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Abstract The tumor suppressor p53 is lost or mutated in

approximately half of human cancers. Mutant p53 not only

loses its anti-tumor transcriptional activity, but also often

acquires oncogenic functions to promote tumor prolifera-

tion, invasion, and drug resistance. Traditional strategies

have been taken to directly target p53 mutants through

identifying small molecular compounds to deplete mutant

p53, or to restore its tumor suppressive function. Accu-

mulating evidence suggest that cancer cells with mutated

p53 often exhibit specific functional dependencies on sec-

ondary genes or pathways to survive, providing alternative

targets to indirectly treat p53-mutant cancers. Targeting

these genes or pathways, critical for survival in the pres-

ence of p53 mutations, holds great promise for cancer

treatment. In addition, mutant p53 often exhibits novel

gain-of-functions to promote tumor growth and metastasis.

Here, we review and discuss strategies targeting mutant

p53, with focus on targeting the mutant p53 protein

directly, and on the progress of identifying genes and

pathways required in p53-mutant cells.
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Introduction

The p53 protein is a tumor suppressor that serves as a

genomic guardian to maintain a dynamic balance between

cell growth and cell arrest in response to genomic stress

[1–4]. As a transcription factor, the p53 gene contains a

core DNA-binding domain, a transcriptional activation

domain, and a tetramerization domain [5, 6]. p53 is nor-

mally expressed at low levels, and its expression is

stabilized and increased upon various genotoxic and cel-

lular stress signals, such as DNA damage, hypoxia,

oncogene activation, and nutritional deprivation [7]. These

stress signals stimulate the binding of p53 to a specific

DNA sequence, activating or repressing a set of down-

stream targeting genes that can regulate cell cycle arrest,

apoptosis, or DNA repair. Thus, dysfunction of p53 will

disrupt the balance of cell growth and arrest, allowing

abnormal cells to proliferate and develop into cancer.

In contrast to traditional tumor suppressors that are often

reduced or deleted in human cancers, p53 is more com-

monly mutated in most human cancers [8, 9]. Genomic

sequencing data across different human cancers reveal that

p53 gene is the most frequently and commonly mutated

tumor suppressor gene in human cancers, with over 50% of

cancers harboring somatic p53 mutations [10–12]. The

mutation rate is even higher in certain cancer subtypes,

such as ovarian serous carcinomas, squamous lung cancer,

and triple-negative breast cancer [13–15]. The presence of

mutated p53 has been associated with poor prognosis in

various tumor types [16, 17]. In general, over 75% of p53

mutations occur as missense mutations with a single amino

acid change in the core DNA-binding domain, resulting in

loss of its transcriptional activity and accumulation of

dysfunction p53 protein [18]. Of these mutations, there are

several hotspots that occur with a higher frequency across
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cancer types. These hotspots include amino acids R175,

Y220, R248, and R273. Additionally, two distinct types of

p53 point mutations are frequently observed in cancers:

conformational mutations, and DNA contact mutations.

Conformational mutations of p53 disrupt the structure of

p53 and abolish DNA-binding ability, while DNA contact

mutants alter amino acids that directly bind DNA [19, 20].

Both mutations cause p53 to lose its transcription activity

and gain dominate-negative (DN) activity over the

remaining wildtype allele, through hetero-oligomerization

with wildtype p53 [21]. Drugs have been developed to

induce the degradation of mutant p53 or restore its wild-

type function. Furthermore, increasing evidence suggests

that mutant p53 also acquires new oncogenic functions

(gain-of-function, GOF mutations) to increase tumor pro-

gression, metastasis, and drug resistance [22–26].

Therefore, p53 mutations cause loss of tumor suppressive

activity, as well as gain of oncogenic activity to promote

tumor development, posing an attractive druggable target

for cancer therapy.

Compounds that directly target mutant p53

Given that p53 mutations are more frequent in cancers than

normal cells, targeting mutant p53 through restoration of its

wildtype tumor suppressive function (Table 1) or induction

of its degradation (Table 2) has the potential to selectively

kill cancer cells. Therefore, strategies have been taken to

identify and develop small molecular compounds that

could directly and specifically target p53-mutant p53 for

effective anticancer therapy (Fig. 1) [1].

Compounds that restore wildtype p53 function

CP-31398

CP-31398 is a styrylquinazoline identified from a high

throughput screen for therapeutic agents that restore the

wildtype epitope on the DNA-binding domain of the p53

protein [27, 28]. Studies found that CP-31398 not only

restores p53 function in mutant p53-expressing cells but

also significantly increases the protein expression of

wildtype p53 through the stabilization of exogenous p53 in

p53-mutant human cell lines. CP-31398 treatment increa-

ses the expression of p21 and cell cycle arrest. In addition,

CP-31398 induces mitochondrial translocation of p53,

leading to changes in mitochondrial membrane perme-

ability pore transition and subsequent cytochrome c release

and apoptosis in cancer cells [29]. Treatment of CP-31398

dramatically inhibited tumor growth of both melanoma and

colon xenografts with naturally mutated p53 [28]. The

compound appears to be safe at the dose of 200 mg/kg/day,

as no mortality was observed for mice treated with CP-

31398 for fourteen consecutive days. Tang et al. demon-

strated that CP-31398 restored the tumor suppressive

activity of UVB-induced mutant p53. Administration of

CP-31398 not only inhibited the growth, but also prevented

the development of UVB-induced skin cancers [29]. These

findings suggest that CP-31398 has potential applications

Table 1 Compounds that restore wildtype function of p53

Compounds Target mutants Mechanisms of action References

CP-31398 V173A, S241F,

R249S, R273H

Stabilize the DNA-binding core domain and induce conformational change [27, 29]

P53R3 R175H, R273H Restore sequence-specific DNA-binding and p53 transcriptional activities [30]

NSC319726 R175H, R172H Restore wildtype p53 conformation and activity with MDM2-dependent degradation [34]

PK7088 Y220C Bind to a p53Y220C-specific surface cavity and stabilize p53Y220C with restored

wildtype p53 conformation

[36]

Chetomin R175H Increase Hsp40 (DNAJB1) levels and Hsp40-p53R175H binding, restoring wildtype

p53 conformation, activity, and MDM2- dependent degradation

[37, 38]

PEITC R175H Sensitize the p53(R175H) mutant to proteasome-mediated degradation and further

restore p53 WT conformation and transactivation

[39, 40]

RITA R175H, R248Q,

R273H, R280K

Reactivate p53 in mutant p53 cancers by inhibiting the p53–HDM2 interaction [41–43]

COTI-2 R175H, R273H Restore wildtype p53 activity by targeting and binding to misfolded p53 mutant [46, 47]

PRIMA-1 and

PRIMA-1Met
R175H, R273H Bind to thiol groups in the core domain and restore wildtype conformation [49, 50, 52, 54]
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for the treatment as well as chemoprevention for mutant

p53 cancers.

