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ABSTRACT
Myeloid-derived suppressor cells (MDSC) promote tumor growth by blocking anti-tumor T cell responses.
Recent reports show that MDSC increase fatty acid uptake and fatty acid oxidation (FAO) to support their
immunosuppressive functions. Inhibition of FAO promoted a therapeutic T cell-mediated anti-tumor
effect. Here, we sought to determine the mechanisms by which tumor-infiltrating MDSC increase the
uptake of exogenous lipids and undergo metabolic and functional reprogramming to become highly
immunosuppressive cells. The results showed that tumor-derived cytokines (G-CSF and GM-CSF) and the
subsequent signaling through STAT3 and STAT5 induce the expression of lipid transport receptors with
the resulting increase in the uptake of lipids present at high concentrations in the tumor
microenvironment. The intracellular accumulation of lipids increases the oxidative metabolism and
activates the immunosuppressive mechanisms. Inhibition of STAT3 or STAT5 signaling or genetic
depletion of the fatty acid translocase CD36 inhibits the activation of oxidative metabolism and the
induction of immunosuppressive function in tumor-infiltrating MDSC and results in a CD8C T cell-
dependent delay in tumor growth. Of note, human tumor-infiltrating and peripheral blood MDSC also
upregulate the expression of lipid transport proteins, and lipids promote the generation of highly
suppressive human MDSC in vitro. Our data therefore provide a mechanism by which tumor-derived
factors and the high lipid content in the tumor microenvironment can cause the profound metabolic and
functional changes found in MDSC and suggest novel approaches to prevent or reverse these processes.
These results could further enhance the efficacy of cancer immunotherapy.
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Introduction

Myeloid-derived suppressor cells (MDSC) represent an important
barrier to the full therapeutic success of cancer immunotherapy.
MDSC represent a heterogeneous population of myeloid progeni-
tor cells whose normal maturation into macrophages, dendritic
cells (DC), and neutrophils is impaired in tumors and other
chronic inflammatory conditions.1-4 MDSC suppress anti-tumor
T cell responses by depleting arginine, secreting reactive oxygen
and nitrogen species, and expressing immune checkpoint
ligands.5,6 Additionally,MDSCdirectly support tumor cells by pro-
moting cancer stemness, angiogenesis, and metastasis.7,8 Despite
their importance in tumor progression, strategies to block MDSC
have been limited to the use ofmyelosuppressive drugs (cyclophos-
phamide and gemcitabine) and multi-tyrosine kinase inhibitors
(sunitinib) that are only partially effective and, in the case of che-
motherapy, indirectly promote the expansion ofMDSC.9,10

Recent evidence has shown that metabolic reprogramming
from glycolysis to lipid metabolism is an important regulator
of the differentiation and function of distinct subsets of

myeloid cells. For instance, IL-4-induced M2 macrophages
rely on fatty acid oxidation (FAO) to proliferate and support
their function. This process is mediated through signal trans-
ducer and activator of transcription 6 (STAT6) and PPARg-
co-activator 1b (PGC1b).11,12 More recent work has shown
that the uptake of triacylglycerols followed by lipolysis is crit-
ical for M2 activation.13 Inhibition of this process inhibits
M2 function and blocks a therapeutic response to helminth
infections.13 Likewise, tumor-infiltrating DC accumulate high
levels of intracellular triglycerides, a process that is in part
mediated through endoplasmic reticulum (ER) stress
response factor XBP1.14 The increased lipid accumulation in
DC impairs their ability to process and present antigens and
therefore to stimulate T cells.15,16 Decreasing the lipid con-
tent by inhibiting fatty acid synthesis restores DC functions
and improves the efficacy of cancer vaccines.15 More recently,
polymorphonuclear MDSC (PMN-MDSC) have been shown
to overexpress lectin-type oxidized LDL receptor-1 (LOX1),
which could identify a sub-population of ER-stressed,
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immunosuppressive PMN-MDSC in cancer patients.17 Over-
all, these accumulated reports have increased the realization
that myeloid immune cells can choose the metabolic pro-
grams that allow them to meet their survival and functional
demands under the conditions present in the surrounding
microenvironment. As such, a better understanding of these
metabolic pathways could provide novel therapeutic targets
in cancer and other chronic inflammatory diseases.18,19

In light of these findings, we recently reported that tumor-
infiltrating MDSC use FAO as their primary source of ATP.20,21

Moreover, pharmacologic inhibition of FAO blocks the immu-
nosuppressive function of MDSC, delays tumor growth in a T
cell-dependent manner, and enhances the efficacy of low-dose
chemotherapy and adoptive T cell therapy.21 In this study, we
investigated the mechanisms by which the tumor microenviron-
ment would induce the uptake of exogenous lipids and enhance
the metabolic and functional reprogramming of tumor-associ-
ated MDSC. The results showed that tumor-derived cytokines
(G-CSF and GM-CSF) induce the upregulation of lipid transport
receptors in tumor-infiltrating myeloid cells, which results in an
increased uptake of lipids found at high concentrations in the
tumor microenvironment. This coincides with an enhanced oxi-
dative metabolism and activation of immunosuppressive mecha-
nisms. Interestingly, human tumor-infiltrating and peripheral
blood MDSC also express noticeable levels of lipid transport pro-
teins, and lipids favor the development of more immunosup-
pressive human MDSC in vitro. The data presented here suggest
that tumor-derived factors facilitate the lipid uptake, accumula-
tion, and metabolism by myeloid cells, which lead to the induc-
tion of immunosuppressive functions characteristic of MDSC.
This may provide novel targets for therapeutic intervention that
could enhance the efficacy of chemotherapy or immunotherapy
of cancer.

