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ABSTRACT
Checkpoint inhibitors, monoclonal antibodies that inhibit PD-1 or CTLA-4, have revolutionized the
treatment of multiple cancers. Despite the enthusiasm for the clinical successes of checkpoint inhibitors,
and immunotherapy, in general, only a minority of patients with specific tumor types actually benefit from
treatment. Emerging evidence implicates epigenetic alterations as a mechanism of clinical resistance to
immunotherapy. This review presents evidence for that association, summarizes the epi-based
mechanisms by which tumors evade immunogenic cell death, discusses epigenetic modulation as a
component of an integrated strategy to boost anticancer T cell effector function in relation to a tumor
immunosuppression cycle and, finally, makes the case that the success of this no-patient-left-behind
strategy critically depends on the toxicity profile of the epigenetic agent(s).
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Introduction

Strictly speaking, the immunotherapy revolution began, not on
the revolutionary date of March 25th 2011 with the approval of
Ipilimumab (Yervoy) the first checkpoint inhibitor, but in
September 18911 with Dr. William B. Coley’s first published
manuscript about the treatment of inoperable sarcomas with
bacterial preparations—these preparations, a combination of
gram-positive, heat-killed streptococci plus gram-negative,
heat-killed Serratia marcescens, subsequently referred to as
“Coley’s toxins”2 or mixed bacterial vaccine (MBV), led to
spontaneous tumor regressions in some patients due to activa-
tion of the immune system. Despite a reported cure rate of
10%,3 Coley’s toxin was not widely accepted or used except as a
last resort due to the anecdotal and unpredictable nature of the
responses, nonspecificity to tumors and the dangerous side
effects (e.g. high fever) that the treatment induced.2 The specific
mechanism of action, unknown to Coley at the time, is proba-
bly related to a “massive induction of immunoregulatory cyto-
kines,” specifically TNF-a, IFN-g, and IL1-b, according to
Karbach et al, 2012, who conducted a Phase 1 clinical trial with
Coley’s toxins.4

Almost one hundred years later, picking up where Dr. Coley
left off, early non-specific immunotherapies such as human
IFNa-2b for the treatment of multiple malignancies and inter-
leukin-2 (IL-2) for metastatic renal cell carcinoma were devel-
oped to induce an immune response against the tumor.5 In
addition to IL-2 and interferon therapy, a Calmette–Gu�erin
(BCG) vaccine for tuberculosis was repurposed to drive cellular
immunity in superficial bladder cancer.6 However, these early

cytokine-based immunotherapies not only showed disappoint-
ing efficacy rates as monotherapies but were also in some cases
severely toxic, especially IL-2, which limit their clinical use.7

Low efficacy is a function of multiple factors: non-selective tar-
geting of tumors, the heterogeneity of host responses,8 and
tumor immune escape5 notably from induction9 of tolerance
via immunosuppressive cytokines such as TGF-b and IL-10
and upregulation of the negative checkpoint molecules, CTLA-
4 and PDL-1/PD-1, to limit T cell responses.10

With regard to the latter, CTLA-4 and PDL-1/PD-1 check-
point inhibitors have revolutionized the treatment landscape in
advanced melanoma, lung cancer, RCC, bladder cancer, and
Hodgkin lymphomas with the demonstration of durable clini-
cal efficacy and improved overall survival. Nevertheless, despite
the clear evidence of improved clinical outcomes, the fact
remains that the majority of cancer patients do not respond to
them. In an expansive clinical trial with the anti-PD-1 mAb,
nivolumab, in NSCLC, melanoma, and renal cell cancer, objec-
tive responses occurred in 25% of patients,11 which is notable
not only for the patients that did respond but also for the 75%
that didn’t, supporting a rationale for immunotherapy-based
combination treatment to improve on this response rate.

Emerging data places the high rate of epigenetic modifica-
tions pathognomonic to cancer cells at the center or, perhaps
more appropriately, the epicenter of tumor resistance to radio-
therapy, chemotherapy and immunotherapy.12 The term epige-
netics, originally coined in the middle of the twentieth century
by Conrad Waddington, a British developmental biologist,13 is
used herein to refer to changes in the pattern of gene expression
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and activity that are not the result of changes to the primary
DNA sequence.14 Epigenetic modifications include alterations
in DNA methylation and chromatin remodeling via acetylation
and methylation. In cancer the accumulation of these epige-
netic alterations leads to profound changes in the expression of
proteins that contribute not only to the development of radio-
and chemoresistance but also immunoresistance15-19 and
immune escape through transcriptional silencing of immune-
related genes.20

Epigenetic agents that increase the expression of these
silenced immune-related genes have the potential to overcome
cancer cell-induced T cell dysfunction not only in tumors with
known susceptibility to checkpoint inhibitors, like melanoma
or NSCLC, but also in tumors traditionally considered
immune-resistant such as pancreatic or colorectal cancers. On
the premise that a combination of nonoverlapping anticancer
therapies is necessary to redress the suppressive mechanisms,
discussed herein, by which tumors escape immune attack and
immunogenic cell death, epigenetic inhibitors currently under
clinical evaluation are highlighted in this review as an impor-
tant part of an integrated strategy to boost anticancer B and T
cell effector function and thereby improve therapeutic out-
comes, so that fewer and fewer patients are “left behind.”

