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Sensitivity of Image Features to Noise
in Conventional and Respiratory-Gated
PET/CT Images of Lung Cancer:
Uncorrelated Noise Effects
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Abstract
The effect of noise on image features has yet to be studied in depth. Our objective was to explore how significantly image features
are affected by the addition of uncorrelated noise to an image. The signal-to-noise ratio and noise power spectrum were cal-
culated for a positron emission tomography/computed tomography scanner using a Ge-68 phantom. The conventional and
respiratory-gated positron emission tomography/computed tomography images of 31 patients with lung cancer were retro-
spectively examined. Multiple sets of noise images were created for each original image by adding Gaussian noise of varying
standard deviation equal to 2.5%, 4.0%, and 6.0% of the maximum intensity for positron emission tomography images and 10, 20,
50, 80, and 120 Hounsfield units for computed tomography images. Image features were extracted from all images, and percentage
differences between the original image and the noise image feature values were calculated. These features were then categorized
according to the noise sensitivity. The contour-dependent shape descriptors averaged below 4% difference in positron emission
tomography and below 13% difference in computed tomography between noise and original images. Gray level size zone matrix
features were the most sensitive to uncorrelated noise exhibiting average differences >200% for conventional and respiratory-
gated images in computed tomography and 90% in positron emission tomography. Image feature differences increased as the noise
level increased for shape, intensity, and gray-level co-occurrence matrix features in positron emission tomography and for gray-
level co-occurrence matrix and gray-level size zone matrix features in conventional computed tomography. Investigators should
be aware of the noise effects on image features.
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Introduction

Clinical imaging by positron emission tomography (PET) and

computed tomography (CT) is evolving into a quantitative dis-

cipline where a large number of metrics are computed in the

intensity and gray-level matrix domains; this discipline has

been termed as radiomics.1,2 Radiomics of CT and PET images

have shown promise as a diagnostic, prognostic, and predictive

tool in the treatment of cancer.1,3-6 It is also being combined

with other ‘‘omics’’ (eg, genomics, transcriptomics, proteo-

mics, metabolomics) into decision support systems.7 However,

features are sensitive to various acquisition conditions (scanner

type, image reconstruction algorithm, etc).1,3-6,8 One major con-

founding factor introduced by these conditions is the presence of

various random contributions to the signal, commonly referred

to as noise. However, few authors have examined the impact that

quantum or electronic noise can have on radiomic features. In

this article, we examine the influence of electronic noise, a

signal-independent contributor to image noise, on radiomics.

An image feature is a quantity that provides quantitative

information about an image. It can be derived directly from

the image (first order) or from heterogeneity matrices that are

derived from the image (second order). Image features or

‘‘metrics’’ that describe image texture and heterogeneity ana-

lyze relationships between voxel pairs or groups of voxels.

When noise is introduced into an image, the fundamental rela-

tionships between voxels are altered. As a result, the image

metrics are also altered, and the texture or heterogeneity of the

object may be misrepresented. If not accounted for, this noise

can have significant implications on the clinical utility of image

features. Although there are protocols for the standardization of

PET/CT imaging, image noise varies between scanners, man-

ufacturers, and institutions.9-11 Thus, the impact of noise on

image features may adversely affect multi-institutional studies

involving radiomics.

Image noise is caused by a variety of modality-specific

factors. The PET and CT images possess varying levels of

image noise due to the different mechanisms of detection and

image reconstruction. One of the most considerable sources of

image noise (common to both PET and CT) is random varia-

tions in photon counting caused by the statistical nature of

X-rays, which is related to the number of photons detected

(correlated with signal and image texture). This is commonly

referred to as quantum noise. Electronic noise, or ‘‘dark noise,’’

is another common source of image noise. This source of noise

is inherent to the detector and independent of the number of

photons detected. It is caused by the electronic components that

make up the detector.

The CT image noise is mainly random, statistical noise

caused by the finite number of X-rays in projection measure-

ments12 and the Poisson nature of X-rays.13 In CT, common

sources of noise include body attenuation, detector ineffi-

ciency, electronic noise, round-off errors, artifacts, and struc-

tural noise (density variations in the object). On the other hand,

PET image noise is caused by the random nature of radioactive

decay.13,14 The PET images are affected by partial volume

effects, tumor motion, source to background ratio, patient

weight, protocol (3-dimensional or respiratory gated), and sig-

nal loss (eg, induced by respiratory motion).15 Scattering coin-

cidences, random coincidences, and the random corrections

degrade the PET signal-to-noise ratio (SNR). Other contribu-

tors of image noise in PET images include detectors, electro-

nics and recorder systems, reconstruction algorithms,

convolution kernels, modes of attenuation correction, and

radioactive decay correction.16 Electronic noise is a common

source of noise in both PET and CT modalities. This particular

source of noise is considered spatial frequency independent.17

It is typically considered uncorrelated noise.