P53R3

Another novel p53 ‘‘restorer’’, named P53R3, was identi-

fied from a small library of compounds using an in vitro

DNA-binding assay [30]. It restores sequence-specific

DNA binding of endogenously expressed p53R175H and

p53R273H mutants in glioma cell lines. P53R3 treatment

inhibits cell proliferation by inducing the expression of p53

target genes, including MDM2, p21, PUMA and BAX. The

P53R3-mediated increase of p53 target genes seems to be

relatively more specific to mutant p53 cells, as little effects

were observed in wildtype p53 cells. Furthermore, P53R3

strongly enhances expression of death receptor 5 (DR5) at

the cell surface and sensitizes the cell to Apo2L/TRAIL-

induced cell death [30]. This new p53 rescue compound

opens up novel opportunities for the treatment of p53-

mutant cancers.

NSC319726

It is known that p53 binds a single zinc ion near its DNA-

binding interface, which is critical for proper folding, site-

specific DNA binding, and transcriptional activation [31].

Insufficient zinc causes misfolding and functional loss of

p53 [32]. Treating tumor-bearing mice with zinc has been

Table 2 Compounds that induce degradation of mutant p53

Compounds Target mutants Mechanisms of action References

Hsp90

inhibitors

R175H, L194F, R248Q, R273H, R280K Reverse the Hsp900s function to inactivate MDM2 and CHIP [56, 57]

Statins V157F, R172H, R175H, Y220C, R248W,

R273H, R280K

Induce CHIP-dependent degradation of p53 with conformational or

misfolded changes

[61]

HDAC

inhibitors

R175H, R280K Inhibit HDAC6 and disrupt the HDAC6/Hsp90/mutant p53 complex [56–59]

Gambogic

Acid

R175H, G266E, R273H, R280K Inhibit the mutant p53-Hsp90 complex and induce CHIP-dependent

degradation or induce autophagy

[64, 65]

YK-3-237 V157F, M237I, R249S, R273H, R280K Decrease mutant p53 levels through deacetylation at lysine 382 by

activating SIRT1

[66]

Capsaicin R175H, R273H Unknown [67]

Fig. 1 Strategies to target

mutant p53 in cancers. Two

approaches have been used to

target mutant p53 for cancer

treatment. The first approach is

to using small molecular

compounds to directly target

mutant p53 by induction of its

degradation or reactivation of its

tumor suppressive

transcriptional activity. Several

well-studied small molecular

compounds are listed in the left

part of this figure. The

alternative approach is to

targeting pathways that are

critical for the survival and

growth of p53-mutant cancers.

Specific molecular targets,

including G2/M regulators,

kinases and are listed in the

right part of this figure
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shown to restore DNA-binding activity of mutant p53,

leading to tumor inhibition [33]. Using the National Cancer

Institute’s anticancer drug screen data, Yu et al. identified a

compound named NSC319726 from the thiosemicarbazone

family that exhibited selective growth inhibitory activity

against mutant p53R175H, but not wildtype p53 cells [34].

NSC319726 treatment restores wildtype structure and

function of the p53R175H mutant and upregulates p53 target

genes such as p21, MDM2 and PUMA [34]. NSC319726

may also increase the degradation of p53R175H. Although

high dose (10 mg/kg/day) of NSC319726 shows strong

toxicity to both p53WT and p53R175H mice, a lower dose

(5 mg/kg/day) induces xenograft inhibition with extensive

apoptosis only in p53R172H, but not in p53WT mice [34].

Thus, NSC319725 functions as an effective activator of

p53R175H mutant and could be used for the treatment of

p53R175H expressing cancers.

PK7088

The p53-mutant Y220C has a unique surface crevice that

can be targeted by small molecular stabilizers [35].

PK7088Was identified from a compound library screen,

and was found to specifically bind and stabilize the

p53Y220C mutant. It restores wildtype p53 conformation

and increases the expression of p21 and the proapoptotic

protein NOXA [36]. Consequently, treatment of PK7088

induces p53Y220C-dependent G2/M cell-cycle arrest,

apoptosis and growth inhibition in cancer cells [36]. In

addition, PK7088Works synergistically with Nutlin-3 to

further upregulate expression of p21 and NOXA [36].

Chetomin

Chetomin was identified as a specific mutant p53R175H

activator from cell-based luciferase-reporter screen [37]. It

restores wildtype p53 transactivation and upregulates

MDM2, p21 and PUMA expression. In mouse xenograft

models, chetomin selectively inhibits the growth of tumor

cells harboring p53R175H, but not p53R273H [37]. Chetomin

binds and increases the interaction of Hsp40 with p53R175H,

leading to a conformational change of p53R175H and

restoration of wildtype p53 function [37]. However, further

studies found that chetomin also suppresses tumor growth

of colon cancer expressing wildtype p53, suggesting that

chetomin may exert anti-cancer effects independently of

mutant p53 [38].

PEITC

The natural compound PEITC (phenethyl isothiocyanate),

derived from cruciferous vegetables, was recently demon-

strated to reactivate the wildtype function of p53 mutant in

cancer cells [39]. Aggarwal et al. discovered that PEITC

exhibits growth inhibitory activity in cancer cells

expressing p53R175H [40]. Mechanistically, PEITC restores

the wildtype conformation and transactivation of the

p53R175H mutant. It also sensitizes the p53R175H mutant to

proteasome-mediated degradation [40]. Accordingly,

PEITC treatment in p53R175H mutant cells induces apop-

tosis and a delay in S and G2/M phase, through the

activation of canonical wildtype p53 targets. Further,

dietary supplementation of PEITC in xenograft mouse

model significantly inhibited tumor growth in vivo [40]. No

difference in body weights was observed between control

and PEITC-treated groups, suggesting the safety of this

natural compound. These findings provide the first example

of mutant p53 reactivation by a dietary compound, and

have important implications for the treatment of p53R175H

mutant cancers.

RITA

Reactivation of p53 and induction of tumor cell apoptosis

(RITA) is another compound that can reactivate p53

function [41]. It was originally identified as a molecule that

inhibited growth of p53-wildtype HCT 116 cells, but not

HCT 116 p53-/- cells, by inhibiting the p53–HDM2

interaction and inducing p53-target genes, such as p21 and

PUMA [41]. Subsequent studies have demonstrated that

RITA can also reactivate p53 in mutant p53 cancers, but

not p53-null cell lines, by inducing apoptotic genes such as

NOXA, p21, and GADD45, in addition to suppressing

oncogenic genes such as N-Myc and Bcl-2 [42, 43].