Epigenetic modifications

Epigenetic changes are a ubiquitous feature of carcinogenesis 21

and progression. Among the most intensively studied epige-
netic aberrations are DNA methylation of CpG dinucleotides
and post-translational histone modification,22 both of which
work in concert to establish and maintain patterns of gene
expression conducive to tumor proliferation.23 The intrinsic
reversibility and plasticity of epigenetic alterations as compared
with the relative immutability of genetic events renders cancer
a suitable disease for treatment with epigenetic and chromatin
modifiers. A brief summary of DNA methylation and histone
modification is provided below. For more in-depth reviews on
epigenetic alterations the reader is referred to other cited
literature.24,25

DNA methylation

DNA methylation refers to the covalent attachment of a methyl
group to the carbon-5 position of cytosine within clusters or
islands of CpG dinucleotides26 (cytosine and guanine separated
by a phosphate) found in or near promoter regions of genes
where transcription is initiated27 via a reaction catalyzed by
DNA methyltransferases (Fig. 1A).

These methyl groups project into the major groove of DNA
and sterically hinder the binding of RNA polymerase, which
effectively silences transcription (Fig. 1A).28,29

Histone covalent modification

Space constraints in the micron-sized nucleus requires coiling
of the 2 m30 long negatively-charged DNA molecule around an
octamer of positively-charged histone proteins, which are, in
turn, further compacted into chromatin fibers,31,32 rendering
DNA largely inaccessible to transcriptional regulators.

Acetylation, which occurs at the positively charged lysine resi-
dues on the amino-terminal histone tails, neutralizes the posi-
tive charge, decreasing the affinity of histones for DNA and
thereby resulting in increased accessibility to the transcriptional
machinery.33 Histone acetylation thus maintains chromatin in
an open state conducive to active transcription.34 By contrast,
histone deacetylases or HDACs deacetylate chromatin and
reinstate the positive charge on the histone tails, resulting in
high-affinity binding between histones and DNA,35 which, in
turn, promotes a condensed chromatin state and transcrip-
tional silencing (Fig. 1B and Fig. 2).27

Epigenetic inhibitors as radio/chemosensitizers

Since DNA methyltransferases (DNMTs) and HDAC are mul-
tifunctional enzymes36 that impact a broad spectrum of path-
ways and cellular processes, including cell cycle regulation,
DNA damage response, cell adhesion, angiogenesis, and immu-
nity, it is not surprising that the gene expression changes
wrought by epigenetic agents influence multiple facets of tumor
progression and the tumor microenvironment.37

Epigenetic agents have demonstrated clinical efficacy not
only in hematologic malignancies like acute myeloid leukemia
and myelodysplastic syndrome where the DNMT inhibitors
azacytidine (Vidaza, AZA, or 5-aza) and decitabine (Dacogen
or 5AZA2) are approved, but also in solid tumors,38 most nota-
bly as radio- and chemosensitizers in patients with highly resis-
tant tumors. In a Phase I/II study of 5-azacitidine and
carboplatin 46% of patients with platinum-resistant or refrac-
tory ovarian cancer demonstrated durable responses and stable
disease (median duration of therapy 7.5 months).39 In addition,
an ongoing randomized Phase II trial (NCT02096354) acro-
nymed ROCKET with the experimental systemically nontoxic

Figure 1. (A) Hypermethylation and transcriptional silencing. A hallmark of cancer
is hypermethylation of DNA sequences in the promoter region leading to transcrip-
tional silencing. (B) Histone acetylation leads to a switch between transcriptionally
repressive and permissive chromatin. Histone acetylation induces a change from
compacted to a more ‘open’ chromatin state and increases the accessibility of tran-
scription complexes to genomic DNA. Acetylation is an important factor for the
regulation of gene expression.
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epigenetic and tumor-associated myeloid repolarizing agent,
RRx-001, followed by irinotecan rechallenge on progression of
RRx-001 has resulted in tumor resensitization to irinotecan in
multiple patients.15 Similar40 preliminary responses have been
seen with RRx-001 in notoriously radioresistant melanoma
brain metastases in combination with whole brain radiotherapy
(WBRT) in a Phase I trial acronymed BRAINSTORM
(NCT02215512).

One general mechanism of radio/chemoresensitization is
related to epigenetic restoration of silenced tumor suppressor
genes such as p53.25 Another mechanism of radio/chemoresen-
sitization is through blood vessel normalization, which equili-
brates oxygen levels within the tumor and enhances drug
delivery.41 The endogenous vasodilator, nitric oxide (NO), has
been reported as possessing epigenetic activity, modifying
global histone methylation through inhibition of Jumonji C
(JmjC) domain-containing demethylases.42 Consequently, NO-
mediated radio- or chemo-sensitizing agents may exert their
activity through a multiple mechanisms of action that include
both vascular modification and NO or Reactive Oxygen Species
and Reactive Nitrogen Species (ROS/RNS)-induced epigenetic
modifications.41,43

A normalized tumor vasculature also makes it possible for
immune cells to infiltrate the tumor and exert an anticancer
effect, discussed below.