Although the focus of this study is on image noise, motion

is also a factor that affects image quality. It can affect stan-

dardized uptake values (SUVs) by up to 30% and can cause

image artifacts because of registration mismatches in the

attenuation correction (CT) and emission scans.11,18 In PET,

respiratory-gated (RG or 4-dimensional [4D]) images tend to

have higher levels of noise because of the smaller number of

counts (due to shorter acquisition times per bed position), but

the quality of RG images are impacted less by motion. Both

conventional (3-dimensional [3D]) and RG images are

included in this study.

Image noise is an unavoidable component of medical ima-

ging. Smoothing filters can be used to reduce noise, but they

cannot eliminate noise completely, and may also reduce the

signal of interest as well. Since the goal of radiomics is the

clinical application of image features, it is important to care-

fully characterize image features and to understand how they

might be influenced by various clinical situations with varying

levels of noise. The goal of this study is to evaluate the effects

of noise on image features.

Materials and Methods

Phantom Study

A standard American College of Radiology (ACR) accredita-

tion phantom with a germanium (Ge)-68 cylindrical insert

(Benchmark by RadQual LLC, Weare, New Hampshire, SN:

BMCY06813067103) was placed on a motion table with

2.4 cm motion amplitude and a 4-second period to simulate

lung tumor motion due to the respiratory cycle. The phantom

was imaged with 3 protocols: (1) 3D PET/CT with motion,

(2) 4D PET/CT with RG motion, and (3) 3D PET/CT without

motion (static).

Noise Application

To assess the implications of electronic noise on image fea-

tures, uncorrelated Gaussian noise (GN) with varying standard

deviations was added to PET and CT patient and phantom

images. A custom program was used to apply noise with vary-

ing standard deviation to phantom images using the following

Gaussian function (pg):
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where m is mean noise added, s is standard deviation, and z is

gray level. The CT noise images were created with standard

deviations of 10, 20, 50, 80, and 120 Hounsfield units (HU).

These will be referred to as GN10, GN20, GN50, GN80, and

GN120 henceforth. The PET noise images were created with

standard deviations of 2.5%, 4.0%, and 6.0% of the maximum

intensity (not SUV). These will be referred to as low noise,

medium noise, and high noise. The PET images had varying

standard deviations due to the variation in maximum intensities

(not an issue in phantoms but very significant in patient

images). Although the GN120 noise level may represent

greater levels of electronic noise than expected in a scanner,

we believe this was necessary to clearly distinguish noise-

affected features. The low noise levels of GN10 and GN20

were included to demonstrate how small noise levels affect the

image feature analysis. The higher noise levels were included

to show the gross effects of noise on feature analysis. As

demonstrated by Latifi et al, low-dose 4D CT settings some-

times involve high levels of noise.19

The specific activity (SA) of the ACR phantom was cal-

culated using the activity on the date of source production

(108 274.4 Bq/cm3 on March 20, 2013), the date of mea-

surement (February 18, 2014), and the volume of the source

(58.1 cm3). The measured SA was calculated using Mirada

DBx (Mirada RTx; Mirada Medical, Oxford, United King-

dom). Mean counts (105 527 Bq/cm3) and standard devia-

tion (2927.7 Bq/cm3) were obtained from the cylindrical

region of interest (24.4 cm3) inside the volume of interest

(VOI). The reciprocal of the coefficient of variation, or

SNR, which was 2.7% from the noise contribution in the

phantom data, was calculated.

Signal-to-Noise Ratio and Noise Power Spectrum

To understand the noise inherent in the images and to quantify

the noise added to the images, the SNR and noise power spec-

trum (NPS) of the scanner was calculated. The NPS, represen-

tative of the noise texture of an image (used primarily in CT

modalities), was calculated using the Ge-68 phantom. The

SNR, representative of the amplitude of noise in an image, was

also calculated on the phantom for both PET and CT modalities

to verify and quantify the addition of noise to the images.