Results

Tumor-infiltrating MDSC have increased expression of lipid
transport receptors and uptake of different forms of lipids

We recently reported that upon infiltrating the tumor microenvi-
ronment, myeloid cells increase the uptake of fatty acids and acti-
vate FAO that eventually leads to the upregulation of their
immunosuppressive function.21 Therefore, we aimed to determine
the possible mechanisms regulating this process. To this end, we
initially examined the expression of receptors involved in lipid
uptake in CD11bCGr1C cells harvested from subcutaneous Lewis
lung carcinoma 3LL (tumor-infiltratingMDSC) and the spleens of
tumor-bearing mice (splenic MDSC), compared with normal
myeloid cells from the spleens of control mice (immature myeloid
cells; iMC). Tumor-infiltrating MDSC showed an increased
mRNA encoding for lipid transport receptors that participate in
the uptake fatty acids and/or triacylglycerol-carrying lipoprotein,
including Slc27a1 (Fatp1), Slc27a3 (Fatp3), Slc27a6 (Fatp6),
Fabp5, Acsl3, Acsl4, Msr1, CD36, CD68, Lrp1, Vldlr, and Ldlr
(Fig. 1A). The highest expression levels were seen in Slc27a1
(Fatp1), Slc27a6 (Fatp6), Msr1, CD36, and Vldlr. We then tested
the ability of the samemyeloid cell populations to acquire different
lipid species. Tumor-infiltrating MDSC took up higher amounts
of fluorescently labeled free fatty acids (Bodiby FL C16; Fig. 1B)

and triacylglycerol-rich very low density lipoprotein VLDL (Dil
VLDL; Fig. 1C) and low density lipoprotein LDL (Dil LDL;
Fig. 1D), compared with splenic MDSC or iMC. This resulted in
an increase in the total intracellular fat content as evidenced by
staining with Bodipy 493/503 (Fig. 1E). These results were con-
firmed using MDSC isolated from ascites of mice bearing perito-
neal EL-4 tumors, which also showed an increased uptake of
Bodiby FL C16 (Fig. 1F) and neutral lipid content (Bodipy 493/
503; Fig. 1G), when compared with iMC isolated from the perito-
neum of normal mice. Our data further showed that tumor-infil-
trating PMN-MDSC (CD11bCLy6ClowLy6GC) and monocytic
MDSC (M-MDSC; CD11bCLy6ChighLy6G¡) could similarly take
up higher amounts of Bodiby FL C16 (Fig. S1A) and accumulate
more lipids (Bodipy 493/503; Fig. S1B) than cells sharing the same
phenotype within the spleens of tumor-bearing mice or normal
mice. These results suggest that, upon entering the tumor micro-
environment, MDSC encounter signals that induce the expression
of lipid transport receptors, which could then internalize lipids
from themicroenvironment.

Tumor-derived factors trigger lipid uptake, oxidative
metabolism, and tolerogenic function in MDSC

We next investigated which tumor-derived factors could upregu-
late the expression of lipid transport receptors in tumor-infiltrat-
ing MDSC. We first measured the concentration of several
inflammatory cytokines in 3LL tumor explant supernatant (TES).
The results consistently showed elevated inflammatory cytokines,
with G-CSF, GM-CSF, and IL-6 displaying the highest levels
(Fig. 2A). Other cytokines such as IL-1b and IL10 were also found
in TES but at significantly lower levels. A similar profile of inflam-
matory cytokines was observed in supernatants of EL-4 ascites
relative to peritoneal fluid of normal mice (Fig. S2A). However,
3LL and EL-4 tumor cell lines produced minimal concentrations
(0–10 pg/mL) of these cytokines in vitro. To identify the source of
these factors in the tumor microenvironment, we examined the
expression of G-CSF, GM-CSF, and IL-6 in CD49fC tumor cells
and CD11bCmyeloid cells sorted from 3LL subcutaneous tumors.
We found that tumor cells expressed more G-CSF and GM-CSF,
while myeloid cells expressed higher levers of IL-6 (Fig. 2B).
Additionally, as expected the increase in these factors appeared to
be a characteristic of chronic inflammatory conditions, particu-
larly cancer, since peritoneal supernatants from thioglycolate-eli-
cited mice showed modest levels of G-CSF, GM-CSF, and IL-6,
compared with those from EL-4 ascites (Fig. S2B).

