highlighting the need for NLP.

VI. Future Work

There are a number of clear directions for future work. A preliminary error analysis revealed 

that cTAKES generally succeeded in identifying the concepts of interest. However, a few 

clear improvements can be made to the NLP pipeline. Currently, the dictionary look-up 

algorithm does not handle misspellings. Misspelled terms are not currently identified 

unless the misspelling was manually added to the input dictionary. While a number of 

common misspellings have been manually added, it is infeasible to predict all possible 

misspellings in the encounter notes. We are currently exploring the performance impact of 

combining dictionary look-up with an implementation of minimum edit distance, a sequence 

alignment technique that calculates the minimum number of changes (insertions, deletions, 

substitutions) needed to map from one dictionary entry to a target string.

The NLP pipeline also currently cannot detect relations among concepts. A number 

of potentially key concepts for the current phenotype involve symptoms localized to a 

particular body region (e.g., dermatitis on the antecubital and popliteal fossae), which are 

not contained in the UMLS Metathesaurus. Therefore, such concepts cannot be identified 

by the cTAKES dictionary look-up algorithm. Temporal relations are also not currently 

captured by the NLP pipeline. The time-course of AD contributes to its heterogeneity, as 

patients experience intermittent, chronic persistent, seasonal, or episodic flares. Accurate 

capture of time-course information could improve the performance of our algorithm, and 

shed light on possible subphenotypes of AD. Other temporal information, such as age of 

disease onset, plays an important role in the clinical diagnosis of AD due to its inclusion in 

the HR and UKWP criteria. Modifications to the NLP pipeline could be made to handle each 

of these kinds of relations.

Finally, the cTAKES NER module does not handle word sense disambiguation (i.e., 

assigning the most contextually appropriate CUI for terms with more than one possible 

CUI). The ambiguity in the current dataset is quite low (approximately 3.5% of mentions), 

in large part due to the creation of a dictionary customized to the current phenotype with few 

overlapping concepts. However, planned extensions of the current work (the identification 
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of subphenotypes of AD) will require extraction of a broader set of clinical concepts 

outside of the set of known symptoms and comorbidities of AD. Preliminary explorations 

of our dataset suggest that up to 30% of all concepts identified using the standard cTAKES 

dictionary are ambiguous. To ensure the success of our subphenotyping efforts, resolution of 

this ambiguity is required.

While certain improvements can still be made to the NLP pipeline, we can also make a 

number of changes to the machine learning approaches to our phenotype algorithm. The 

NLP-derived features included in the logistic regression were extracted from encounter 

notes generated by clinicians with many different specialties. Therefore, much of the 

content of some notes was not relevant to the current phenotype (e.g., treatment for 

injury or other illness by a primary care physician). Furthermore, the quality of phenotype-

specific information recorded by clinicians may vary based on specialty; documentation by 

dermatologists and allergists may contain more and better information than documentation 

by a primary care physician or hospitalist. Future work could index the note source of each 

concept (e.g., dermatologist/allergist vs. other) within the machine learning algorithm to 

account for this possible source of variation across notes.

We could also improve our approach by experimenting with other machine learning 

algorithms. We opted for lasso logistic regression given previous research with other 

phenotype algorithms [10]–[13]. However, other classification algorithms could achieve 

even higher performance. Ensemble methods, such as random forest, in particular are a 

promising avenue for future experiments. Aside from higher performance, a benefit of 

random forest is the potential to interpret the fit model in terms of a series of human-

readable rules. Ongoing work is exploring this option.

VII. Conclusions

The current study demonstrates the effectiveness of utilizing NLP and machine learning for 

developing phenotype algorithms. Future iterations of our algorithm will be used for large-

scale clinical, epidemiological, and genomics research, and will further our understanding of 

the complex phenotype of AD.
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Fig. 1. 
Study flow diagram.
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TABLE I

Gold standard classification distributions

AD Criteria
Classifications

Definite Probable Positive Negative

HR 150 128 278 284

UKWP 164 63 226 335
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TABLE II

Diagnosis codes included in algorithm

Phenotype
Diagnosis Codes

ICD-9 ICD-10

Atopic dermatitis 691.8 L20.x

Contact dermatitis/eczema 692.9 L30.9

Asthma 493.x J45

Hay fever 477.x J30

Food allergy 995.3, 995.6, 995.7, 693.1 –
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TABLE III

Characteristics of Training Set (n = 562)

Patient Feature HR UKWP

Positive Negative Positive Negative

Total 278 284 227 335

Gender (female) 173 180 145 208

Race (white) 144 148 107 185

Age (mean) 43.8 46.4 43.6 46.2

Age (sd) 15.1 15.1 14.6 15.4

Dx Code (mean) 138.4 139.4 153.9 128.8

Dx Code (sd) 193.8 234.2 249 187.5
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TABLE IV

HR Algorithm Results

Model
Performance Metric

PPV Sensitivity F-measure

Code+NLP 84.0% 75.0% 79.2%

Code–only 73.2% 53.6% 61.9%

NLP–only 83.7% 73.2% 78.1%
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TABLE V

Top 10 Features in Best HR Model

Feature Coefficient

Positive predictors

Coded normalized count of AD diagnosis codes 3.253

NLP pytiriasis alba (patient, positive) 1.112

NLP atopic disease (patient, negative) 1.099

NLP white dermatographism (patient, positive) 0.448

Coded laboratory tests 0.328

NLP ichthyosis (patient, positive) 0.318

NLP AD/eczema (patient history, positive) 0.289

NLP contact dermatitis (patient, negative) 0.249

Negative predictors

NLP white dermatographism (patient, negative) −0.929

NLP perifollicular accentuation (patient, negative) −0.404
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TABLE VI

UKWP Algorithm Results

Model
Performance Metric

PPV Sensitivity F-measure

Code+NLP 72.2% 63.4% 67.5%

Code–only 77.8% 51.2% 61.7%

NLP–only 69.2% 65.9% 67.5%
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TABLE VII

Top 10 Features in Best UKWP Model

Feature Coefficient

Positive predictors

Coded normalized count of AD diagnosis codes 3.311

NLP pytiriasis alba (patient, negative) 0.515

NLP medications (positive) 0.464

NLP AD/eczema (patient history, positive) 0.345

NLP atopic disease (patient history, positive) 0.199

NLP ichthyosis (patient, positive) 0.175

Negative predictors

NLP keratoconus (patient, positive) −0.210

NLP facial erythema (patient, negative) −0.181

Race −0.096

NLP perifollicular accentuation (patient, positive) −0.093
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