Epigenetic inhibitors as immunosensitizers

In addition to sensitization of chemotherapy and radiation, epi-
genetic agents (e.g., 5-AZA) have been used as part of a strat-
egy44 to prime immunotherapy responses. In 5 patients with
NSCLC who received 5-azacytidine and entinostat before treat-
ment with either anti-PD-1 or anti-PD-L1 antibodies, durable
objective responses were observed in 3 patients while stable dis-
ease for more than 6 months was observed in the other 2
patients.45 Based on these clinical responses, a study of

azacitidine and entinostat or azacitidine alone before the PD-1
inhibitor nivolumab (NCT01928576) was initiated with the pri-
mary end point of overall response rate; however the inherent
toxicity of nucleoside DNA methyltransferase inhibitors
(DNMTs) such as azacitidine, which are poorly tolerated, is
likely to significantly limit the efficacy of this strategy. While
HDAC inhibitors such as entinostat are generally well tolerated,
they, too, may induce dose-limiting cytopenias.46

In contrast to these myelosuppression-associated complica-
tions, preliminary results from the first cohort of patients
treated with the combination of the experimental systemically
non-toxic pan-epigenetic inhibitor and tumor-associated mye-
loid repolarizing agent, RRx-001, and the PD-1 inhibitor, nivo-
lumab, in a Phase I dose escalation study called PRIMETIME
(NCT02518958) indicate promising safety and activity.47 A low
side effect profile is particularly important in the context of an
immune priming strategy, due to the potential for a reverse
‘anti-priming’ effect in the event that bone marrow and other
host toxicities from the epigenetic agent either reduce tolerance
to or prevent subsequent treatment with immunotherapy.

Mechanisms of tumor-induced immune escape

In 1957 2 prominent immunologists, Burnett and Thomas,48

put forward the controversial immunosurveillance hypothesis,
now largely accepted with revisions, that the ever-vigilant
immune system constantly detects and eliminates malignant
threats before they clinically present49 as full-blown tumors.
However, immunosurveillance is not 100% effective even in
immunocompetent patients; and, in fact, under the selective
pressure of this active surveillance it is hypothesized that resis-
tant tumor cells evolve a repertoire of epigenetically mediated
escape mechanisms to resist immunogenic cell death (ICD) in
a process called immunoediting.50

The term immunogenic cell death,51 refers to a multi-step
cycle of immune activation initiated by the release of cell-

Figure 2. Epigenetic regulation of transcription. DNA is compressed in the nucleus as chromatin. The building block of chromatin is the nucleosome, which consists of 8
DNA wrapped histones.. Epigenetic regulation involves DNA methylation, histone acetylation and histone methylation that depending on the combination of modifica-
tions lead to transcriptional repression or transcriptional activation.
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associated antigens 52 and danger signals (step 1 in the cycle)
from dying tumor cells. These released tumor antigens (TAs)
are captured by antigen presenting cells (APCs) such as macro-
phages and DCs, which process and load TA-derived peptides
on major histocompatibility complex (MHC) class I or class II
(step 2); the loaded MHCs then activate MHC-restricted T cells
(i.e., cytotoxic T-lymphocytes or helper T cells) in lymph nodes
(step 3). In particular, cytotoxic T-lymphocytes traffic to (step
4) and infiltrate the tumor bed (step 5), specifically recognizing
antigen on cancer cells through interactions between T-cell
receptor (TCR) and MHC class I (step 6), and eliminate the tar-
geted cells (Step 7), releasing additional antigens in the process
that, in turn, further stimulate the immune response.53

This 7-step cycle is interrupted in tumors, which rely on
stealth tactics and deploy multiple countermeasures including
reduced expression of tumor associated antigens, deficient anti-
gen presentation, reduced or absent costimulation, resistance to
apoptosis and even counterattack to escape immune elimina-
tion. These countermeasures are, to a greater or lesser degree,
regulated by epigenetic processes, and, therefore, potentially
susceptible to reprogramming with epigenetic therapies.

The flip side or mirror image of the antitumor immunity
cycle is an immunoescape paradigm, depicted schematically as
a series of countermeasures to intercept immunosurveillance at
each of the 7 steps. (Fig. 3). Each immunoescape countermea-
sure, described in more detail below, has been matched in boxes
with a corresponding potential antitumor strategy.