We then tested the effect of TES, G-CSF, GM-CSF, or a
combination of these cytokines (G-CSF/GM-CSF/IL-6) on the
induction of lipid transport receptors, lipid uptake, and meta-
bolic reprogramming of bone marrow (BM) myeloid precur-
sors. We used 40 ng/mL of each cytokine, a concentration
widely used to generate MDSC in vitro.22,23 This cytokine con-
centration, however, was similar to or slightly higher than that
found in TES or ascites preparations, which involve dilution in
media (in case of TES) or PBS (in case of ascites supernatants).
BM precursors cultured in TES, G-CSF, GM-CSF, or a combi-
nation of G-CSF, GM-CSF, and IL-6 (IL-6 alone could not
maintain the viability of myeloid precursors) upregulated the
expression of a similar group of genes coding for lipid transport
receptors as found in tumor-infiltrating MDSC, namely Slc27a1
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(Fatp1), Slc27a3 (Fatp3), Slc27a6 (Fatp6), Fabp1, Fabp3, Fabp4,
Fabp5, Acsl3, Acsl4, Msr1, Marco, CD36, Scarb1, Lrp1, Lrp8,
Vldlr, and Ldlr (Fig. 2C). Similar to tumor-infiltrating MDSC,
we also found a significant increase in the uptake of Bodiby FL
C16 (Fig. 2D) and accumulation of neutral lipids (Bodipy 493/
503; Fig. 2E). Moreover, BM myeloid precursors cultured under
these conditions developed the characteristic increase in oxida-
tive phosphorylation,21 as demonstrated by an increased oxy-
gen consumption rate (OCR; Fig. 3A), the induction of mRNA
encoding for immunosuppressive mechanisms (arginase I and
inducible nitric oxide synthase iNOS) (Fig. 3B), and the ability
to suppress the proliferation of activated T cells (Fig. 3C). In
addition, these immunometabolic results seemed to be most
pronounced in MDSC generated in the presence of TES or a
combination of G-CSF, GM-CSF, and IL-6, indicative of the
role of multiple factors in the tumor microenvironment in the
induction of MDSC.

We further tested the role of G-CSF, GM-CSF, and IL-6 in
the induction of metabolic reprograming of MDSC by blocking
STAT3 or STAT5, the kinases associated with the receptors for

these cytokines. Incubation of BM myeloid precursors with G-
CSF, GM-CSF, IL-6, TES, or a combination of G-CSF/GM-
CSF/IL-6 induced the phosphorylation of STAT3, while the
phosphorylation of STAT5 was induced only by GM-CSF
alone or combinations where GM-CSF was present (TES or G-
CSF/GM-CSF/IL-6) (Fig. 3D). We then stimulated BM precur-
sors with a combination of G-CSF, GM-CSF, and IL-6 in the
absence or presence of the JAK2/STAT3 inhibitor FLLL32 or
the STAT5 inhibitor pimozide for 4 d. The results showed that
FLLL32 or pimozide did not significantly induce apoptosis of
BM-derived MDSC (Fig. S3). Both inhibitors decreased the
total intracellular neutral lipid (Bodipy 493/503) by approxi-
mately 45% (Fig. 3E) and significantly blocked the oxidative
metabolism as measured by OCR (Fig. 3F), as compared with
vehicle (DMSO). More importantly, both inhibitors also pre-
vented the induction of arginase I and iNOS (Fig. 3G) and
blocked the development of the immunosuppressive functions
of MDSC (Fig. 3H). Thus, both STAT3 and STAT5 activated
by tumor-derived factors are important mediators of the meta-
bolic and functional polarization of MDSC.
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Figure 1. Tumor-infiltrating MDSC upregulate the expression of lipid transport receptors and take up substantial amounts of exogenous lipids. C57BL/6J mice were sub-
cutaneously injected with 1 £ 106 3LL cells, and tumors and spleens were harvested 3 weeks later. Spleens were also harvested from control mice. (A) RT-PCR of genes
that facilitate lipid uptake in sorted iMC, splenic MDSC, and tumor-infiltrating MDSC (T-MDSC), and relative expression heat map is also shown. A gene is differentially
expressed when fold > 2 and P < 0.05. (B-D) Lipid uptake was determined in iMC, splenic MDSC, and tumor-infiltrating MDSC by staining single cell suspensions with
CD11b and Gr1 followed by the incubation with Bodipy FL C16 (B), DiI VLDL (C), or DiI LDL (D). Histograms were gated on CD11bCGr1C cells, and average MFI is shown
for each staining. (E) Similarly, intracellular lipid content was measured by staining with Bodipy 493/503, and average MFI is also depicted. (F-G) C57BL/6J mice were intra-
peritoneally injected with 5 £ 105 EL-4 cells, and malignant ascites or normal peritoneal lavage was harvested after 3 weeks. Bodipy FL C16 (F) and Bodipy 493/503 (G)
staining were determined in T-MDSC from ascites or iMC from normal peritoneal lavage. Average MFI is shown. DataD mean§ SEM; representative of at least 3 indepen-
dent experiments; �, P < 0.05; ��, P < 0.01; ���, P < 0.001; ����, P < 0.0001.
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Lipids in the tumor microenvironment promote the
induction of immunosuppressive MDSC

