
Using insights from animal behaviour and behavioural ecology 
to inform marine conservation initiatives

Rohan M. Brookera, William E. Feeneya,b,c, James R. Whited,e, Rachel P. Manassaf, Jacob L. 
Johanseng, and Danielle L. Dixsona,*

aSchool of Marine Science and Policy, University of Delaware, Lewes, DE, U.S.A

bSchool of Biological Sciences, University of Queensland, Brisbane, QLD, Australia

cDepartment of Zoology, University of Cambridge, Cambridge, U.K

dCollege of Tropical and Marine Science, James Cook University, Townsville, QLD, Australia

eARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 
Australia

fWater Studies Centre, School of Chemistry, Monash University, Melbourne, VIC, Australia

gMarine Science Institute, University of Texas, Port Aransas, TX, U.S.A

Abstract

The impacts of human activities on the natural world are becoming increasingly apparent, with 

rapid development and exploitation occurring at the expense of habitat quality and biodiversity. 

Declines are especially concerning in the oceans, which hold intrinsic value due to their biological 

uniqueness as well as their substantial sociological and economic importance. Here, we review the 

literature and investigate whether incorporation of knowledge from the fields of animal behaviour 

and behavioural ecology may improve the effectiveness of conservation initiatives in marine 

systems. In particular, we consider (1) how knowledge of larval behaviour and ecology may be 

used to inform the design of marine protected areas, (2) how protecting species that hold specific 

ecological niches may be of particular importance for maximizing the preservation of biodiversity, 

(3) how current harvesting techniques may be inadvertently skewing the behavioural phenotypes 

of stock populations and whether changes to current practices may lessen this skew and reinforce 

population persistence, and (4) how understanding the behavioural and physiological responses of 

species to a changing environment may provide essential insights into areas of particular 

vulnerability for prioritized conservation attention. The complex nature of conservation 

programmes inherently results in interdisciplinary responses, and the incorporation of knowledge 

from the fields of animal behaviour and behavioural ecology may increase our ability to stem the 

loss of biodiversity in marine environments.
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The marine environment hosts some of the most biodiverse and biologically unique 

ecosystems on the planet, spanning shallow costal coral reefs to deep-water seamounts. 

While their uniqueness confers intrinsic natural value, they also hold huge economic 

importance: as an asset, the world's oceans were recently valued at over $24 trillion USD 

(£17 trillion GBP) per year (Hoegh-Guldberg, 2015) through their support of industries as 

diverse as fisheries, tourism and trade (Doney, Fabry, Feely, & Kleypas, 2009; Dixson, 

Munday, & Jones, 2010; Hoegh-Guldberg, 2015; Hughes, 1994; Hughes, Bellwood, & 

Connolly, 2002; Orr et al., 2005; Roberts et al., 2002). However, similar to their terrestrial 

counterparts, marine ecosystems have been subjected to sustained overexploitation and 

degradation, which in the most extreme cases has led to ecosystem collapse and 

environmental ‘dead zones’ (Botsford, Castilla, & Peterson, 1997; Diaz & Rosenberg, 2008; 

Frank, Petrie, Choi, & Leggett, 2005; Halpern et al., 2008; Hoegh-Guldberg, 2015; Way-cott 

et al., 2009). However, while interdisciplinary conservation efforts have yielded some 

successes (e.g. Gaines, White, Carr, & Palumbi, 2010; Leslie, 2005; Worm et al., 2009), 

biodiversity continues to decline.

This review will provide an overview of some key areas where insights from the fields of 

animal behaviour and behavioural ecology may be able to improve the effectiveness of 

interdisciplinary conservation efforts in marine ecosystems, with a focus on the conservation 

of tropical fish assemblages and fisheries. In particular, we will focus on (1) how 

understanding larval behaviour can be used to maintain recruitment to healthy reefs and 

increase recruitment to degraded habitats, (2) how examining behavioural flexibility could 

help identify extinction risk in resource specialists and inform targeted conservation efforts, 

(3) how determining behavioural variability within populations could assist fisheries 

management and practices, and (4) how determining the relationship between physiology 

and behaviour can aid predictions of climate change effects. Promising avenues for future 

research will be discussed throughout.