Immunoescape mechanism 1: Reduced expression
of tumor associated antigens

Despite the failure of effector cells to lyse tumors in patients
with cancer, malignant cells are, in fact, immunogenic due, in
part, to the variable expression of tumor associated antigens
(TAAs). These immunogenic TAAs include cancer testis anti-
gens (CTAs), such as MAGE-A3 and NY-ESO-1, normally
restricted to the germ cells of the gonads and silenced in

somatic cells, but aberrantly expressed in up to 40% of hemato-
logic and solid tumor types.54

Increased CTA levels in both normal and tumor tissue are
associated preclinically with epigenetic modification 55 and
re-expression of these hypermethylated antigens following
exposure to epigenetic agents has been demonstrated in clin-
ical trials. For example, in a Phase II study (NCT01050790),
post-transplant multiple myeloma patients receiving sequen-
tial azacitidine (Aza) and lenalidomide (Rev) demonstrated a
significant increase in MAGEA4, MAGEA6, SPA17 and
AKAP4 in bone marrow compared with pre-therapy sam-
ples. This induction was associated with a subsequent sus-
tained T-cell-mediated immune response.56 Similarly, the
phase I/II study (NCT02332889) in relapsed neuroblastoma
and sarcoma tested the efficiency of decitabine to upregulate
cancer testis antigen expression, followed by a dendritic cell
MAGE-A1, MAGE-A3, and NY-ESO1 peptide vaccine. A
complete response was documented in 1/10 patients and of
the 2 patients who were disease-free at start of DC vaccine
therapy one was disease-free 2 y post therapy.57

These results suggest that the mutational burden of tumors
directly correlates with increased neoantigen presentation,
immunogenicity and response to checkpoint inhibitors.
Accordingly, mutagenic tumors like melanoma and NSCLC are
more responsive to immunotherapy than AML or ALL, where
the rate of mutations is correspondingly lower (Table 1).58

Mismatch repair deficit and microsatellite instability

In similar way, tumors with mismatch-repair deficits and
microsatellite instability status, which correlate with a higher
mutational rate and neoantigen load, are more susceptible to
treatment with PD-1 blockade.59 For example, patients with
microsatellite instable (MSI) colorectal cancer (CRC) (approxi-
mately 15% of the CRC population) are candidates for PD-1
therapy while microsatellite stable (MSS) CRC patients, who
comprise the remaining 85%, are not.60 Microsatellites are

Figure 3. The Immunoescape Cycle. To the left, the Antitumor Immunity Cycle illustrating the 7 main steps to stimulate an effective antitumor response. In cancer this
cycle is interrupted at one or more steps to prevent specific T-cell immunity. Adapted from Oncology Meets Immunology: The Cancer-Immunity Cycle Daniel S. Chen and
Ira Mellman Immunity 39, July 25, 2013. In a mirror image of the beneficial immunity cycle pictured to the left, which is responsible for the elimination of tumor cells, the
harmful Immunoescape Cycle pictured to the right illustrates 7 different mechanisms by which the tumor corrupts or evades the 7 steps of the immunity cycle.
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short sequences repeated throughout the genome that are vul-
nerable to mutation due to a defect in DNA mismatch repair.61

Despite the higher expression of neoantigens in MSIC CRC
tumors, the presence of commensal bacteria in the intestines
may facilitate upregulation of checkpoint ligands, thereby pre-
venting immune eradication.62

The premise that tumors with microsatellite instability
that lead to a higher level of somatic mutations are more
susceptible to immune therapy, once the immune checkpoint
‘brakes’ have been released is intriguing and suggests poten-
tial ways of extending the activity of immune therapy to
tumors that are currently not susceptible to this therapeutic
approach. It has been well know that exposing tumors to
ionizing radiation induces cellular changes that result in the
upregulation and cellular expression of neoantigens,63 often
as a result ofROS-induced central necrosis,64 that can mani-
fest as pseudoprogression.65 Indeed, ROS induced necrosis
results in pro-inflammatory and immuno-stimulatory
responses66 such that the effect may be more accurately
described as immunogenic cell-death, mediated through
important signaling to the immune system.67,68 HDAC and
DNMT inhibitors both exert an immunostimulatory effect:
DNMTs through the induction of an interferon response by
viral mimicry,69,70 and HDAC inhibitors through induction
of immunogenic cell death.71

ROS-mediated epigenetic agents, such as RRx-001, has
shown effects on global methylation and histone acetylation,72

may therefore act through a dual mechanism of action – induc-
ing an immune response through HDAC and DNMT inhibi-
tion, while amplifying that response by neoantigen

presentation as a consequence of central necrosis. As a ROS-
mediated epigenetic agent, extensive tumor central necrosis has
been observed in the phase 1 clinical trial and subsequently in
ongoing Phase 2 trials. Fig. 4 shows a typical PET-CT image of
liver lesion with extensive tumor necrosis. Necrosis was surgi-
cally confirmed in both the central region and rim (> 90%
necrotic) suggesting extensive lymphocyte recruitment to the
tumor.73

Therapeutic strategy in MSI high tumors e.g., colon, gastric and endometrial
tumors as well as patients with Lynch Syndrome:

Combine an epigenetic agent with radiation, CAR-T, oncolytic viruses, bispecific
T-cell engagers (BiTE) and DNA repair inhibitors to increase the complement
of targetable T-cell antigens