However, another study in ovarian cancer showed that

RITA-induced cell death occurred independently of p53, as

RITA treatment induces caspase-dependent apoptosis in

p53-null cells, as well as cells harboring wildtype p53 and

mutant p53 [44]. RITA enhances cisplatin-induced cyto-

toxicity in p53-wildtype head and neck cancers [45], and

additional studies showed that reactivation of p53 by RITA

synergistically enhances gemcitabine-induced apoptosis in

p53 mutant pancreatic cancer [45].

COTI-2

COTI-2 was discovered by a pharmaceutical company

named Critical Outcome Technologies as an orally avail-

able third generation thiosemicarbazone with ability to

restore wildtype p53 from misfolded p53 mutants (R175H,

R273H) (http://criticaloutcome.com/coti-2-and-pipeline/

coti-2/). COTI-2 also acts as a negative regulator of the

PI3K/AKT/mTOR pathway [46]. Salim et al. recently

demonstrated that COTI-2 treatment reduces cell prolifer-

ation and inhibits xenograft growth of multiple human

cancer cell lines expressing either mutant p53 or wildtype
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p53 [47]. This suggests that COTI-2 may affect mutant p53

in human tumors, but likely has additional effects on other

targets in the PI3K/AKT/mTOR pathway in wildtype p53

tumors. Despite its potent anti-tumor efficacy, COTI-2 was

well tolerated and did not affect mice weights in vivo [47].

Although the anti-tumor mechanisms of COTI-2 are still

under investigation, it is currently undergoing a Phase I

clinical trial at MD Anderson Cancer Center for the treat-

ment of advanced or recurrent gynecologic malignancies

(www.clinicaltrials.gov, NCT02433626).

PRIMA-1 and PRIMA-1Met (APR-246)

PRIMA-1 was identified as a small molecule with the ability

to suppress growth of p53R175H and p53R273H cells through

the reactivation of p53 target genes and induction of apop-

tosis by binding to the core DNA-binding domain

[34, 48, 49]. This occurs by forming the compound

methylene quinuclidinone, which covalently binds to thiol

groups in mutant p53, refolding p53 into a wildtype con-

formation, thus restoring its anti-tumor transcriptional

activity. Further testing of PRIMA-1 demonstrated that its

methylated analogue, PRIMA-1Met (APR-246), is more

potent and less toxic than the parental PRIMA-1 [50]. In

SCLC (small cell lung cancer) lines expressing mutant p53,

APR-246 treatment induces apoptosis through activation of

caspase-3 and upregulation of pro-apoptotic proteins such as

Bax and Noxa. Moreover, APR-246 significantly inhibits

in vivo tumor growth of p53-mutant SCLC models without

apparent toxicity [51]. Since many chemotherapy drugs

depend on wildtype p53 for induction of tumor cell apop-

tosis, the restoration of wildtype p53 by APR-246 has the

potential to sensitize p53-mutant cancers to these drugs.

Indeed, APR-246 has showed strong synergy with traditional

chemotherapy drugs such as cisplatin, 5-fluorouracil and

doxorubicin in multiple p53-mutant expressing ovarian

cancers [52]. Furthermore, mutant p53 targeting with APR-

246 effectively eliminates resistance to the proteasome

inhibitor carfilzomib [53]. In a triple-negative breast cancer

xenograft model, APR-246 combined with carfilzomib not

only synergistically reduced primary tumor growth, but also

efficiently eradicated lymph node and lung metastasis [53].

APR-246 is another p53-reactivating drug that has

undergone clinical trials. The phase I/IIa clinical trial of

APR-246, conducted in individuals with hematological

malignancies and prostate cancer, showed both effective-

ness and safety in patients with mutation of p53 [54].

Combined APR-246 with carboplatin is currently being

tested in phase Ib/II clinical trials for patients with recur-

rent high-grade serous ovarian cancer, 95% of which carry

p53 mutations (http://www.clinicaltrials.gov,

NCT02098343) [55].

Compounds that induce mutant p53 degradation

HSP90 and HDAC inhibitors

In human cancers, mutant p53 is more stable than

wildtype p53. This is mainly due to the interaction of

mutant p53 with the HDAC6/Hsp90 chaperone complex

[56]. This complex stabilizes mutant p53 through pre-

venting its degradation mediated by chaperone-associated

E3 ubiquitin ligase. Therefore, disruption of HDAC6/

HSP90 complex by either HDAC or Hsp90 inhibitors

will induce the degradation of mutant p53 [57] (Fig. 1).

Heat shock protein 90 inhibitors (17-AAG and the more

potent ganetespib) and HDAC inhibitors (such as SAHA

or vorinostat) have been shown to promote proteasome-

dependent degradation of mutant p53 [56, 58]. These

drugs are currently being tested in clinical trials for

treatment of p53-mutant cancers. The Hsp90 inhibitor

ganetespib entered phase III trials for the treatment of

non-small cell lung cancer, but the trial was terminated

following the first interim analysis because of futility

[59]. However, ganetespib is still in phase I and II trials

for other cancers with mutant p53, including acute

myeloid leukemia, ovarian, and breast cancers [59].

Statins

Statins are a class of cholesterol-lowering compounds used

to treat and prevent cardiovascular disease [60]. By con-

ducting a chemical library screen to identify compounds

that can degrade mutant p53, Parrales and colleagues

recently discovered statins (lovastatin, atorvastatin and

mevastatin) as biologically active compounds that prefer-

entially induce degradation of p53 with conformational or

misfolded mutation changes (V157F, R172H, R175H,

Y220C, R248W, R273H, and R280K) [61]. Mechanistic

studies revealed that lovastatin treatment inhibits the

mevalonate-5-phosphate pathway and subsequently indu-

ces CHIP (carboxyl terminus of Hsp70-interacting protein)

ubiquitin ligase-mediated nuclear export, ubiquitylation,

and degradation of mutant p53 by inhibiting the interaction

of mutant p53 with DNAJA1 (DnaJ Heat Shock Protein

Family (Hsp40) Member A1) [61]. The effects of statins-

mediated HMG-CoA inhibition and p53 degradation were

highly specific to cancer cells expressing mutant p53 as

minimal effects were observed in cancer cells expressing

wildtype p53. Accordingly, lovastatin treatment reduces

in vitro and in vivo tumor growth only in p53 mutant, but

not in p53-wildtype cancers [61]. Furthermore, statins

synergistically enhanced the anti-tumor effects of

chemotherapeutic drugs such as doxorubicin exclusively in

p53 mutant cancers [62]. Thus, inhibition of the
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mevalonate pathway with statins may represent a novel and

effective strategy to treat p53 mutant cancers.