The SNR of a GE Discovery STE PET/CT scanner was

measured with the Ge-68 phantom with activities of 0.62 and

0.79 mCi. The phantom was scanned with 70-cm field of view

(FOV), 120 kV, 210 mA, 28 subsets, 2 iterations, and Full-

Width-Half-Maximum (FWHM) of 7 mm for 3D PET/CT and

60-cm FOV, 120 kV, 200 mA, 28 subsets, 2 iterations, and

FWHM of 7 mm for 4D PET/CT. To calculate the CT SNR,

medical imaging software (Mirada RTx, Mirada Medical) was

used to draw five 4-cm spheres onto the phantom image (Figure

1A). For PET SNR, two 4-cm spheres were drawn on the

phantom image. One sphere was inside the Ge-68 source, and

the other was in a nonradioactive region inside the phantom

(Figure 1B). The SNR was calculated using Equations 2, 3,

and 4:

Signal ! s ¼
Xn

i¼1 HUi

h i
; ð2Þ

Noise! �s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1 s
2
i

q� �
; ð3Þ

SNR! SNR ¼ s

�s

h i
; ð4Þ

where s is the signal, HU i is the mean HU for region i; n is the

number of regions; is the mean standard deviation across all

VOIs; and si is the standard deviation for region i.

A CT image of the Ge-68 phantom was used to calculate the

NPS of the GE PET/CT scanner at our institution. Ten axial

slices, 4 regions per slice, were selected in the uniform region

of the phantom. A gain correction was applied by subtracting

the mean value of the regions, and the Fourier transform was

applied to each region to create a 2-dimensional (2D) NPS.

Forthwith, a 1-dimensional NPS was plotted from the 2D noise

power data (Figure 2) by radial averaging.

Patient Study

Thirty-one patients (13 males and 18 females) having non–

small cell lung cancer with 3D and RG PET/CT images were

retrospectively selected for this study with ages from 47 to

83 years. Thirty-two tumors were assessed. This study was

approved with waived informed consent by the University of

South Florida Institutional Review Board #105996. Standard of

practice procedures at our institution were followed. Gaussian

noise was applied to all 3D and 1 RG phase of PET and CT

patient images according to the method described previously

(Equation 1). Resulting PET and CT data sets consisted of 4

separate image sets for each patient, an original image data set,

and image data sets of low, medium, and high noise for 3D

PET, 4D PET, 3D CT, and 4D CT. Figure 3 demonstrates the

noise levels for PET and CT for 1 case (coronal view).

Feature Extraction

The original and noise-added image sets were imported,

viewed, and contoured with Mirada DBx. Lung tumor contours

were acquired separately for noise and original images. The

PET image tumors were contoured at 40% maximum intensity

inside a defined VOI. On CT images, tumors were contoured

with CT region segmentation. An in-house program extracted

image features for the region represented inside each contour.

Eighty-one image features were extracted: 11 shape features,

22 intensity features, 26 gray-level co-occurrence matrix

(GLCM) features, 11 run-length matrix (RLM) features, and

11 gray-level size zone matrix (GLSZM) features20-23 (see the

supplementary tables for a complete list of features and
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Figure 1. Method of SNR calculation for (A) CT and (B) PET using Ge-68 solid epoxy phantom. CT indicates computed tomography; Ge,

germanium; PET, positron emission tomography.

Figure 2. Method to measure CT noise power spectrum using Ge-68 solid epoxy phantom: (1) gather 4D independent images, (2) apply gain &

offset correction and subtract mean, (3a) take 2D Fourier Transform of each image, (3b) take magnitude of results & square it, (3c) calculate

Average of 40 results, (4) calculate 1D NPS by radial average of the 2D result.
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definitions). The dimension of the co-occurrence matrices were

128 � 128, calculated based on the 3D images with a step size

of 1 voxel in 13 directions. The gray levels were binned into

128 levels with equal intensity intervals for the RLMs. The run

length was calculated with the 3D images in 13 directions.

These 13 directions are defined by Xu et al.24,25

Statistical Analysis on Patient Data

Conventional and 4D PET and CT image feature differences

were evaluated separately resulting in 4 data sets: 3D PET, 3D

CT, 4D PET, and 4D CT. Features from the original images

were compared to image sets with varying GN levels for each

case. Percentage difference was used to compare image fea-

tures extracted from noise images (low, medium, and high

noise) and original images (Equation 5).