Immunoescape mechanism 2: Deficient antigen
presentation

7The major histocompatibility complex (MHC) is a cluster of
genes that function to bind and present antigens to the adap-
tive immune system. In humans, MHC, known as human leu-
kocyte antigen (HLA), includes coding regions for different
co-receptors on the T cells, that is, CD8 and CD4, hence
allowing for identification of CD4C T helper (Th) cells and
CD8C cytotoxic T lymphocytes (CTLs), which recognize anti-
gen presented by MHC class I-derived molecules and execute
anti-tumor responses74 MHC class I antigens also regulate the
lytic activity of NK immune cells, which are programmed to
kill any cells lacking MHC class I expression.74

As reviewed elsewhere,75 malignant transformation is asso-
ciated with the epigenetic loss and/or downregulation of MHC
class I antigens via hypermethylation of the HLA promoter,
which impairs the recognition of tumor cells by CTLs, leading
to escape from immune destruction; treatment with epigenetic
agents76 restores expression of MHC class I and/or components
of the class I antigen processing and presentation machinery

Table 1. Somatic mutational burden per tumor type. In theory, tumor-specific neo-
antigen generation and presentation is directly proportional to mutational burden.

Disease
Somatic mutation prevalence (average
number mutations per megabase)

Formation of
Neoantigens

Melanoma »20 Frequently
Lung Squamous »9.5 Regularly
Lung Adeno »9.0 Regularly
Stomach »8.5 Regularly
Esophagus »8.0 Regularly
Lung Small Cell »8.0 Regularly
Colorectal »8.0 Regularly
Bladder »7.5 Regularly
Uterus »7.0 Regularly
Cervix »6.5 Regularly
Liver »6.0 Regularly
Head and Neck »5.0 Regularly
Kidney Clear Cell »2.0 Regularly
Lymphoma B-Cell »1.5 Regularly
Kidney Papillary »1.1 Regularly
Breast »1.0 Occasionally
Pancreas »1.0 Occasionally
Myeloma »1.0 Occasionally
Ovary »1.0 Occasionally
Prostate »1.0 Occasionally
Glioblastoma »0.9 Occasionally
Glioma Low Grade »0.85 Occasionally
Neuroblastoma »0.8 Occasionally
Medulloblastoma »0.7 Occasionally
CLL »0.65 Occasionally
Kidney Chromophobe »0.6 Occasionally
Thyroid »0.5 Occasionally
ALL »0.3 Occasionally
AML »0.2 Occasionally
Pilocytic Astrocytoma »0.05 Occasionally

Figure 4. PET-CT showing tumor central necrosis and pseudoprogression in a
patient recruited in the Phase 1 clinical trial. The pathology report indicated that
the rim was>90% necrotic suggesting an influx of lymphocytes.
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(TAP1, TAP2, LMP7, Tapasin),77,78 which enhances tumor spe-
cific T-cell killing.79 MHC class I and antigen presentation
machinery are also regulated by DNA methylation.80; likewise,
treatment with demethylating agents restores their expression
in cancer cells,81 which increases susceptibility to destruction
by immune effector cells.

Therapeutic strategy for tumors with low MHC class I expression:

Combine an epigenetic agent with IFN-gamma, GM-CSF or high dose IL-2 to
induce the upregulation of MHC class I expression.

Immunoescape mechanism 3: Tolerance induction
(Reduced or absent costimulation)

In accordance with the so-called “2 signal model,” T-cell
activation requires at least a double signal.82 The first sig-
nal83 results from the interaction of the T-cell receptor
(TCR) with its cognate antigen plus major histocompatibility
complex on the surface of antigen-presenting cells (APCs) or
target cells.84 The second set of antigen-independent signals
termed costimulation are expressed on the surface of the
APCs (Fig. 5). In the absence of this double signal, these
anti-tumor T cells enter a state of unresponsiveness termed
anergy.85 The major costimulatory signals implicated in T
cell activation is the glycoprotein CD28, which interacts on
the APC with CD80 and CD86 (also called B7.1 and B7.2)
and the OX40-OX40 ligand interaction.86 The co-inhibitory
molecules, CTLA-4, and PD-1, also interact with CD80 and
CD86.87 The third signal is the production of cytokines (e.g.,
IL-2, which, in turn, induces IFN-g production) required for
differentiation of lytic CD8C T cell lytic effectors.88 Epige-
netic mechanisms are linked with the expression of costimu-
latory and coinhibitory molecules89 as90 well as the
repression of several pro-inflammatory cytokines (IL-1, IL-2,
IL-8, and IL-12).91 Chiappinelli et al70 recently demonstrated
that 5-azacytidine directly induces the expression of inter-
feron. The mechanism, which overlaps with the targeted
inflammation induced during oncolytic virus therapy, is
related to derepression of endogenous retroviral (ERV) and
other viral gene sequences in the tumor, triggering a type I
interferon response.