Identifying Links Between Larval Behaviour, Habitat Selection and 

Connectivity

How species disperse and why they settle in particular places are questions of central 

importance to conservation biology (Klopfer, 1963; Mestre & Lubin, 2011; Morris, 2003; 

Radovic & Mikuska, 2009; Schulte & Koehler, 2010; Thorpe, 1945). For populations to 

persist, the immigration, emigration, birth rate and death rate must balance to a neutral or 

positive number, and behavioural ecology provides an established route to understanding the 

causes and consequences of these processes. While general similarities exist between the 

population dynamics of terrestrial and marine environments (e.g. Strathmann, 1990), they 

also possess intrinsic differences.
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Behaviour is constrained by the surrounding environment, and the unique circumstances that 

face organisms in marine systems must be considered in order to develop effective 

conservation programmes. Terrestrial and marine habitats most notably differ in their 

biophysical properties, which have fundamental ramifications for the way that individuals 

live and move within their environment. As the density and viscosity of sea water is more 

than 800 times and ∼60 times that of air, respectively, suspended particulate matter in the 

water column provides an easily accessible source of nutrients for small planktonic marine 

organisms. As a result, a variety of marine species have a planktonic dispersal life history 

stage that typically occurs just prior to, or following embryogenesis (Cowen & Sponaugle, 

2009; Leis, 1991), and precedes metamorphosis into their adult form (Schrandt, Powers, & 

Mareska, 2015; Strathmann, 1990). Direct development, in which the organism does not 

exhibit a dispersal larval stage, also occurs in marine organisms but is much rarer than in 

their terrestrial counterparts (Christiansen & Fenchel, 1979). For example, while direct 

development is common in terrestrial vertebrates, only two of thousands of species of coral 

reef-associated fishes are known to display this developmental mode (Allen & Steene, 1995; 

Robertson, 1973). Given the period of time spent in the pelagic environment prior to 

settlement, planktonic larvae generally have the potential to disperse over far greater 

distances than species with direct development (Bernardi & Vangelli, 2004; Doherty, 

Mathers, & Planes, 1994). This has important conservation implications, as seemingly 

allopatric populations can be intimately connected through larval dispersal (Doherty, Planes, 

& Mathers, 1995; Palumbi, 1994). A major challenge in marine protected area design is 

ensuring that a sufficient total area is protected to safeguard the persistence of as many 

species as possible (Claudet et al., 2008; Pe'er et al., 2014). To meet this aim, identifying 

how populations are interconnected by drawing on source-sink/metapopulation theory 

(Pulliam, 1988), as well as incorporating knowledge of recruitment hotspots (e.g. Wen et al., 

2013), and determining the behavioural underpinnings that influence larval recruitment 

patterns (e.g. Dixson, Abrego, & Hay, 2014) are essential.

On the surface, a parallel between marine larval dispersal and dispersal in terrestrial 

organisms, such as flowering plants, may be drawn. However, there are a variety of 

processes that affect marine dispersal and connectivity that do not affect terrestrial 

organisms (Strathmann, 1990). Notably, the larvae of marine animals often possess well-

developed behavioural and sensory abilities that allow them to actively seek out and settle in 

habitats that would not be available to them if their dispersal patterns were solely a function 

of the ocean's currents (Leis, Siebeck, & Dixson, 2011; Queiroga & Blanton, 2005; Young, 

1995). These abilities are present in the larvae of both vertebrate (Buston, Jones, Planes, & 

Thorrold, 2012; Cowen, Hare, & Fahay, 1993; Cowen & Sponaugle, 2009; Kingsford et al., 

2002; Leis, 1982; Leis et al., 2011; North et al., 2008; Paris, Chérubin, & Cowen, 2007; 

Swearer et al., 2002) and invertebrate species (Butman, 1987; Carriker, 1951; Dixson et al., 