Because of the rapid uptake of lipids by MDSC, we tested
whether there was an increase in lipids in the tumor microenvi-
ronment, which types of lipids were elevated, and whether these
lipids would promote the conversion of myeloid cells into met-
abolically active immunosuppressive MDSC. Lipidomic analy-
sis was done in ascites of EL-4 bearing mice collected 21 d after
tumor implantation and normal peritoneal fluid from control
mice. The results showed significantly higher concentrations of
monounsaturated and polyunsaturated fatty acids (Fig. 4A and
4B) and triacylglycerols (Fig. 4D). The data also showed higher
levels of saturated fatty acids, but this increase did not achieve
statistical significance (Fig. 4C). A detailed lipidomic analysis
of the different fatty acids is shown in Fig. S4. We then tested
the role of the different lipids in the induction of MDSC. For
this, we generated BM-derived MDSC (stimulated with G-CSF,
GM-CSF, and IL-6) in complete (10% FBS) tissue culture media
(TCM), lipid-deprived tissue culture media (LDM), or LDM
media supplemented with unsaturated fatty acids (oleic acid or
linoleic acid),24,25 VLDL, or LDL13 at concentrations similar to
those found in TCM (not shown). The results showed that
MDSC derived in LDM accumulated significantly less neutral
lipid than those cultured in TCM. However, all lipid species

increased the intracellular accumulation of lipids, and this
effect was particularly significant with VLDL (Fig. 5A). The dif-
ferences in lipid content were also paralleled by corresponding
increases in oxidative metabolism (OCR; Fig. 5B). Similarly,
the supplementation of LDM with lipids increased the induc-
tion of mRNA for the immunosuppressive molecules arginase I
and iNOS, while lipid depletion (LDM) prevented their upregl-
uation (Fig. 5C). This coincided with the ability of BM-derived
MDSC to suppress T cell proliferation, which was lowest in
MDSC cultured in LDM, as compared with those cultured in
linoleic and oleic acid, and was maximal at the higher concen-
trations of VLDL and LDL (Fig. 5D and 5E). Interestingly, cul-
ture of BM-derived MDSC in LDM containing the saturated
fatty acid palmitate24 did not induce oxidative metabolic activ-
ity (OCR; Fig. 5F) or immunosuppressive function (Fig. 5G),
without affecting the viability of cells (not shown). Further-
more, to test which pathway was most essential in the lipid-
mediated immunosuppression in MDSC, we added nor-
NOHA (arginase I inhibitor), L-NMMA (NOS inhibitor), or
MnTBAP (peroxynitrite [PNT] scavenger) to the T cell-MDSC
coculture. Given that arginine depletion via arginase I plays a
critical role in MDSC-driven immune suppression indepen-
dently of cell to cell contact,26,27 nor-NOHA had no effect.
However, L-NMMA or MnTBAP abrogated the suppressive
effect of TCM-cultured MDSC or LDM-cultured VLDL-

Figure 2. Tumor-derived factors promote the expression of lipid transport receptors and lipid uptake in MDSC. (A) The indicated cytokines were measured in normal
spleen explant supernatant, tumor-bearer spleen explant supernatant, or 3LL TES. (B) CD49fC tumor cells and CD11bC myeloid cells were sorted by flow cytometry from
3LL subcutaneous tumors. RT-PCR of the indicated genes was conducted. (C-E) BM precursors were cultured for 4 d with 20% TES, G-CSF, GM-CSF, or a combination of G-
CSF, GM-CSF, and IL-6. Each cytokine was used at 40 ng/mL. Unstimulated freshly isolated BM cells were used as control. (C) RT-PCR of lipid uptake genes in BM-derived
cells. Genes are differentially expressed when fold > 2 and P < 0.05. (D-E) Flow cytometric staining with Bodipy FL C16 (D) and Bodipy 493/503 (E) in CD11bCGr1C BM-
derived cells. MFI averages are shown. Data D mean § SEM; representative of at least 3 independent experiments; �, P < 0.05; ��, P < 0.01; ���,
P < 0.001; ����, P < 0.0001.
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supplemented MDSC (Fig. 5H), suggestive of the role of nitric
oxide and PNT production in lipid-induced MDSC suppres-
sion. Collectively, our data indicate that MDSC are dependent
on exogenous lipids to fuel oxidative metabolism and elicit
immune suppression.

Effect of CD36 deletion on the metabolism and function
of tumor-infiltrating MDSC

We next tested whether inhibiting CD36, an important fatty
acid translocase also known to be critical for M2 activa-
tion,13 would have an impact on the induction of tumor-
associated MDSC. We used CD36 total KO mice due to the
unavailability of CD36 conditional KO mice at present. We

first compared tumor growth in wild type (WT) and CD36
knockout (KO) mice subcutaneously injected with murine
tumors, 3LL lung carcinoma or MCA-38 colon cancer. We
observed a significant delay in the growth of both tumors
in CD36 KO mice (Fig. 6A and 6B). The anti-tumor effect
was T cell dependent since the depletion of CD8C, but not
CD4C, T cells eliminated the anti-tumor effect in 3LL-bear-
ing CD36 KO mice (Fig. 6C). We further confirmed that
the decreased tumor growth in the CD36 KO mice was
related to the decreased immunosuppressive MDSC and not
caused by other stromal defects (such as angiogenesis)
affecting tumor growth by reconstituting lethally irradiated
WT CD45.1C mice with BM from CD36 KO mice
(CD45.2C). Seven weeks after transplant, more than 90%
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chimerism was observed in all conditions (Fig. S5). Then,
chimeric mice and non-irradiated CD45.2C WT or CD36
KO mice were subcutaneously injected with 3LL cells, and
tumor growth was recorded. A similar decrease in tumor
growth kinetics was observed in mice reconstituted with
CD36 KO BM and CD36 KO mice, compared with control
mice (Fig. 6D). Interestingly, we found a moderate decrease
in the number of total MDSC infiltrating the tumor in
CD36 KO mice, with a preferential decrease in the percent-
age of PMN-MDSC (Fig. 6C). MDSC from CD36 KO mice
had a decreased uptake of Bodiby FL C16 (Fig. 6D), dimin-
ished neutral lipid content (Fig. 6E), and lower oxidative
metabolism (OCR; Fig. 6F), compared with MDSC from
WT mice. Furthermore, CD36 KO MDSC showed a
decreased expression of arginase I and iNOS (Fig. 6G) and
were less immunosuppressive of T cell proliferation
(Fig. 6H) than WT MDSC. Together, these results point out
the role of CD36 in MDSC function and tumor growth.