%Dif f noiseij ¼ 100� NVij � OVij

OVi

����
����; ð5Þ

where NVij is the value of feature j at noise level i, and OVj is

the value of feature j from the original image. The percentage

differences were averaged for each level of noise across all

patients. Features varying on average by more than 100% were

considered ‘‘nonrobust’’ (those features that are not reliable or

reproducible across noise). Those varying <10% were consid-

ered ‘‘robust.’’ Features were classified into 1 of 11 categories

for CT: R1, R2, R3, R4, R5, NR1, NR2, NR3, NR4, NR5, and

B and 7 categories for PET: R1, R2, R3, NR1, NR2, NR3, and

B. These are defined in Table 1.

In addition to percentage difference, the concordance cor-

relation coefficient (CCC) was calculated for each feature to

assess whether feature values were reproducible at different

levels of noise. The CCC provides the correlation between 2

readings by evaluating the deviation from the 45� line through

the origin.26 This technique has been used in other image

feature analysis studies to quantify the reproducibility of

image features and has been shown superior to the Pearson

correlation coefficient for test–retest experiments.2,26-30 A

full description of the CCC can be found in the studies by

Lin26 and Balagurunathan et al.27 A strength of agreement

classification defined by McBride was used to classify CCC

results (Table 2).31 The mean CCC for each feature subtype

was calculated, and the median and range for each feature

across noise levels were plotted.

Results

Phantom Study

The SNR for PET and CT images behaved as expected by

decreasing as the noise level increased (Figure 4), indicating

that uncorrelated GN increased the image noise. The measured

NPS (Figure 5) showed the noise texture associated with the

scanner at our institution (using the phantom CT image). The

NPS for the original CT image was spatial frequency

Figure 3. One coronal slice of a PET/CT image with and without noise. (A) Original image (B). The CT image with Gaussian noise (s ¼ 120

HU). (C) The PET image without noise. (D) The PET image with Gaussian noise (s ¼ 0.06 � maximum intensity). CT indicates computed

tomography; HU, Hounsfield units; PET, positron emission tomography.
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dependent, indicating correlated noise texture (Figure 5A).

Whereas, the noise power spectra of the CT images with high

levels of added noise were spatial frequency independent, indi-

cating that the addition of GN overwhelmed the correlated

noise inherent to the image generation process (Figure 5D-F).

The noise power spectra of the low noise level images, GN10,

and GN20 (Figure 5B and C) were not completely spatial fre-

quency independent, demonstrating that the inherent scanner

noise power was still represented in part at these levels.

Patient Study

The automatic contouring via intensity threshold in the

lung was not significantly affected by the noise. The R1

(%Diff < 10% for highest added noise; Table 3) features with

%Diff < 3% for 3D CT were peak intensity (<3%), mean

intensity (<3%), root mean square (RMS; <3%, ), I30 (<2%,

intensity ranging from lowest to 30% highest intensity vol-

ume), first-order entropy (<2%), inverse difference moment

(<2%), and inverse difference (<3%). The results were compa-

rable for 4D CT (see Table 3). In addition to the 3D CT R1

features, the 4D CT R1 features included surface area, spheri-

city, short axis, maximum intensity, V10 to V90 (percentage

volume with at least 10% intensity minus percentage volume

with at least 90% intensity), first-order contrast, histogram

entropy, co-occurrence mean, sum average, and long-run

emphasis. Minimum intensity, peak intensity, mean intensity,

RMS, I30, first-order entropy, and inverse difference moment

exhibited differences <1% for 4D CT. No features from the

GLSZM were categorized as R1 features from 3D or 4D CT.

Nonrobust features were defined as features that exhibited

%Diff > 100% for the lowest level of added noise (NR1,

Table 4). The 3D CT NR1 features included V40 (116%, per-

centage volume with at least 40% intensity), V70 (339%, per-

centage volume with at least 70% intensity), and V80 (447%,

percentage volume with at least 80% intensity) from intensity

features, as well as cluster shade (103%) and co-occurrence

variance (151%) from the GLCM, and large-area emphasis

(472%), low-intensity emphasis (LIE; 306%), low-intensity

small-area emphasis (LISAE; 895%), low-intensity large-area

emphasis (LILAE; 495%), high-intensity large-area emphasis

(HILAE; 570%), and intensity variability (IV; 112%) from the

GLSZM. The CT NR1 features for 4D CT included V40 (177%,

percentage volume with at least 40% intensity) from the inten-

sity features and small-area emphasis (1328%), LISAE (1699%),

HISAE (2593%), and HILAE (370%) from the GLSZM.