Therapeutic strategy for tumors with low-to-intermediate expression of B7
and OX40 costimulatory molecules:

Combine an epigenetic agent with a viral vector for transduction of IL-2 and
B7.1 genes, antagonistic antibodies directed against the checkpoint
inhibitors (e.g, CTLA-4, PD-1) and agonist antibodies such as OX40 to
improve costimulatory signaling to T cells.

Immunoescape mechanism 4: Decreased T-cell trafficking
and T-cell infiltration

Tumor vessels differ from normal counterparts92 by virtue of
their tortuosity, immaturity and hyperpermeability. In particu-
lar, the leakiness of the vessels due to the prevalence of proan-
giogenic signals results in raised interstitial pressure with
compression of the vasculature, which further impedes blood
flow and exacerbates pre-existing hypoxia.

Hypoxia not only increases resistance to chemotherapy
and radiation but it also contributes to immune escape
through different mechanisms including amplification of lev-
els and activity of regulatory T cells (Tregs), myeloid suppres-
sor cells (MDSC) and tumor associated macrophages
(TAMs).93 In addition, hypoxia influences the cell adhesion
molecule profile of the endothelium leading to preferential
Treg adhesion, infiltration and immune suppression.94 The
mechanisms of T cell adhesion and transmigration across
the tumor endothelium have been covered in other
reviews,95,96 and therefore due to space limitations will not
be discussed here. Finally, hypoxia leads to global epigenetic
changes and silencing of tumor suppressor genes like
BRCA1 and DNA repair enzymes such as RAD51,97 which
favors a proliferative phenotype. Examples of hypoxic tumor
types include head and neck, cervix, sarcomas and glioblasto-
mas.98 (Fig. 6)

Treatment with anti-VEGF agents such as Bevacizumab
or receptor tyrosine kinase (RTK) inhibitors like sunitinib
prunes or disrupts the morphologically aberrant blood ves-
sels that compromise blood flow in the tumor, leading to a
more homogeneous distribution of functionally mature
tumor vessels and a transient window of increased blood
perfusion, assessable with magnetic resonance imaging,
termed “vascular normalization”.99 Several preclinical studies
have demonstrated that antiangiogenic therapy not only

Figure 5. Na€ıve (T)cells require 2 signals to become activated: TCR/MHC and co-stimulation. The specific signal alone or the co-stimulatory signal alone leads to T cell
anergy. The co-stimulatory signal is necessary for the synthesis and secretion of IL-2, which stimulates the T cell to divide and generate a larger population of memory
and effector cells.
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facilitates T-cell infiltration100 but also reverses the hypoxia-
induced recruitment of immunosuppressive Tregs and the
M2-like skewing of tumor associated macrophages,101

thereby reprogramming the microenvironment for tumor
inhibition. Like bevacizumab and the RTK inhibitors, the
experimental, pan-epigenetic and tumor-associated myeloid
repolarizing agent, RRx-001102 has also been associated with
normalization of the tumor vasculature, although, admit-
tedly, this non-VEGF-related property may be attributable to
the unique mechanism of RRx-001 rather than a general
class effect of epigenetic agents.103 However, as a class, epige-
netic therapies have the potential to reverse hypoxia-induced
silencing of tumor suppressor and other beneficial genes
with or without vascular normalizing agents.

Therapeutic strategy for tumors with low blood flow and high vascular
permeability as determined by DCE-MRI:

Combine an epigenetic agent with a VEGF inhibitor to increase penetration of
T-lymphocytes and amplify the response of the adaptive immune system.

Immunoescape mechanism 5: Immunosuppression

Even if all the biochemical and physical barriers that might
inhibit immune infiltration of tumors are overcome, it is by no
means ensured that the TILs will manage to mount an effective
anti-cancer response due to the induction of an immunosuppres-
sive microenvironment. This section, which provides a basic—
but far from exhaustive—overview of key immunosuppressive
factors under epigenetic control, including secretion of cytokines,
expression of negative regulatory checkpoint ligands that bind to
cognate receptors on T cells, the induction of indoleamine 2,3-
dioxygenase (IDO) and the recruitment of regulatory T cells.

Cytokines
The immunosuppressive cytokines, such as interleukin (IL)-10
and transforming growth factor-b (TGF-b), secreted from the

malignant cells themselves as well as noncancerous cells present
at the tumor site, such as immune, epithelial, or stromal cells
inhibit the maturation and antigen-presenting function of den-
dritic cells (DC) and T cell effector responses through regula-
tory T cells.104 In addition to the epigenetically regulated
expression of these tumor-derived cytokines,105 the small mole-
cule prostaglandin E2 (PGE2), VEGF and macrophage-colony
stimulating factor change the repertoire of immune cells and
inhibit T cell proliferation, activation, and differentiation.
Neutralizing antibodies that bind or “trap” these cytokines, in
particular TGF-b, is a strategy to reverse local immunosuppres-
sion. As an example, oncolytic viruses may be armed with
transgenes that express cytokine traps locally within the tumor
microenvironment.106