Gambogic acid

A natural product derived from the Garcinia hanburyi tree,

gambogic acid, upregulates protein expression of p53 and

induces apoptosis of wildtype p53 cells [63]. It also down-

regulates mutant p53 at post-transcription level by target-

ing the nuclear export of various p53 mutants for

ubiquitination and subsequent protein degradation, medi-

ated by the CHIP ubiquitin ligase [64]. Furthermore,

gambogic acid induces mutant p53 degradation through

autophagy in cancer cells expressing the p53R280K and the

p53S241F proteins, as the inhibition of autophagy with

bafilomycin A1 or chloroquine counteracted mutant p53

degradation by gambogic acid [65].

YK-3-237

The small molecule compound YK-3-237 was discovered

to induce degradation of mutant p53 in triple-negative

breast cancers (TNBCs) [66]. It reduces the acetylation of

various p53 mutants (V157F, M237I R249S, R273H, and

R280K) through activation of protein deacetylase SIRT1

(NAD-dependent deacetylase sirtuin-1) [66]. Deacetylation

of mutant p53 destabilizes its protein level and upregulates

the expression of p53-target genes including PUMA and

NOXA [66]. YK-3-237 preferentially inhibits cell prolif-

eration through induction of cell cycle arrest and PARP-

dependent apoptotic cell death in TNBC harboring mutant

p53. However, it remains to be determined whether YK-3-

237 inhibits xenograft tumor growth of p53 mutant

TNBCs.

Capsaicin

To explore natural compounds that induce degradation of

mutant p53, Garufi et al. recently discovered that cap-

saicin, the constituent of peppers responsible for their

pungency, could induce the protein degradation of

mutant p53 (R175H, R273H) in both glioblastoma and

breast cancer cell lines [67]. Abrogation of mutant p53

by capsaicin treatment restored wildtype p53 activities,

such as upregulation of PUMA and Bax, and induction

of cancer cell death. Interestingly, capsaicin also

decreased the expression of MDR1 (multidrug resistance

gene) and therefore sensitized tumors to chemotherapy

drugs such as cisplatin [67]. However, the mechanism by

which capsaicin induces degradation of mutant p53

remains unknown.

Targeting pathways that are critical for survival
of p53 mutant cancers

The concept of synthetic lethality originates from studies in

drosophila model systems, in which a combination of

mutations in two or more separate genes leads to cell death

[68]. In cancers, synthetic lethality can also occur by

inhibiting a gene product in combination with another

single-gene mutation [69]. The relevance of synthetic

lethal screens is supported by multiple observations that

oncogenic mutations, or tumor suppressor defects, may

lead to the development of secondary dependencies in

cancer cells [70]. Therefore, investigators are working to

identify drugs targeting these critical survival pathways

that specifically induce the death of cancer cells harboring

oncogenic mutations [71, 72]. In light of its high muta-

tional rate across different tumors, p53 provides an

attractive target for identifying candidate genes or path-

ways that are synthetically lethal with p53 mutations [73].

The compounds that target these genes and pathways may

selectively kill cancer cells expressing mutant p53 without

affecting normal cells expressing wildtype p53 (Fig. 1).

Multiple approaches, including RNA interference and

chemical screens, have been used in search for synthetic

lethality to p53 mutations [11, 74]. Several different genes

have shown synthetic lethality with p53 mutations, and

these genes function through regulating cell cycle and

critical kinase pathways. Targeted inhibition of these

genes, or a block in relevant pathways, provides a unique

therapeutic window to treat aggressive p53-mutant tumors.

Targeting the G2/M checkpoint

When p53 is mutated, the G1 arrest function of p53 is lost,

causing the cell to rely solely on the G2/M checkpoint for

DNA repair [4, 8]. Therefore, inhibition of cell cycle reg-

ulating genes or pathways that control the G2/M

checkpoint can potentially induce synthetic lethality in

p53-mutant cancers [75, 76]. Several G2/M checkpoint

regulators, including CHK1/2, MK2, PLK1 and WEE1,

have been identified as druggable targets in p53-mutant

cancers (Fig. 1).

CHK1/2

The ATR/CHK1 signaling pathway is activated to reg-

ulate cell cycle arrest in response to explicative and

genomic stress, such as DNA damage [77, 78]. ATR/

CHK1 activation prevents collapse of DNA-single strand

breaks and stalled replication forks, and inhibits cell-

cycle progression through the G2/M checkpoint [79, 80].
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Suppression of the G2/M checkpoint by inhibition of

ATR/CHK1 in p53-mutant cells has been shown to

induce loss of G1 and G2/M cell cycle checkpoints,

resulting in cell death [81, 82]. UCN-01 was the first

CHK1 inhibitor that exhibited preclinical synergistic

effects in combination with several DNA-damaging

agents including irinotecan, a topoisomerase I inhibitor

[83–85]. Other potent and more selective CHK1 inhibi-

tors, such as PF477736, A-690002, and SCH900776,

have since been developed. These drugs potentiate the

cytotoxicity of topoisomerase inhibitors and ionizing

radiation in p53 mutant, but not p53-wildtype cancer

cells [86, 87]. In a recent study, Ma et al. employed

elegant human-in-mouse models of triple-negative breast

cancer and showed that combination treatment of

AZD7762, a highly selective CHK1 inhibitor, with

irinotecan, significantly inhibited tumor growth and

prolonged survival in mice bearing p53-mutant or -de-

ficient tumors [88]. Furthermore, this selective CHK1/2

inhibitor can overcome the cisplatin resistance of head

and neck p53-mutant cancer cells, reconfirming the

feasibility of treating p53-mutant cancers with CHK

inhibitors [89].

MK2

MAPKAP kinase 2 (MK2) is another important regulator

of the G2/M checkpoint. In normal cells with wildtype

p53, MK2 is a critical regulator of the cell cycle by

sustaining the G2/M checkpoint in response to genotoxic

stress or UV irradiation [90]. Synthetic lethality between

MK2 and p53-deficiency following genotoxic stress was

identified using RNA interference (RNAi)-mediated

depletion of MK2 in p53-proficient and p53-deficient

settings [91]. Knockdown of MK2 dramatically sensi-

tized p53-deficient murine embryonic fibroblasts (MEFs),

and H-RasV12-driven p53-deficient allografts, to the

cytotoxic effects of cisplatin and the topoisomerase II

inhibitor doxorubicin. In contrast, loss of MK2 in p53-

proficient cells did not increase cell death or sensitivity

to chemotherapy. Further mechanistic investigation

revealed that MK2-depletion dramatically reduced phos-

phorylation of Cdc25A and B [91]. Subsequent studies

by Morandell et al. were conducted with isogenic MK2-

proficient and deficient non-small-cell lung cancer

tumors, which were oncogenically driven by K-Ras and

a lack of p53. Using this model, they demonstrated that

MK2-/- tumors are more sensitive to cisplatin treatment

than MK2?/? tumors, suggesting that MK2 is responsible

for resistance of p53-deficient tumors to cisplatin [92].