Human tumor-infiltrating MDSC express lipid transport
receptors, and lipids increase the suppressive function of
human peripheral blood stem cell (PBSC)-derived MDSC

Next, we tested whether MDSC infiltrating human tumors
demonstrate an increased expression of lipid transport
receptors. Thus, we examined the expression of CD36 in

biopsies from patients with colon adenocarcinoma and renal
cell carcinoma. Immunohistochemistry showed a robust
expression of CD36 in inflammatory cells, while tumor cells
remained mostly negative. Double labeling with antibodies
against CD36 and CD66b revealed the high expression of
CD36 in MDSC associated with human cancer (Fig. 7A).
Likewise, double labeling with antibodies to Msr1 and
CD66b showed that human MDSC also expressed high lev-
els of Msr1 (Fig. 7B). To further substantiate these meas-
ures, we determined the expression of several lipid
transport receptors (CD36, Msr1, CD68, Ldlr, and LOX1)
in peripheral blood MDSC from 10 patients with cancer
(renal cell carcinoma, breast cancer, and colon cancer).
Consistent with previous reports,17-21,28 PMN-MDSC
(CD33C HLA-DR¡/low CD14¡ CD66bC) significantly
expanded in cancer patients, while M-MDSC (CD33C HLA-
DRlow CD14C CD66b¡) comprised »1–2% of circulating
MDSC (Fig. 7C). PMN isolated from 10 normal donors and
from the same patients were used as controls. Of interest,
PMN-MDSC significantly increased the expression of CD36,
Msr1, Ldlr, and LOX1, while CD68 expression was lower
than PMN controls (Fig. 7D). Therefore, in addition to
LOX1,17 our study suggest that at least CD36 may serve as
another marker for human PMN-MDSC. Next, we tested
whether exogenous lipids could enhance the immunosup-
pressive function of human MDSC. For this, human PBSC
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harvested from G-CSF-treated donors were cultured in
TCM with GM-CSF and IL-6 for 7 d and examined for the
expression of CD36. Baseline peripheral blood progenitors
expressed high levels of CD36, possibly due to the prior G-
CSF treatment; however, PBSC-derived MDSC expressed
markedly higher amounts of CD36 relative to baseline con-
trol (Fig. 7E). We then cultured PBSC-derived MDSC in
the absence or presence of VLDL. Interestingly, the addition
of exogenous VLDL significantly increased the inhibitory
capacity of PBSC-derived MDSC (Fig. 7F), suggesting the
importance of lipid uptake in function of human MDSC.

Discussion

Recent reports have shown the importance of lipids in the func-
tion of immunosuppressive myeloid cells (M2 macrophages,
dendritic cells, and PMN and M-MDSC) in cancer and chronic
inflammatory conditions.12-15,17-21 We recently reported that
upon entering the tumor microenvironment, myeloid cells
undergo metabolic reprograming from glycolysis to FAO, a
process that is paralleled by the activation of the immunosup-
pressive mechanisms arginase I and iNOS and the development
of the ability to suppress T cell responses.20,21 This suggested

Figure 5. Exogenous lipids enhance the generation of immunosuppressive MDSC. BM precursors were stimulated with a combination of G-CSF, GM-CSF, and IL-6 for 4 d
using TCM, LDM, or LDM supplemented with oleic acid (25 mM), linoleic acid (25 mM), palmitate (25 mM), VLDL (50 mg/mL), or LDL (50 mg/mL). (A) Flow cytometric stain-
ing with Bodipy 493/503 in CD11bCGr1C BM-derived cells. (B) OCR (mean § SD) was determined. (C) RT-PCR of MDSC immunosuppressive genes. A gene is differentially
expressed when fold > 2 and P < 0.05. (D-E) The immunosuppressive ability of BM-derived cells to suppress T cell proliferation was measured. For the experiment in (E)
VLDL and LDL were used at 5, 25, or 50 mg/mL. (F-G) OCR (mean § SD; F) and suppressive function (G) of BM-derived cells cultured in palmitate-supplemented LDM. (H)
Cytokine-stimulated BM cells were cultured in TCM, LDM, or LDM supplemented with VLDL (50 mg/mL). After 4 d, the suppressive function of BM-derived cells was deter-
mined with the addition of nor-NOHA (200 mM), L-NMMA (500 mM), or MnTBAP (100 mM) to the T cell-MDSC coculture. Data D mean § SEM; representative of at least 3
independent experiments; �, P < 0.05; ��, P < 0.01; ���, P < 0.001; ����, P < 0.0001.
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that factors and metabolites in the tumor microenvironment
could mediate the immunometabolic induction of MDSC.
Herein, we aimed to determine which factors and metabolites
might initiate this process. The results show that tumor-derived
inflammatory cytokines such as G-CSF and GM-CSF induce
the expression of lipid transport receptors that facilitate the
uptake of lipids abundant in the tumor microenvironment,
including free fatty acids and the triacylglycerol-carrying
lipoproteins VLDL and LDL. The uptake, accumulation, and
oxidation21 of these lipids sustain the activation of immunosup-
pressive MDSC. Importantly, human cancer-associated MDSC
also express lipid transporters, and therefore human PBSC cul-
tured in lipid-rich media develop into highly inhibitory MDSC.