Checkpoint inhibition
Checkpoint proteins such as cytotoxic T lymphocyte antigen-
4 (CTLA-4) and programmed cell death 1 (PD-1) constitute
a part of the normal suppressive mechanism, which serves in
a physiologic setting to dampen inflammatory responses of
autoimmune or infectious origin or in pathologic situations
to downregulate anti-tumor responses107 (Fig. 7). PD-1, in
particular, has 2 coinhibitory ligands: PD-L1 (also named
B7-H1; CD274) and PD-L2 (B7-DC; CD273).108 PD-L1 is
expressed in multiple tumor types especially NSCLC, mela-
noma, and renal cell carcinoma while PD-L2 expression is
far less prevalent.109 The checkpoint inhibition pathways are
co-opted and epigenetically upregulated by the tumor to
direct the pattern of host immune responses in its own
favor.44 Approved PD-1 inhibitors are nivolumab (Opdivo)
and pembrolizumab (Keytruda).

Induction of indoleamine 2,3-dioxygenase (IDO)
In what has been termed immunosuppression by starva-
tion,110 expression of IDO,111 a ubiquitous enzyme that
converts tryptophan, the essential amino acid required by T

Figure 6. Influence of hypoxia in the tumor on the innate and adaptive immune response. In general hypoxia suppresses the response of the immune system. The adap-
tive immune system includes cytotoxic T lymphocytes (CTL), T regulatory cells (T reg) and B cells. The innate immune system includes dendritic cells, myeloid derived sup-
pressor cells (MDSC) and natural killer cells (NK).
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cells for proliferation and survival, to the immunotoxic
metabolite, kynurenine, mediates the immunosuppression of
pregnancy. Moreover, as a component of the compensatory
anti-inflammatory response syndrome (CARS), it is epige-
netically inducible by pro-inflammatory cytokines,112,113

including interferon-g (IFN-g) and tumor necrosis factor-a
(TNF-a). Similar to the checkpoint pathway, cancer cells
co-opt the physiologic mechanism of IDO-mediated trypto-
phan degradation to turn off antitumor responses.114 Inhibi-
tors of IDO are currently under investigation in clinical
trials.115

Recruitment of Regulatory T cells
One of the primary physiologic mechanisms to limit excessive
and harmful immune responses is through the induction of a
specialized subset of CD4C T cells, CD4CCD25C regulatory T
cells (Tregs),

116 which are conscripted to enhance tumor cell
proliferation. As “major players” in the immune microenviron-
ment,117 the presence of regulatory T cells, which correlates
with poor survival in a variety of tumors, including prostatic,
lung, hepatocellular and renal cell carcinomas,118 leads to the
suppression of Thelper1 (Th1)/CD8

C T cell responses that medi-
ate tumor cytotoxicity. Under the influence of cytokine
CCL22,119 Tregs migrate to tumors where multiple factors
including IL-2, TGF-b120 and, in particular, the epigenetically
regulated transcription factor, Foxp3,121 are responsible for
their expansion. Strategies to deplete Tregs include the adminis-
tration of metronomic low dose therapy, cyclophosphamide
and daclizumab, a US FDA-approved humanized anti-CD25
antibody. VEGF-A blockade may also reduce the numbers of
tumor-infiltrating Tregs.

122

Therapeutic strategy to relieve immunosuppression:

Combine an epigenetic agent with oncolytic viruses that encode cytokine traps,
checkpoint inhibitors, the anti-CD25 antibody, daclizumab and a VEGF
inhibitor to increase penetration of T-lymphocytes and amplify the response
of the adaptive immune system.

Immunoescape mechanism 6: Resistance to apoptosis

Resistance to apoptosis, a genetically and epigenetically regu-
lated process of cell suicide,123 which underpins treatment fail-
ure, is a hallmark of cancer cells.124 Initiation of the intrinsic or
the extrinsic apoptotic pathways induces the caspases, a family
of cysteine proteases that act as common death effector mole-
cules. Aberrant methylation in the promoters of genes coding
for proteins implicated in the extrinsic and intrinsic pathways
has been implicated as an important mechanism of apoptosis
resistance in cancer cells.125 In addition, the epigenetic mecha-
nism, which is arguably the best understood currently,126

involves the transcriptional silencing of a growing list of tumor
suppressor genes, most notably the key guardian p53,127 that
trigger apoptosis in the presence of cell abnormalities.

Therapeutic strategy to induce apoptosis:

In this context, an epigenetic agent may be combined with any
number of different treatment options since, in general, most
chemotherapies irrespective of the mechanism of action or molecular
target have the potential to induce apoptosis. However, in particular,
agents, which generate reactive oxygen species or deplete reduced
glutathione and induce oxidative stress like the platinums, arsenic
trioxide, motexafin gadolinium, nitroglycerin, and various flavonoids
may activate p53 (and other tumor suppressors) and synergize with an
epigenetic agent.