2014; Hadfield & Koehl, 2004; Vermeij, Marhaver, Huijbers, Nagelkerken, & Simpson, 

2010; Wood & Hargis, 1971), and can operate on a surprising variety of geographical scales 

(Kingsford et al., 2002). For example, olfactory stimuli are key for determining the 

availability of potential settlement sites (Atema, Kingsford, & Gerlach, 2002) as well as the 

suitability of particular settlement microhabitats in a variety of marine organisms (von der 

Medan, Cole, & McQuaid, 2015; Vail & McCormick, 2011). Other sources of information 
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that could be used as orientation cues by larval organisms (Queiroga & Blanton, 2005; 

Young, 1995) include tidal currents (Cowen, Lwiza, Sponaugle, Paris, & Olson et al., 2000; 

Forward & Tankersley, 2001; Shanks, 1995), magnetic and celestial positioning (Boles & 

Lohmann, 2003; Smith & Smith, 1998), visual and polarized light (Kobayashi, 1989; Leis & 

Carlson-Ewart, 1999), chemical gradients (Atema, 1995, 1996; Dixson et al., 2008, 2011; 

Kingsford et al., 2002; Leis et al., 2011; Munday, Dixson, et al., 2009), electrical fields 

(Metcalfe, Holford, & Arnold, 1993) and underwater sounds (Montgomery, Jeffs, Simpson, 

Meekan, & Tindle, 2006; Stanley, Radford, & Jeffs, 2012). Of these, a variety of species' 

larvae are known to have well-developed chemosensory and auditory systems, which has 

resulted in research emphases being placed on understanding their importance for larvae 

ecology.

The larvae of coral reef-associated species are particularly well-studied in this regard (Hay, 

2009; Kingsford et al., 2002; Leis et al., 2011). For example, both vertebrate and 

invertebrate larvae can distinguish between preferred and nonpreferred habitats based on 

chemical or auditory cues alone (e.g. Dixson et al., 2014; Stanley et al., 2012), offering 

exciting opportunities to promote ecosystem resilience and recovery through use of cues that 

promote settlement behaviours. Studies are starting to identify chemical compounds that 

influence larval behaviours (DeBose, Lema, & Nevitt, 2008; De Nys et al., 1995; Dixson et 

al., 2014; Dreanno et al., 2006; Ganapiriya, Maharajan, & Kumarasamy, 2012; Rittschof, 

2000), and larvae appear able to obtain detailed information, such as the likely direction of 

origin, concentration and degree of degradation from an olfactory cue (Atema, 1995, 1996; 

Chivers, Dixson, White, McCormick, & Ferrari, 2013; Finelli, Pentcheff, Zimmer, & 

Wethey, 2000; Weissburg & Zimmer-Faust, 1993, 1994). Together these studies raise the 

possibility of artificially synthesizing these cues to promote recruitment to degraded 

habitats. However, for this to be possible we must not only identify the specific sources of 

cues used by larvae but also establish the scales over which these cues are behaviourally 

relevant. Similarly, several studies have estimated that vertebrate larvae may be influenced 

by auditory stimuli at distances spanning 1 km (Egner & Mann, 2005; Mann, Casper, Boyle, 

& Tricas, 2007) to 5–6 km (Wright, Higgs, Belanger, & Leis, 2005, 2008, Wright et al., 

2010) from the source (also see Wright, Higgs, & Leis, 2011), and that healthy reefs produce 

stronger auditory signals than their degraded counterparts (Piercy, Codling, Hill, Smith, & 

Simpson, 2014). Again, this suggests that broadcasting favourable auditory cues may be an 

effective and relatively low-cost tool for manipulating recruitment patterns of marine larvae. 

The incorporation of auditory cues into light traps increases their catch rates (Leis, Carson-

Ewart, Hay, & Cato, 2003; Simpson, Meekan, McCauley, & Jeffs, 2004; Tolimieri, Haine, 

Jeffs, McCauley, & Montgomery, 2004), providing encouraging small-scale evidence for this 

concept.