Similar to our observation, other immune cells can take up
and oxidize lipids to sustain their functions.13-25,29-31 While
tumor-infiltrating MDSC showed an upregulation of multiple
receptors that mediate lipid uptake, recent data indicated that
IL-4-induced M2 macrophages mainly increased the expression
of CD36 that enhanced the uptake of VLDL and LDL, activated

FAO, and induced the characteristic M2 functions.13 A recent
study reported that tumor-associated DC preferentially upregu-
lated Msr1 expression, which was primarily responsible for the
uptake of exogenous lipids and their accumulation.15 Further-
more, PMN-MDSC from cancer patients increased the expres-
sion of LOX1, and LOX1C PMN-MDSC exhibited a high
ER-stress and increased immunosuppressive function.17 Our
experiments showed that genetic deletion of CD36 could signif-
icantly diminish fatty acid uptake and neutral lipid content,
decrease oxidative metabolism, and delay tumor growth
through a CD8C T cell-mediated response. Consistent with the
results that stromal CD36 could play an important role in the
induction of tumor-infiltrating MDSC, scavenger receptors
have previously been found to regulate the pro-tumorigenic
function of other tumor-associated immune15 and non-
immune32 cells.

Our findings are also significant because they show an abun-
dance of lipids in the tumor microenvironment that can be
acquired by MDSC. This observation supports previous reports
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that show increased levels of triglycerides, LDL-cholesterol, and
VLDL-cholesterol in the circulation of cancer patients33-35 and
patients with other chronic inflammatory diseases.29-36,37 How-
ever, the source of lipids in the tumor milieu remains elusive.
Several studies indicated that lipid species released from the
adipose tissue provide energy that sustains tumor cell growth
and migration.38-40 Therefore, it will be important to explore
the metabolic cross-talk between adipocytes and MDSC in the
tumor microenvironment. In addition, the mechanisms by
which MDSC mobilize the acquired lipids to support the
increasing FAO remain to be determined. Adipocytes liberate
fatty acids for FAO from lipids stored in lipid droplets by a
process of lipolysis, which is regulated by several enzymes such
adipose triglyceride lipase, hormone-sensitive lipase, and lyso-
somal acid lipase (LAL).41 Recent studies showed that
LAL-mediated lipolysis was responsible for the release of fatty
acids required to support FAO in IL-4-induced M2 macro-
phages13 and IL-15-driven memory T cells.42 Furthermore,
lipids can act as ligands for peroxisome proliferator activated
receptors (PPARs)43 that have been found to play key roles in
the regulation of FAO.44 In line with this, PPARg and PPARd,
which are induced by STAT6, are known to regulate the

alternative activation in macrophages.44 Therefore, further
investigation will help identify the exact fate of intracellular lip-
ids in tumor-infiltrating MDSC.

We also show that the metabolic and functional reprogram-
ming of MDSC is likely due to the presence of tumor-derived
factors, consistent with data indicating that these factors induce
lipid uptake and accumulation in tumor-associated DC.15,16

Although our in vitro results implicate tumor-derived G-CSF
and GM-CSF as drivers of the oxidative metabolism and regu-
latory activity of MDSC, it is reasonable to think that other fac-
tors produced in vivo may also play important roles in the
induction of MDSC. This study however strengthens the con-
cept that the therapeutic use of G-CSF and GM-CSF may also
increase the number and function of MDSC. In fact, several
reports have demonstrated that tumor-derived cytokines are
major mediators of MDSC differentiation and induction.45,46

GM-CSF, depending on the context and magnitude of stimula-
tion, can either enhance or suppress the immune response. On
the one hand, irradiated tumor cells, modified to secrete GM-
CSF, can result in the recruitment and differentiation of den-
dritic cells, thus inducing T cell anti-tumor immunity.47 On the
other hand, though, GM-CSF produced in a more sustained
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way by transplantable and spontaneous tumors has been linked
to the generation of immunosuppressive MDSC.48-50

Previous studies indicated that G-CSF and GM-CSF prefer-
entially signal through STAT3 and STAT5, respectively.45,46

Our results using pharmacologic inhibition of STAT3 or
STAT5 signaling suggest a role for these regulators in switching
myeloid precursors into FAO-dependent immunosuppressive
MDSC. We base this on the observation that STAT3 or STAT5
inhibition blocks the lipid accumulation, mitochondrial metab-
olism, and regulatory mechanisms in MDSC. Congruent with
these data, other studies have shown that STAT3 regulates the
expression of several genes that are linked to MDSC expansion
or function such as IRF8, S100A9, C/EBPb, IDO1, and PD-
L1,23,51-53 thus implying the possibility that these targets might
be separately regulated via the same STAT-dependent pathway.
It remains to be investigated whether STAT3/5 signaling simul-
taneously promotes the oxidative metabolism and immunosup-
pressive mechanisms in MDSC or whether these events are
partitioned and take place in a particular order.