Therefore, targeting inhibition of MK2 in p53-deficient

or mutant cancers may sensitize chemotherapy agents

such as cisplatin.

PLK1

Polo-like kinase 1 (PLK1) is an enzyme that controls G2/M

checkpoint, and its inhibition has been shown to induce

synthetic lethality in cells with p53 mutations [93, 94].

Transcriptome analysis revealed a consistent upregulation

of PLK1 in P53-mutant (p53R248W and p53S241F), but not

wildtype p53 colorectal cancer lines. Inhibition of PLK1 by

small molecular inhibitor BI-2536 significantly enhanced

cytotoxic effects of ionizing radiation in p53-mutant, but

not p53-wildtype cancers cells. Furthermore, BI-2536

treatment dramatically reduced the side effects of Nutlin-3

(MDM2 inhibitor) by protecting neutrophil depletion in

nude mice bearing HCT116 p53-/- xenografts. Although

clinical trials using PLK1 inhibitor as monotherapy have

been terminated, the second generation of PLK1 inhibitor,

GSK461364, has shown greater sensitivity in p53-mutated

cancer compared with that of p53-wildtype cancer cells

[95, 96]. Anti-mitotic agents such as PLK1 inhibitors may

synergistically enhance the therapeutic efficacy of

chemotherapy agents in p53-mutant tumors.

WEE1

WEE1 is another checkpoint kinase that mediates G2/M

cell cycle arrest through phosphorylation of CHK1, which

inhibits mitotic transition [97, 98]. Functional analysis

identified WEE1 as an important survival factor in p53-

mutant head and neck squamous cell carcinomas [99, 100].

The synthetic lethality between WEE1 and mutant p53 was

established by studies showing that MK-1775, a selective

WEE1 inhibitor, sensitizes p53-mutant cancer cells to

DNA-damaging agents such as cisplatin [100]. Clinical

trials utilizing a combination of MK-1775, carboplatin, and

paclitaxel have been used in patients with p53-mutant

ovarian cancer [101].

Targeting kinase pathways

SGK2/PAK3

SGK2 and PAK3 were identified as two novel kinases that

when inhibited cause synthetic lethality with p53 dys-

function in cervical cancer cell lines in which p53 was

inactivated by HPV infection [102]. While loss of p53,

SGK2 or PAK3 alone did not significantly affect cell via-

bility, loss of p53 in combination with depletion of either

SGK2 or PAK2 led to cell death in primary human

epithelial cells derived from tissues of cervical carcinoma.

Two different mechanisms of synthetic lethality in p53-

deficient cervical carcinoma were proposed: SGK2 deple-

tion induces autophagy, and PAK3 depletion increases

apoptosis. However, it remains to be determined whether
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kinase activity of SGK2 or PAK3 is required for their

synthetic interactions with p53 loss.

MPS1

Monopolar Spindle 1 (MPS1) kinase is a dual-specificity

protein kinase that represents an essential component of the

spindle assembly checkpoint [103, 104]. It functions in a

number of mitosis steps, including regulation of activities

at the kinetochore in both chromosome attachment and

spindle checkpoint [105]. Using video microscopy and

fluorescent TP53?/? and TP53-/- human colon carcinoma

cells, Jemaa et al. discovered that SP600125, a serine–

threonine kinase inhibitor which acts on MPS1, kills more

p53-deficient cells but not p53-proficient cells [106]. This

preferential cytotoxicity of MSP1 inhibition is dependent

on p53. TP53-/- cells treated with SP600125 failed to

undergo cell cycle arrest and became polyploid upon

mitotic abortion, resulting in apoptosis. The gene that

encodes MPS1 is also significantly correlated with p53

mutation in several breast cancer datasets [107]. Similarly,

the inhibition of MSP1 by SP600125 reduced cell viability

and increased cell death selectively in p53-mutant breast

cancers [107]. In addition, MSP1 inhibition sensitized

breast cancers to conventional chemotherapy treatments

[107]. Therefore, MPS1 is a potential therapeutic target for

TP53 mutated colon and breast cancers.

PI5P4Kb

It has been shown that p53 supports cell survival by

maintaining metabolic homeostasis by regulating mito-

chondrial respiration and limiting reactive oxygen species

(ROS) [12, 108]. Thus, p53-mutant cells lack the ability to

cope with metabolic changes in conditions of low ROS

[109]. PI5P4Kb (type 2 phosphatidylinositol-5-phosphate

4-kinase beta) was recently identified as a novel gene that,

when inhibited, reduces the growth of p53-mutant breast

cancers by inhibiting glucose metabolism and increasing

levels of ROS [110, 111]. PI5P4Kb is found frequently

amplified in breast cancers, often in co-occurrence with a

p53 mutation. Knockdown of PI5P4Kb specifically

impaired tumor growth in p53-deficient breast cancers.

These novel findings suggest that inhibitors of PI5P4Kb
could be effective in treating cancers with p53 mutations.

HK2

Wan et al. recently identified an interaction between p53

and hexokinase-2 (HK2), a metabolic-related kinase highly

expressed in many cancer cells [112]. HK2 catalyzes the

phosphorylation of glucose in glycolysis, and increases

glucose metabolism that is required for tumorigenesis

[113, 114]. The expression of HK2 was selectively

upregulated by the combined loss of PTEN and p53 in

prostate cancer. Genetic deletion of HK2 demonstrates that

HK2-mediated aerobic glycolysis, known as the Warburg

effect, is required for PTEN- and p53-deficient tumor

growth in xenograft mouse models of prostate cancer

[112]. Thus, targeting inhibition of HK2 might be effective

for the treatment of prostate tumors with PTEN loss and a

p53 mutation.