For PET (3D and RG), shape features that depended

solely on automatically drawn contours were the most sta-

ble. R1 features exhibiting %Diff < 2% included surface/

volume, sphericity (RG only), spherical disproportion (RG

only), compactness, mean intensity, RMS, first-order

entropy (<1%), first-order local homogeneity, histogram

entropy (3D only), second-order entropy (<2%), inverse dif-

ference moment (<1%), inverse difference (<1%), sum

entropy (<2%), information measure of correlation 2

(<2%), and short-run emphasis (<0.5%). The R1 shape,

intensity, GLCM, and GLSZM features were the same for

both 3D PET and RG. The RLM R1 features for RG PET

were the same as 3D PET but also included high gray-level

run emphasis and short-run high gray-level emphasis. There

was 1 GLSZM R1 feature: zone percentage.

The nonrobust features from the lowest level of noise (NR1)

from 3D PET included low gray-level run emphasis (159%),

short-run low gray-level emphasis (160%), and long-run low

gray-level emphasis (156%) from the RLM and LIE (480%),

LISAE (361%), LILAE (1796%), and IV (102%) from the

GLSZM. There were fewer NR1 features from 4D PET. These

features were from the GLSZM and included LIE (578%),

LISAE (768%), and LILAE (758%).

Figure 6 shows the trend between average percentage differ-

ences for feature subgroups. For PET, shape, intensity, and GLCM

features demonstrate an increase in difference with added noise.

In CT, this trend applied only to GLCM and GLSZM features,

only with 3D CT. However, in both PET and CT, shape features

exhibit the least change with uncorrelated noise (<4% average

difference in PET and <13% average difference in CT), and

GLSZM features were the most sensitive to uncorrelated noise.

According to the CCC strength-to-agreement scale by

McBride, feature subtypes responded differently to added noise.

Table 1. Computed Tomography (CT) and PET Feature

Classifications.

Feature Classifications

R1 %Diff < 10% for CT noise level GN120 and PET highest noise

level; robust 1

R2 %Diff < 10% for CT noise level GN80 and PET mid-noise

level; robust 2

R3 %Diff < 10% for CT noise level GN50 and PET lowest noise

level; robust 3

R4 %Diff < 10% for CT noise level GN20; robust 4

R5 %Diff < 10% for CT noise level GN10; robust 5

NR1 %Diff > 100% for CT noise level GN10 and PET lowest noise

level; nonrobust 1

NR2 %Diff > 100% for CT noise level GN20 and PET mid-noise

level; nonrobust 2

NR3 %Diff > 100% for CT noise level GN50 and PET highest noise

level; nonrobust 3

NR4 %Diff > 100% for CT noise level GN80; nonrobust 4

NR5 %Diff > 100% for CT noise level GN120; nonrobust 5

B 10% < %Diff < 100% for CT noise level GN10 and PET lowest

noise level

Abbreviations: GN, Gaussian noise; PET, positron emission tomography.

Table 2. Concordance Correlation Coefficient (CCC) Strength of

Agreement Scale.a

Strength of Agreement CCC Score

High >0.99

Substantial 0.95-0.99

Moderate 0.90-0.95

Poor <0.90

aThis scale originated from McBride.31
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The GLSZM features demonstrated average CCCs below 0.90

for all modalities and all levels of noise (<0.70 for PET and

<0.62 for CT). This demonstrated a poor agreement between the

image features from noise and original images for GLSZM and

supports our percentage difference results. There was a discre-

pancy between PET and CT with the RLM CCC scores. In 3D

PET, the RLM features demonstrated the highest CCC values

across noise levels, followed by the first-order features, shape

descriptors, GLCM, and GLSZM. Although the feature subtypes

had an order, the distinction was not pronounced. Besides the

GLSZM features (all features) and GLCM features (highest level

of noise only), all other average CCCs were >0.90, and thus,

there was a moderate strength to agreement between these fea-

tures derived from noise images and original images for feature

subtypes excluding GLSZM and GLCM.

In 4D PET, the GLCM features demonstrated the highest

CCC values across the highest noise levels, followed by the

GLCM, first-order features, shape descriptors, and GLSZM.

Although the feature subtypes had an order, the distinction was

not pronounced. Besides the GLSZM, all other average CCCs

were >0.95, and thus, there was a substantial strength to agree-

ment between these features derived from noise images and

original images for feature subtypes excluding GLSZM.

In CT, the average CCCs was highest for shape descriptors,

followed by the first-order features, GLCM, RLM, and

GLSZM. There was a clear distinction between the CCC values

for the GLSZM versus all other feature subtypes. Figures 7 and

8 demonstrate the median CCCs for each feature across noise

with the ranges (minimum to maximum) for 3D CT, 4D CT, 3D

PET, and 4D PET.