Taken together, our findings suggest a critical role of lipid
uptake and accumulation in the metabolic and functional
reprogramming in MDSC. The regulation of these processes by
tumor-derived factor/STAT3/5-dependent mechanisms pro-
vide an opportunity to simultaneously target the multiple
immunosuppressive pathways harnessed by tumor-associated
MDSC. Therefore, future work is needed to assess whether
blocking G-CSF, GM-CSF, or STAT3/5 signaling would
increase host anti-tumor immune responses and whether these
agents would synergize with cancer immunotherapies.

Materials and methods

Human peripheral blood cells

Specimens were obtained from 10 consented cancer patients
(renal cell carcinoma, breast cancer, and colon cancer) and 10
normal donors under approved IRB protocols through the Lou-
isiana Cancer Research Center (LCRC) tissue biorepository
core. Peripheral blood mononuclear cells (PBMC) were sepa-
rated on Ficoll-Paque Plus (GE Healthcare Life Sciences). Poly-
morphonuclear cells (PMN) were isolated from patient and
donor samples by suspension over 3% dextran, as described
previously.54

Mice and tumor models

C57BL/6J were purchased from Envigo and The Jackson Labo-
ratory. CD36 knockout (KO) mice were obtained from The
Jackson Laboratory. Lewis lung carcinoma (3LL), MCA-38
colon adenocarcinoma, and EL-4 thymoma (all from American
Type Culture Collection) were cultured in tissue culture media
(TCM) RPMI 1640 (Lonza-Biowhittaker) supplemented with
10% FBS (Hyclone), 25 mmol/L HEPES, 4 mmol/L L-gluta-
mine, and 100 U/mL penicillin, streptomycin (all from Life
Technologies). Mice were subcutaneously injected with 1 £ 106

3LL cells or 2.5 £ 105 MCA-38 cells. We optimized the number
of cells to obtain a comparable rate of subcutaneous tumor
growth in all tumor models. Tumor volume was measured
using calipers and calculated using the formula [(small

diameter)2x(large diameter)x0.5]. In vivo measurements were
made from non-necrotic tumors, and the average tumor
volume at the first measurement (d7) in WT mice was »150–
200 mm3. In some experiments, mice were intraperitoneally
injected with 5 £ 105 EL-4 cells, and malignant ascites or
normal peritoneal lavage was collected 3 weeks after tumor
inoculation. For T cell depletion, mice were intraperitoneally
injected with 500 mg/mouse anti-CD4 (GK1.5) or anti-CD8
(2.43) (both from BioXCell) 1 day before and 2 d after tumor
injection, followed by injection of 250 mg/mouse every 5 d
throughout the experiment.

Bone marrow (BM) chimeras were set up as described previ-
ously.55 Briefly, recipient mice (CD45.1) were lethally irradiated
with 950 rads followed by the infusion of 1 £ 107 BM cells and
1£ 106 splenocytes from CD36 KO donor mice (CD45.2). Chi-
meric engraftment was verified in peripheral blood 6 weeks
after transplantation by flow cytometry. One week later, mice
were subcutaneously injected with 1 £ 106 3LL cells, and tumor
growth was recorded. The LSU-Institutional animal care and
usage committee approved experiments with animals.

Cell culture and drug treatments

To generate MDSC in vitro, freshly isolated murine BM precur-
sors were cultured for 4 d with 20% 3LL tumor explant super-
natant (TES)55 or a combination of murine G-CSF, GM-CSF,
and IL-6 (all from R&D Systems and used at 40 ng/mL)23 in
TCM. In some experiments, BM cells were cultured in lipid-
deprived media (LDM) prepared with PHM-L Liposorb (EMD
Millipore) per manufacturer’s instructions. LDM cultures were
supplemented without or with 25 mM palmitate, oleic acid or
linoleic acid (all from Sigma) or 5, 25, or 50 mg/mL very low
density lipoprotein (VLDL) or low density lipoprotein (LDL)
(both from Kalen Biomedical). Fatty acids were prepared and
conjugated to bovine serum albumin as described previously.24

When indicated, the following agents were added to BM cells:
3.5 mM JAK2/STAT3 inhibitor FLLL32 (EMD Millipore),
6.5 mM STAT5 inhibitor pimozide (EMD Millipore), 200 mM
arginase I inhibitor Nv-hydroxy-nor-Arginine (nor-NOHA;
Cayman), 500 mM nitric oxide synthase (NOS) inhibitor
L-NG-Monomethylarginine (L-NMMA; EMD Millipore),
100 mM peroxynitrite (PNT) scavenger MnTBAP (EMD Milli-
pore), or vehicle (H2O or DMSO).

Cell isolation

Tumors were digested with DNAse and Liberase (Roche) at
37�C for 1 hour, and tumor-infiltrating MDSC were isolated
from tumor single-cell suspensions as described.21-55 Likewise,
splenic MDSC and iMC were isolated from spleens of tumor-
bearing mice and control mice, respectively. Purity ranged
from 90% to 99% as determined by flow cytometry. CD3C T
cells were isolated from spleens of control mice using T cell
negative selection kit (eBioscience), and purity exceeded 95%.