Targeting pathways that are critical for growth
of p53-mutant cancers

P38

p38 kinases are members of the mitogen-activated protein

kinase (MAPK) family, which transduce signals from

environmental stresses, growth factors, inflammatory

cytokines to regulate cell growth, differentiation and

apoptosis [115]. During the onset of malignant transfor-

mation, p38 has been shown to exert tumor suppressive

activity by phosphorylation and activation of p53, leading

to cell cycle inhibition and apoptosis [116, 117]. However,

increased p38 expression and activation has been corre-

lated with poor survival in patients with breast cancer or

liver cancer, suggesting the potential oncogenic role of p38

[118, 119]. Indeed, inhibition of p38 preferentially sup-

pressed tumor growth of breast cancers expressing mutant,

but not wildtype p53 [120]. Another study showed that p38

inhibition also sensitizes breast cancer cells to cisplatin-

induced apoptosis [121]. Thus, targeting p38 by small

molecular inhibitors may be clinically effective for the

treatment of highly aggressive triple-negative breast can-

cers that harbor p53 mutations.

DAPK1

Death associated protein kinase 1 (DAPK1) is a cal-

cium/calmodulin (CaM)-regulated protein kinase that

activates death signaling in response to interferon-gamma

(INF-c), tumor necrosis factor-alpha (TNF-a), and trans-

forming growth factor-beta (TGF-b) [122–124]. It has been
shown to be highly expressed in ER negative breast cancers

when compared to ER positive breast cancers [125]. Recent

studies suggest that DAPK1 is essential for growth of p53-

mutant cancers, which account for over 80% of TNBCs.

DAPK1 expression is elevated in p53-mutant cancers

compared to p53-wildtype cells. The depletion or inhibition

of DAPK1 suppressed growth of p53-mutant, but not p53-

wildtype breast cancer cells, suggesting that targeting

DAPK1 may possess a therapeutic strategy for p53-mutant

cancers.
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TLR

The Toll-like receptors (TLR) play important role in acti-

vating early innate immunity in response to different

pathogens and orchestrating late adaptive immune

responses [126, 127]. The functions of at least two TLRs

including TLR4 and TLR3 have been linked to mutant p53

cancers. Toll-like receptor 4 (TLR4) is expressed on the

cell surface of immune cells to activate innate immune

response to gram-negative bacterial lipopolysaccharide

(LPS) [126, 127]. It is also expressed in breast epithelial

tumors, and has oncogenic functions to promote tumor

growth and drug resistance [128]. Therefore, TLR4 appears

to be a promising target for immune-based therapeutic

options and is the focus of many drugs currently in

development. However, a recent study demonstrated that

TLR4 activation promotes cell growth in p53-mutant breast

cancers, but inhibits cell growth in p53-wildtype breast

cancers [129]. The differential effects appear to be medi-

ated by tumor cell cytokine secretions upon TLR4

activation. In p53-wildtype breast cancer cells, TLR4

activation increases type I IFN (IFN-c), resulting in p21

expression and tumor inhibition. However, in p53-mutant

breast cancer cells, TLR4 activation promotes tumor

growth by inducing the secretion of CXCL1 and CD154.

These findings suggest the need to determine p53 status for

anti-TLR4 therapy, as the therapy may only be beneficial

for p53-mutant tumors.

Recently studies suggest that wildtype p53 can amplify

immune response against cancer cells by regulating the

expression of immune-related TLRs including TLR2,

TLR3 and TLR5 [130]. Menendez and colleagues trans-

fected several specific p53 mutants (R138 V, P151H,

R175H, H178Y) into HCT 116 p53-/- cells and found that

those with p53 mutants decreased the expression of TLR3

and inhibited TLR3-mediated cytokine secretion and

apoptotic response after stimulation by the cognate ligand

ploy [131]. Furthermore, treatment with the p53 reacti-

vating agent RITA rescued TLR3 expression and enhanced

DNA damage-induced apoptosis via TLR3 signaling in a

p53 mutant lymphoma cell line, Raji, that harbors loss-of-

function alleles (R213Q and Y234H) [131]. Therefore,

targeting mutant p53 to increase TLR3 expression may

enhance anti-tumor immune responses in cancer cells

harboring specific p53 mutations.

Targeting p53 ‘‘gain-of-function’’ pathways

The fact that most tumors contain p53 missense muta-

tions, rather than p53 deletions, raises the possibility that

tumor cells harboring p53 mutations may acquire advan-

tages over cells lacking p53 [22]. Although mutations can

occur throughout p53 protein, the most common muta-

tions occur in the DNA-binding domain, of which the

majority are substitution mutations in six codons which

contain CpG dinucleotide sequences (5 missense: R175,

G245, R248, R273, R282; 1 nonsense: R213*) [132].

Accumulating evidence has shown that the mutations of

p53 not only cause loss of transcriptional activity, but also

allow the acquisition of novel oncogenic functions, which

contribute to tumor development and progression. p53

mutants that localize in the cytoplasm have been shown to

favor cancer cell survival by activating mTOR signaling.

p53 mutants can also activate cell migratory pathways

(e.g. PDGFRb signaling, RhoA/ROCK, EGFR/integrin

recycling, Myo10, Pla2g16) to promote cancer invasion

and metastasis. Studies have also demonstrated that

introducing p53 mutants into p53-null cancer cells resul-

ted in an increase in tumor growth and enhanced tumor

invasion through metabolic alterations, epigenetic modi-

fications, and increased drug resistance, as detailed in

Fig. 2 [26]. Therefore, targeted inhibition of the pathways

that contribute to mutant p530s GOF activities offers an

alternative strategy for effectively treating p53-mutant

cancers.

Fig. 2 Strategies to target pathways induced by p53 GOF mutants.

Mutant p53 gains new functions to promote tumorigenesis by

activation of the metabolic melanovate pathway or upregulation of

epigenetic enzymes. Drugs that target the melanovate pathway

(simvastatin, GGTI-2133) or epigenetic enzymes (MLL1, MOZ

inhibitors) show promise for the treatment of p53-mutant cancers.

Cytoplasmic mutant p53 also promote tumor growth through

activation of mTOR signaling, providing an opportunity to using

mTOR inhibitors to treat cancers with cytoplasmic mutant p53. In

addition, mutant p53 often gains novel function(s) to promote tumor

invasion and metastasis through activation of cell invasion pathways

(PDGFRb signaling, RhoA/ROCK, EGFR/integrin recycling, Myo10,

Pla2g16). Small molecular inhibitors (ROCK inhibitor, EGFR

inhibitor, Myo10 inhibitor and Pla2g16 inhibitor) have been used to

target each pathway to inhibit the metastatic ability of p53-mutant

cancers
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Targeting mTOR pathway induced by gain-of-

function p53 mutants

Autophagy is an intracellular process by which damaged

organelles and macromolecules are targeted by lysosomes

for degradation via autophagic vesicles [133]. Under nor-

mal conditions, autophagy functions to maintain cellular

homeostasis by monitoring the integrity of long-lived

proteins and organelles. Under cellular stress, such as

nutrient starvation and oxidase stress, autophagy is crucial

for maintaining primary biological activities to recycle

intracellular contents as an alternative energy for cell sur-

vival [133]. Accumulating data indicate that autophagy

plays tumour suppressive role during tumorigenesis [134].