Immunoescape mechanism 7: Tumor counterattack

In addition to the defensive strategies described above, a con-
troversial hypothesis proposes that tumors also “go on the
offensive” or on the “counterattack” through upregulation of
Fas ligand (FasL/CD95L) expression. FasL is a transmembrane
protein that belongs to the Tumor Necrosis Factor (TNF) fam-
ily.128 The interaction of FasL with its cell surface receptor, Fas
(CD95/APO-1) leads to apoptosis129 in Fas-positive cells, which
is hypothesized to maintain the immune tolerance of the testis,
hair follicle, placenta, eye and brain.130 Evidence suggests that
tumors epigenetically131 upregulate the expression of Fas to

Figure 7. Innate vs adaptive resistance. PD-L1 can be constitutively expressed or induced adaptively if the right inflammatory cytokines are present in the immune
environment.
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‘counterattack’ Fas-ligand-expressing tumor-infiltrating lym-
phocytes, which favors immune escape. If this controversial
hypothesis is correct—the controversy relates to the fact that
some studies support it,132,133 while others refute it134—then
the tumor walks a fine line between protection and harm, since
Fas expression also predisposes to apoptotic cancer cell death,
and further upregulation of the protein may ultimately sup-
press tumor proliferation.

Therapeutic strategy to ‘counter the counterattack’:

Further upregulate Fas expression in tumors with epigenetic therapies. In
addition to epigenetic inhibition, other strategies include viral mediated
delivery of Fas or fusion proteins connecting FasL to a single chain antibody
fragment that specifically recognizes tumor cells or tumor stroma antigens is
a promising field of research in therapeutics. Upon binding, the initially
inactive protein would convert into a protein with membrane-bound-FasL-
like activity.

Summary and conclusions

According to the double-entendred Chinese proverb, “May
you live in interesting times,” the modern era of immuno-
therapy has been both blessed and cursed. On the one
hand, immunotherapy constitutes a revolution in cancer
care with the promise of durable benefit and the potential
of long-term survival in a subset (approximately 20-30%) of
patients and tumor types.135 On the other hand, success has
so far eluded the majority of patients (70-80%), for whom
the promise of anti-tumor immune activity remains tanta-
lizingly out of reach.

This review presents evidence for the centrality of epigenetic
alterations i.e., histone modifications and DNA methylation in
de novo and acquired immune resistance. Unlike genetic
lesions, epigenetic changes are highly dynamic and potentially
reversible with DNA-demethylators and HDAC inhibitors.136

By analogy with the United States No Child Left Behind Act of
2001 for disadvantaged students, the declarative premise in the
title of this review, “No Patient Left Behind” is that the unac-
ceptably high immunotherapy failure rate is conceptually as
reversible as the methylation and acetylation modifications
which underlie it: epigenetic reprogramming may reactivate
silenced immune-related genes, including MHC class I, tumor-
associated antigens, and accessory/costimulatory molecules,
leading to enhanced immune recognition and tumor clearance,
so that patients once stigmatized as “resistant to therapy” with
an attendant poor prognosis will now have the opportunity to
reap the same benefits as the minority of patients with intrinsi-
cally susceptible tumors.

Several approved (e.g., azacitidine and decitabine) and
experimental (e.g., RRx-001) epigenetic therapies have demon-
strated preclinical and preliminary clinical evidence of
immune priming before or in combination with immune ther-
apies in apparent contradiction to the “diminishing returns”
usually associated with additional lines of treatment. However,
whether or not the law of increasing or diminishing returns
ultimately applies in this context depends on the side effect
profile of the epigenetic agent(s): Grade 3-4 toxicities increase
the risk and the likelihood that patients will not tolerate
immunotherapy, which is the antithesis of a priming strategy.
Immune checkpoint blockade, in particular, is associated with

its own particular set of serious side effects termed immune-
related adverse events or irAEs137; consequently, even if the
overlap in toxicities between the PD-1 inhibitor and the epige-
netic agent(s) is minimal the combination of toxicities may
result in a dose and treatment limiting degradation of perfor-
mance status and quality of life tantamount to an anti-prim-
ing effect. This is especially the case with decitabine,138 which
is poorly tolerated as a result of hematologic side effects such
as myelosuppression.

In addition, due to the broad spectrum of resistance and the
multifactorial escape mechanisms as well as the multiplicity of
targets, both known and unknown, in tumors, a therapeutic
cocktail or combo, similar to treatment of the HIV virus, that
includes an epigenetic agent may optimize immune priming
responses, provided that the individual components combine
advantageously i.e., that severe toxicities and/or antagonistic
interactions do not interfere with activity. To that end, the spe-
cific strategies presented in this review are not mutually exclu-
sive or incompatible but dovetail given the multifactorial
nature of immune derangement in cancer.

Since the relative toxicities of the epigenetic agents in
decreasing order are: DNMTs>HDACs>RRx-001, potential
anticancer combinations might include RRx-001 as the epige-
netic priming agent. Finally, as the strategy of immune priming
with epigenetic agents gathers wider traction and momentum,
the hope is that fewer and fewer patients will be left behind.

To paraphrase the Chinese proverb from the beginning of
this Discussion section: May all cancer patients, especially those
who were formerly resistant to the effects of immunotherapy,
live in interesting prime times.
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