Immune suppression assay

CD3C T cells were labeled with 1 mmol/L carboxyfluorescein
diacetate succinimidyl ester (CFSE; Molecular Probes) and
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were cocultured with tumor or BM-derived MDSC at a ratio of
8 T cells to 1 MDSC in the presence of plate-bound anti-CD3
(145–2C11)/anti-CD28 (37.51); both antibodies were from BD
Biosciences and used at 1 mg/mL each. T cell proliferation was
measured by flow cytometry 3 d later as indicated by CFSE
dilution.

Flow cytometry

The following fluorochrome-conjugated human antibodies
were used to characterize cell subtypes: CD33 (WM53), HLA-
DR (G46–6), CD36 (NL07), Ldlr (C7), CD68 (Y1/82A), Msr1
(U23–56) (all from BD Biosciences), CD14 (61D3; eBioscence),
CD66b (80H3; Beckman Coulter), and LOX1 (15C4; BioLe-
gend). Fluorochrome-conjugated mouse antibodies specific for
CD11b (M1/70), Gr1 (RB6–8C5), Ly6C (AL-21), Ly6G (1A8),
and CD49f (GOH3) were purchased from BD Biosciences.
Live/Dead cell staining kit was from Molecular Probes (Life
Technologies). To quantify the neutral lipid content, cells were
first stained with surface markers and then with 250 ng/mL
Bodipy 493/503 (Life Technologies) in PBS for 10 minutes at
room temperature. To test the uptake of lipids in vitro, cells
were stained with surface markers and then incubated at 37�C
for 30 minutes with 1 mM Bodipy-conjugated palmitate (Bod-
ipy FL C16; Life Technologies) or 0.5 mg/mL Dil-conjugated
VLDL (Dil VLDL) or LDL (Dil LDL; both from Kalen Biomedi-
cal) in TCM.

Extracellular flux analysis

Oxygen consumption rate (OCR) was measured using XFe-24
Extracellular Flux Analyzers (Agilent) following the manufac-
turer’s instructions. OCR was measured in XF media contain-
ing 11 mmol/L glucose and 1 mmol/L sodium pyruvate under
basal conditions and in response to 1 mmol/L oligomycin,
1 mmol/L carbonyl cyanide p-trifluoromethoxyphenylhydra-
zone (FCCP), and 0.1 mmol/L rotenone plus 0.1 mmol/L anti-
mycin A.

RT-PCR

Total RNA was isolated using RNAeasy Mini Kit (Qiagen), and
cDNA was generated using the iScript cDNA Synthesis Kit
(Bio-Rad). All RT-PCR was performed using Taqman primers
from Applied Biosystems, and gene expression was normalized
to b-actin.

Western blot

Using standard protocols, cell lysates were electrophoresed
in TrisGlycine gels, transferred to PVDF membranes, and
immunoblotted with antibodies against phospho-STAT3
(Tyr705; Cell Signaling), STAT3 (84; BD Biosciences),
phospho-STAT5 (Tyr694; Cell Signaling), STAT5 (Cell
Signaling), arginase I (19; BD Biosciences), inducible nitric
oxide synthase (iNOS; 54; BD Biosciences), and b-actin
(AC-74; Sigma).

Cytokine assessment

Cytokines were assessed with the Millipore Milliplex (EMD
Millipore), per the manufacturer’s instructions.

Lipidomics

For lipidomic analysis, supernatants from EL-4 malignant asci-
tes or normal peritoneal fluid were harvested, and fatty acids
and triacylglycerols were extracted and quantitatively analyzed
via LC-MS at the Lipidomics Core Facility of Wayne State Uni-
versity School of Medicine.56,57

Human tumor tissues and in vitro generated MDSC

Archival biopsy samples from patients with colon mucinous
adenocarcinoma and renal clear cell carcinoma were de-identi-
fied and obtained from the LCRC tissue biorepository core.
Immunostaining of samples from 3 patients was conducted as
described previously.21 Antibodies to CD36 (ab78054; Abcam),
Msr1 (ab123946), and CD66b (LS-B7134; Lifespan Biosciences)
were used. Human MDSC were generated in vitro from periph-
eral blood stem cells (PBSC) harvested from G-CSF-treated
donors consented under approved IRB protocols. PBSC were
cultured in TCM with 20 ng/mL human GM-CSF and IL-6
(R&D Systems) for 7 d in the absence or presence of 50 mg/mL
VLDL. To assess their regulatory function, PBSC-derived
MDSC were cocultured with autologous CFSE-labeled CD3C T
cells at a ratio of 1 T cell to 1 MDSC in the presence of plate-
bound anti-CD3 (OKT3; eBioscence; 1 mg/mL)/anti-CD28
(L293; BD Biosciences; 0.5 mg/mL). T cell proliferation was
examined via CFSE dilution after 3 d.

Data analysis

Unless otherwise indicated, all experiments were repeated at
least 3 times. Data (n D 3–6) were analyzed by one-way
ANOVA followed by Tukey’s multiple comparison test or Stu-
dent’s t test using GraphPad Prism software. OCR data were
expressed as mean § SD, while other results were shown as
mean § SEM. P values are presented in figures as �, P < 0.05;
��, P < 0.01; ���, P < 0.001; or ����, P < 0.0001.
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