Previous studies showed that genomic stress can induce

autophagy in a p53-dependent fashion and wildtype p53

can activate autophagy by upregulating autophagy-related

gene DRAM1 (damage-regulated autophagy modulator 1)

[135]. However, several line of recent studies demonstrated

that specific p53 mutants (R175H, R273H, R273L) that

localize in the cytoplasmic can gain new function to inhibit

autophagy either through blockade of AMPK signaling or

activation of Akt/mTOR signaling [136, 137]. In contrast,

other p53 mutants (P151H, R282W) that localize in the

nucleus failed to inhibit autophagy [138]. Those cytoplas-

mic p53 mutants counteract the formation of autophagic

vesicles and fusion with lysosomes through the repression

of several key autophagy-related proteins and enzymes

such as BECN1, DRAM1 and ATG12 [137]. While AMPK

activation triggers autophagy by inducing degradation of

macromolecules, mTOR signaling inhibits autophagy by

stimulating anabolic biosynthesis for cancer cell growth

[139]. Consequently, the inhibition of autophagy by cyto-

plasmic p53 mutants increases the proliferation and

survival of cancer cells. In addition, the Akt/mTOR acti-

vation by GOF p53 mutants sensitizes cancer cells to the

treatment with mTOR inhibitor everolimus [137]. There-

fore, targeting inhibition of mTOR signaling to induce

autophagy has potential therapeutic applications to treat

human cancers harboring cytoplasmic p53 mutants.

Targeting p53-activated invasion pathways

RhoA/ROCK pathway

It is known that aerobic glycolysis is primarily utilized by

tumor cells for energy production, a phenomenon known as

the Warburg effect [140]. A novel mutant p53 GOF was

shown to be a driving of the Warburg effect and promotion

of tumorigenesis in a murine knock-in p53R172H model

[141]. Tumor formation was promoted by the translocation

of the glucose transporter GLUT1 to the plasma membrane,

which was induced by increased RhoA/ROCK signaling in

p53R172H knock-in mice. Similar studies using FLIM-

FRET imaging to track RhoA activity in pancreatic cancer

driven by the p53R172H mutant found that this mutant p53

increased RhoA activity in vivo [142]. Dasatanib, a clini-

cally used kinase inhibitor agent, inhibited the activity of

RhoA and invasive ability of p53R172H cells in vivo [141].

These studies therefore suggest that targeted inhibition of

RhoA/ROCK signaling in p53-mutant cancers may inhibit

tumorigenesis, and possibly metastasis.

EGFR/integrin recycling

Muller and coworkers showed that cells containing mutant

p53 gain novel functions to promote cell migration and

tumor metastasis [143]. They demonstrated that p53R175H

and p53R273H mutants promote recycling of EGFR and

integrin alpha-5 beta-1 (a5b1) to the cell surface, thereby

increasing invasive and metastatic potential [143]. Recy-

cling of integrin/EGFR by mutant p53 is linked to the

transcriptional inhibition of p63. Consequently, the loss of

p53 and p63 can phenocopy a p53-mutant cancer. Although

the molecular details of how mutant p53 inhibits p63

remain to be determined, these findings suggest that

inhibiting integrin a5b1integrin or blocking EGFR sig-

naling (Cetuximab) may have therapeutic benefits in

cancers with GOF p53 mutations.

PDGFRb

Platelet-derived growth factor receptor beta (PDGFRb) is
mainly expressed by stromal cells, where PFGFRb sig-

naling contributes to tumor-associated invasion and

metastasis [144, 145]. A recent study demonstrated that

PDGFRb signaling enhanced the expression of a GOF

mutant p53 induced pancreatic cancer metastasis in PKC

mice harboring one oncogenic allele of KrasG12D and one

allele of p53R172H [146]. Inhibition of PDGFRb using

imatinib effectively prevented cell invasion and metastasis

of pancreatic cancer with p53 mutations [146]. Given than

over 90% of pancreatic cancers contain p53 mutations,

these studies highlight the potential targeted therapy of

blocking PDGFRb signaling to treat p53-mutant pancreatic

cancers.

AdPLA

Adipocyte phospholipase A2 (AdPLA), a transcript from

the PLA2G16 gene, was recently identified in expression

array studies comparing primary osteosarcomas from

metastatic p53R172H/? mice and non-metastatic p53?/-

mice [147]. AdPLA is a phospholipase that catalyzes

phosphatidic acid into lysophosphatidic acid and free fatty

acid, both of which are implicated in metastasis. Xiong
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et al. found that murine mutant p53R172H increased

PLA2G16 expression in mouse osteosarcoma cells, sug-

gesting that PLA2G16 is a p53-regulated gene [147].

Indeed, ChIP analysis revealed that transcription factor

EST2 recruited p53-mutant protein to bind the PLA2G16

promoter at the E26 transformation specific binding motif.

Functionally, AdPLA knockdown inhibited migration and

invasion in mutant p53-expressing cells. These studies

identify PLA2G16 as a transcriptional target of mutant p53

and suggest that targeting AdPLA will inhibit invasion and

metastasis of p53-mutant tumors.

Targeting cellular and nucleotide metabolism

induced by gain-of-function p53 mutants

Several studies demonstrated that gain-of-function (GOF)

p53 mutants regulate cellular and nucleotide metabolism

[148–150]. Using a three-dimensional (3D) culture model,

Freed-Pastor et al. discovered that breast cancer cell lines

expressing either p53R273H or p53R280K disrupted acinar

morphology through upregulation of the mevalonate path-

way, which is responsible for cholesterol synthesis [148].

Treatment with simvastatin, a clinically approved statin that

inhibits cholesterol synthesis, induced cell death in p53R273H

cells and reduced the invasive morphology of the p53R280K

cells. Geranylgeranyl transferase was identified to be the

critical enzyme in this mevalonate pathway, as its inhibitor

(GGTI-2133) significantly reduced the growth and 3D

invasive morphology of p53R280K cells. Mechanistic studies

revealed that SREBPs (sterol regulatory element-binding

protein) recruited mutant p53 to gene promoters that encode

mevalonate pathway enzymes, which increased protein

geranylgeranylation and altered acinar morphogenesis and

promoted tumorigenesis [148]. These findings provide

strong evidence for targeting themevalonate pathway for the

treatment of p53-mutant breast cancers.