Discussion

We applied uncorrelated noise to phantom and patient images

to analyze its effect on image features. We found that uncorre-

lated noise effects in GLCM, RLM, and GLSZM features were

generally greater than those seen in shape features. Given what

these texture features seek to measure, this finding is not sur-

prising. Since GLCM, RLM, and GLSZM features measure the

relationships between pixels and the addition of noise (corre-

lated or uncorrelated) alters these relationships, these texture

features would be affected more than shape features that

depend mainly on the contour defining the tumor volume

(VOI). Specifically, the GLCM measures spatial relationships

between pixel pairs and the RLM measures runs of the same

gray level across an image. The GLSZM, introduced by Thi-

bault et al, is an advanced statistical matrix that measures

homogeneity.23,32 All matrices, except the GLSZM, were cal-

culated along multiple directions. Shape features, however, are

based on the size, shape, and convexity of VOI’s contour,

which were essentially not affected by the addition of uncorre-

lated noise.

Adding uncorrelated noise to PET images with large areas

of uptake in the tumor, brain, or bladder resulted in less signif-

icant effect from added noise. The large areas of high uptake

created a bigger dynamic window of intensities, and thus, the

added noise appeared to be less significant. For this reason, in

situations where there are large tumors with high uptake, the

uncorrelated image noise may not be a significant problem in

feature analysis.

We discovered that the effects of Gaussian added noise in

CT were usually smaller in 4D images than 3D images. We

believe that since the original image noise of 4D images was

greater than 3D images, the difference between original image

features and noise image features was not as prominent. This

also affected the CT SNR. The visible trend for PET wherein

feature differences increased as noise increased was less dis-

tinguishable in CT, especially in 4D CT (Figure 6). The added

noise appears to have altered the CT SNR to a greater degree

than PET SNR (see Figure 4A and B). It is clear that at higher

noise levels, beginning at the GN50 noise level, the CT SNR

converges implying that the GN destroys the differences in

Figure 4. Signal-to-noise ratios for: (A) 3D and 4D CT (1 phase) of phantom with motion table and static (3D only). (B) 3D and 4D PET

phantom with motion table and static (3D only). CT indicates computed tomography; 3D, 3-dimensional; 4D, 4-dimensional; PET, positron

emission tomography.

Oliver et al 601



SNR due to acquisition. Figure 4 demonstrates that at the GN50

noise level, the SNR for 4D CT had decreased by a factor of 2.

At the GN120 noise level, the SNR for CT decreased nearly

5 times compared to PET where the SNR decreased by a factor

of 1.

It is interesting that the SNR for 3D PET is lower than that of

4D PET, especially when compared to the CT SNR. This could

be due to motion effects. The 4D PET accounts for motion.

Since PET images are acquired over a long period of time (4

minutes per bed position), when motion is introduced into an

image and not accounted for (as in 3D images) an averaging

effect is introduced into the image and the true tumor location,

size and shape is smeared. We believe this is why the static

PET image and 4D motion images have similar SNRs, and 3D

motion exhibits the lowest SNR. The SNR results in CT were

drastically different from PET. To start, 3D motion had the

highest SNR followed by static and finally 4D motion. Since

CT images are acquired much faster than PET images, in the

order of milliseconds and are much less sensitive to motion, it

makes sense that the static and 3D motion images had the

Figure 5. Noise power spectrum (NPS) of Ge-68 solid epoxy phantom for GE Discovery STE PET/CT scanner with increasing image noise. A,

Original NPS of CT image of phantom. B, The NPS of CT image with added Gaussian noise (s¼ 10 HU). C, The NPS of CT image with added

Gaussian noise (s ¼ 20 HU). D, The NPS of CT image with added Gaussian noise (s ¼ 50 HU). E, The NPS of CT image with added Gaussian

noise (s¼ 80 HU). F, The NPS of CT image with added Gaussian noise (s¼ 120 HU). Y-scale changes from (A) to (F). CT indicates computed

tomography; Ge, germanium; HU, Hounsfield units; PET, positron emission tomography.
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highest SNRs; they received a higher number of counts than 4D

CT. It is also interesting that the PET SNR is considerably

lower (40� for 3D motion) than the CT SNR even for the

original images.

In PET images, the 3D and 4D image feature differences

were comparable. Although there were fewer features in the

NR1 category for 4D PET, differences were not consistently

larger for 3D or 4D PET across all feature subtypes. In addition,

the percentage difference in PET features did not always

increase with respect to added noise. For instance, in the RLM

and GLSZM features, average differences reached the maxi-

mum (4D PET) or minimum (3D PET) percentage difference at

the medium noise level (Figure 6). This could be caused by the

large pixel size in PET, the high level of noise in the image due

to decreased counts, or simply a saturation of the uncorrelated

noise in the image at the low or medium noise levels. Figure 4

demonstrates that the PET SNR did not decrease sharply for 3D

motion, 4D motion, or 3D static PET indicating high levels of

initial image noise.