A novel gain-of-function of mutant p53 in promoting

cancer cell metabolism was reported in head and neck

squamous cell carcinoma [23, 151]. Under energy stress

conditions, mutant p53, but not wildtype p53, inhibits the

activation of adenosine monophosphate-activated protein

kinase (AMPK) by binding with its a subunit. Inhibition of

AMPK by mutant p53 impaired metabolic checkpoint and

increased aerobic tumor growth and progression [23].

Given that wildtype p53 could activate AMPK activity

through transcriptional activation of the gene encoding b
subunit of AMPK [152], these results strongly support a

transcription-independent mechanism by which mutant p53

promotes tumor progression by activating cancer cell

metabolism. Regulation of nucleotide metabolism by

mutant p53 was recently found to be functionally important

for GOF activities [150]. CHIP-seq analysis of mutant p53

knockdown breast cancer cells demonstrated that loss of

mutant p53 reduced many nucleotide metabolism genes

(NMGs) and substantially depleted nucleotide pools, which

attenuated GTP-dependent protein activity and cell inva-

sion [150]. The reduction of invasion by mutant p53

knockdown was rescued by addition of exogenous GTP,

suggesting that mutant p53 promotes invasion by increas-

ing GTP. Mutant p53 appears to depend on deoxycytidine

kinase, a nucleoside salvage pathway enzyme, to maintain

a proper balance of the dNTP pools required for cell pro-

liferation [150]. These data reveal the mechanism

underlying the lethal genetic interaction between mutant

p53 and deoxycytidine kinase.

Targeting epigenetic changes induced by gain-of-

function p53 mutants

A novel GOF mutant p53 activity was discovered by Zhu

and colleagues, who demonstrated that chromatin regulation

by mutant p53 can drive aggressive cancer growth. This

group showed that mutant p53 regulates gene expression

through induction of histone modifying proteins [153].

Using genome-wide measurements of p53 chromatin occu-

pancy in a panel of breast cancer cell lines, Zhu et al.

demonstrated that mutant p53, but not wildtype p53, is

recruited to chromatin via interaction with transcription

factor ETS2. This interaction led to binding and upregula-

tion of genes encoding epigenetic enzymes, including the

methyltransferases KMT2A (MLL1) and KMT2D (MLL2),

and acetyltransferase KAT6A (MOZ), resulting in genome-

wide increases of histone methylation and acetylation [153].

Chromatin regulatory genes, especially MLL1, appear to be

responsible for cell proliferation driven by mutant p53, as

genetic or pharmacological inhibition of MLL1 significantly

attenuated cancer cell proliferation. In support of these

observations, analysis of The Cancer Genome Atlas shows

specific upregulation of epigenetic regulatory genes includ-

ing MLL1, MLL2, and MOZ in GOF p53-mutant patient-

derived tumors, but not in p53-wildtype or p53 null tumors

[154]. GOF p53 mutants were also recently shown to act

with the SWI/SNF chromatin-remodeling complex to

upregulate VEGFR2, which contributed to tumorigenesis

[155]. Taken together, the links between p53 mutation,

chromatin regulation, and gene expression, could explain

why so many genes are affected by the presence of mutant

p53. In addition, these findings also highlight new thera-

peutic opportunities for designing combinatorial chromatin-

based therapies to treat cancers harboring p53 mutations.

Targeting drug resistance induced by gain-of-

function p53 mutants

An accumulating body of evidence suggests that GOF p53

mutants also mediate drug resistance through multiple
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mechanisms, including inhibiting apoptotic proteins and

gene regulations [10, 156]. Early studies have shown that p53

mutations correlated with resistance to chemotherapy drugs

such as cisplatin, doxorubicin and paclitaxel [157, 158]. The

first line evidence comes from studies demonstrating that

knockdown of mutant p53 in human squamous cell carci-

noma A431 cells harboring p53R273H increases procaspase-3

and sensitizes cells to doxorubicin-induced apoptosis [159].

Conversely, transfection of p53R273H into p53-null human

osteosarcoma Saos-2 cells down-regulated procaspase-3

level and induced resistance to doxorubicin-induced apop-

tosis [159]. Further studies found that expressing p53R248Q in

p53-null liver cancer cells conferred cross-resistances to

doxorubicin and paclitaxel through upregulation of P-gly-

coprotein, a known multidrug resistance protein that is

responsible for decreased drug accumulation in multidrug-

resistant cells [158]. Therefore, combination of P-glyco-

protein inhibitors with doxorubicin may overcome drug

resistance in p53-mutant cancers. Subsequently studies

investigating mutant p53 binding sites in Li-Fraumeni cell

line MDAH087 harboring p53R248W revealed that mutant

p53 regulates gene expression through binding to the pro-

moters of ETS-binding motif and that ETS2 mediates the

interaction with this motif [160]. Do et al. identified TDP2

(tyrosyl-DNA phosphodiesterase 2), a DNA phosphodi-

esterase involved in the repair of DNA damage caused by

chemotherapy drug etoposide, as a transcriptional target of

mutant p53. Consequently, inhibition of TDP2 sensitizes

cells to the treatment of etoposide, a chemotherapy drug for

lung cancer. Since mutant p53 and TDP2 are frequently

overexpressed in lung cancer, TDP2 may serve as a ‘‘drug-

gable’’ target to increase chemotherapy sensitivity for p53-

mutant lung cancer. In pancreatic cancers, Fiorini and col-

leagues recently demonstrated that the expression of mutant

p53 confers chemoresistance to gemcitabine [161]. Gemc-

itabine treatment induces phosphorylation and nuclear

stabilization of mutant p53 which further upregulate Cdk1

and CCNB1, leading to increased cell proliferation.

Restoration of wildtype p53 function by p53-reactivating

agent (RITA and CP-31398) induced apoptosis, resulting in

synergistic anti-tumor effects with gemcitabine [161].

Concluding remarks and future directions

The fact that most cancers have mutation of p53 makes this

molecule an attractive therapeutic target. Several approa-

ches, including inactivation of mutant p53, degradation of

mutant p53, and restoration of the wildtype function of

p53, have been studied. However, these strategies often

work only for specific p53 mutations and not for others. An

alternative strategy, targeting signaling pathways essential

in cells p53 mutations, has been effective in many types of

cancers. RNA interference and chemical genetic screens

have enabled investigators to identify molecules critical for

survival or growth of cells with p53 mutations that can be

targeted for the selective treatment of p53-mutant cancers.

Ongoing studies continue to identify such critical mutant

p53-specific survival and growth regulatory pathways.

Thus, novel drugs that target mutant p53 or the critical

pathways activated by p53 mutation are highly promising

for effective treatment of many cancers.
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