The finding that shape descriptors were less affected by

noise than GLCM, RLM, and GLSZM features is favorable for

the field of radiation therapy. Increasingly common, the gross

tumor volume (GTV) for radiation treatment planning is con-

toured using both PET and CT. The addition of PET as a

diagnostic tool in radiation therapy has improved GTV defini-

tion and demonstrated a 21% to 100% change in tumor

volumes.33 The PET in radiation treatment planning improves

Table 3. The R1 Features (%Diff < 10%) for CT and PET.

Subtype Feature

3D

CT

4D

CT

3D

PET

4D

PET

Shape Volume P P P P
Surface area P P P
Surface area/volume P P P P
Sphericity P P P
Compactness P P P P
Spherical disproportion P P P P
Long axis P P P P
Short axis P P P
Eccentricity P P
Convexity P P P P

Intensity Minimum intensity P P P P
Maximum intensity P P P
Peak intensity P P P P
Mean intensity P P P P
Standard deviation P P
Coefficient of variation P P
TGV (Total Summed Intensity) P P P P
RMS P P P P
I30 P P P P
I10-I90 P P
V10-V90 P P P
First-order energy P P P
First-order entropy P P P P
First-order contrast P P P
First-order local homogeneity P P
Histogram entropy P P P
Uniformity P P

GLCM Homogeneity P P
Second-order entropy P P
Dissimilarity P P
Co-occurrence mean P P P
Inverse difference moment P P P P
Inverse difference P P P P
Sum average P P P
Sum entropy P P
Difference average P P
Difference variance P P
Difference entropy P P
Info correlation 1 P P
Info correlation 2 P P

RLM SRE P P P P
LRE P P P
HGRE P
SRHGE P
LRHGE

GLNU P P
RLNU P P
RPC P P P P

GLSZM ZP P P

Abbreviations: CT, computed tomography; 3D, 3-dimensional; 4D,

4-dimensional; GLCM, gray-level co-occurrence matrix; GLNU, gray level

nonuniformity; GLSZM, gray-level size zone matrix; HGRE, high gray-level

run emphasis; LRE, long-run emphasis; LRHGE, long-run high gray-level

emphasis; PET, positron emission tomography; RLM, run length matrix;

RLNU, run length nonuniformity; RMS, root mean square; RPC, run percent-

age; SRE, short run emphasis; SRHGE, short-run high gray-level emphasis;

ZP, zone percentage.

Table 4. The NR1 Features (%Diff > 100%) for PET and CT.

Subtype Feature 3D CT 4D CT 3D PET 4D PET

Intensity V40 P P
V70 P
V80 P

GLCM Co-occurrence variance P
Cluster shade P

RLM LGRE P
SRLGE P
LRLGE P

GLSZM SAE P
LAE P
LIE P P P
LISAE P P P
HISAE P
LILAE P P P
HILAE P P
IV P P

Abbreviations: CT, computed tomography; 3D, 3-dimensional; 4D,

4-dimensional; GLCM, gray-level co-occurrence matrix; GLSZM, gray-level

size zone matrix; HILAE, high-intensity large-area emphasis; HISAE, high-

intensity small-area emphasis; IV, intensity variability; LAE, large-area

emphasis; LGRE, low gray-level run emphasis; LIE, low-intensity emphasis;

LILAE, low-intensity large-area emphasis; LISAE, low-intensity small-area

emphasis; LRLGE, long run low gray-level emphasis; PET, positron emission

tomography; RLM, run length matrix; SAE, small-area emphasis; SRLGE,

short run low gray-level emphasis.
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the contouring accuracy of the GTV, which promotes

decreased toxicity to healthy tissue.34,35

The large differences in intensity, GLCM, RLM, and

GLSZM features demonstrate that uncorrelated image noise

affects the image feature analysis. The GLSZM features are

highly unstable, particularly in 3D CT, with average values

nearing 70 000% in some cases but as low as 270% in others.

The full extent of this effect requires further investigation, but

it is clear that image features, especially those from intensity,

GLCM, RLM, and GLSZM are affected by uncorrelated noise.

Investigators who are using large numbers of images from

multiple scanners should be aware of the effects of image noise

on image feature analysis. This was recently illustrated nicely

for correlated noise by the work of Nyflot et al.36 Although we

did not compare results from multiple scanners, quantitative

accuracy in PET/CT is still being established.36 Multicenter

PET/CT trials testing the stability and repeatability of PET data

from different sites demonstrated that the quantitative PET

measurement, SUVs, were within the PET Response Criteria

in Solid Tumors limitations but were higher than in a previous

study conducted in smaller single-center studies.36 Even inside a

single institution, patients imaged on the same scanner demon-

strated SUV differences approaching 50% on test and retest

analysis.37 It is clear that studies involving multiple scanners

should be aware of the effects of image noise on their features.

The noise texture, defined by the measured NPS, was uni-

form in shape for the highest levels of added noise demonstrat-

ing that we had indeed added uncorrelated noise to the images.

This uncorrelated noise is commonly termed ‘‘white noise’’

and in this study is considered random noise of a Gaussian

distribution. A distinct difference existed between noise phan-

tom NPS and original phantom NPS due to the shift from the

inherent correlated noise in the image to uncorrelated GN.

Uncorrelated noise is not the only criteria that affect PET/

CT image features. Nyflot et al tested the effect of correlated

(stochastic) noise on image features, as well as patient size,

lesion size, and image reconstruction method. They determined

how stochastic noise have various effects on different feature

subtypes—what they term ‘‘classes of metrics’’—concluding

that additional standards are warranted for prospective PET

Figure 6. Average percentage differences between noise and original images across feature subtypes for low, medium, and high noise in (A) 3D

CT, (B) 4D CT, (C) 3D PET, and (D) 4D PET. CT indicates computed tomography; 3D, 3-dimensional; 4D, 4-dimensional; PET, positron

emission tomography.
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image feature analysis studies toward predicting clinical outcome

or treatment response.36 Other studies have shown that motion,

bin width, SUV discretization, acquisition modes, and reconstruc-

tion parameters also affect image features, and in some cases, the

extent of these effects is feature dependent.8,36,38,39 A common

conclusion of these studies was that standardization of image

feature analysis in radiomics is needed. We join in agreement

with these studies that standardization is crucial as we look

toward the application of radiomics in radiotherapy and other

fields. We are also advocating for standardization of image

feature analysis, especially in PET/CT, to promote accuracy and

patient safety (if features are applied prospectively) when mea-

suring image features for clinical purposes and to encourage

accurate image feature study comparisons between scanners,

institutions, and manufacturers.

There were limitations to this study. The major limitation of

this study was that we did not have access to the prereconstruc-

tion PET/CT data due to proprietary reasons. This was a retro-

spective study; however, we wanted to determine the effect of

noise on archived patient studies. These limitations affected the

Figure 7. Median CCCs for all CT features—(A) 3D CT and (B) 4D CT—for the levels of noise including GN10, GN20, GN50, GN80, and

GN120 ranges. CCC indicates concordance correlation coefficient; CT, computed tomography; 3D, 3-dimensional; 4D, 4-dimensional; GN,

Gaussian noise.
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approach in which noise was added to the PET/CT images as

typically done.36,40 In typical imaging systems, PET and CT

image noise is integrated into the reconstruction method and

not necessarily additive, except in the case of electronic noise.

Nevertheless, our method still allowed us to measure the sen-

sitivity and degradation of radiomic features due to noise. Our

statistical analysis was also a limit to the study. However, we

applied the CCC that was sufficient to show feature reprodu-

cibility across noise levels. Percentage difference was suffi-

cient to demonstrate feature differences across noise levels.

Conclusion

Uncorrelated noise was added to PET and CT images. Shape,

intensity, GLCM, RLM, and GLSZM image features were

extracted from VOIs, and image features that were nonrobust

with respect to the additional noise were identified. Many

intensity, GLCM, RLM, and GLSZM features varied signifi-

cantly with noise. Percentage change between original and

noise image features increased as noise level increased for

intensity and GLCM features in PET and GLCM, RLM, and

Figure 8. Median CCCs for all PET features—(A) 3D PET and (B) 4D PET—for the levels of noise including low, medium, and high levels of

noise. CCC indicates concordance correlation coefficient; 3D, 3-dimensional; 4D, 4-dimensional; PET, positron emission tomography.
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GLSZM features in CT. The GLSZM features were the most

sensitive to noise both for CT and PET. A good understanding

of feature sensitivity to noise is essential for image feature

analysis and radiomics studies involving a large number of

images from multiple scanners as would be the case in multi-

institutional clinical trials. This study adds support to the pro-

posal for standardization of clinical processes and analysis

involved in radiomics.
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