Modifying current human practices may also be used to positively reinforce or promote the 

recovery of larval settlement. For example, chemical cues derived from terrestrial vegetation 

can act as indicators of suitable fringing reef settlement habitats for larval reef fishes 

(Dixson et al., 2008, 2011). Many terrestrial coastal areas are rapidly being developed and 

converted to agricultural farmlands, increasing the risk that human activities will 

inadvertently have a negative effect on larval recruitment to nearby aquatic coastal 

ecosystems. While little is known about the required concentrations of either positive or 

Brooker et al. Page 4

Anim Behav. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



negative terrestrial derived compounds in marine systems, techniques such as land sharing, 

where agricultural intensity is interdispersed with native terrestrial coastal vegetation in 

order to minimize the net negative effect on local biodiversity (e.g. Phalan, Onial, Balmford, 

& Green, 2011), may prove useful for reducing the impacts of terrestrial human practices on 

recruitment of nearby marine populations. This, in particular, is an interesting area for future 

research. Similarly, while larval organisms can use auditory cues to locate suitable 

settlement habitats, artificial noises, such as those produced by boat activity, can deter 

recruitment behaviours (Holles, Simpson, Radford, Berten, & Lecchini, 2013) and increase 

mortality rates (Nedelec et al., 2014). Minimizing the amount of boat traffic in areas of 

particular conservation concern during recruitment periods may help mitigate the negative 

effects of human activities on marine biodiversity in these areas. Other sensory modes are 

also likely to influence larval settlement behaviours, but in the meantime, developing 

techniques and modifying current practices according to already accumulated knowledge 

may provide cost-effective ways to assist conservation efforts.

Overall, a greater understanding of how larval marine organisms behave and, specifically, 

how environmental cue-modified behaviour affects population dynamics and transport 

pathways, is needed. This information should then be thoroughly incorporated into aspects 

of classic connectivity theory, such as source-sink and self-recruitment dynamics, as well as 

metapopulation theory. By doing so, realistic predictions of how connectivity will be 

affected by habitat loss, and how habitat alterations affect sensory cue generation and 

propagation could be generated. This information is also necessary for the establishment of 

effective marine protected areas that take into account minimum viable habitat size 

requirements.

Behavioural Flexibility, Vulnerability to Habitat Degradation and Minimizing 

Biodiversity Loss

While an animal's habitat provides all the resources that are required for survival, it is likely 

to contain a wider range of resources than are normally used. As with habitat selection, the 

use of resources for food, shelter and other essential requirements is often the result of active 

behavioural decisions by the individual, with the species average existing somewhere along 

an axis from specialist, only selecting a limited range of items from those available, to 

generalist, exhibiting greater selective flexibility (MacNally, 1995). Resource specialists 

evolve when organisms have stable access to preferred resources and often have physical or 

behavioural adaptations that allow them to maximize the efficiency with which they can 

exploit these resources (Forister, Dyer, Singer, Stireman, & Lill, 2011; Futuyma & Moreno, 

1988). When access to preferred resources is not limited, specialists can be expected to hold 

a competitive advantage over more generalist species occupying the same habitat (Caley & 

Munday, 2003); however, these adaptations may be a disadvantage if the preferred resources 

become scarce. Under nonideal conditions, specialists that can successfully switch to 

nonpreferred resources may suffer sublethal effects, such as declines in condition that reduce 

their relative competitiveness (Berumen, Pratchett, & McCormick, 2005). Following this, if 

an individual, population or species is so specialized that it is unable to adequately modify 

its behaviour to compensate for changing external circumstances, the overly specialized 
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individuals may suffer lethal consequences and the species may face extinction (Biesmeijer 

et al., 2006; Gaston & Blackburn, 2000; Pintor, McGhee, Roche, & Bell, 2014). Given that 

the preservation of biodiversity is a key aim of conservation biology, identifying drivers of 

specialization, how resource specialists interact with their environment and how declines in 

resource availability will alter the behaviour of these species are key considerations for 

conservation management strategies.

Resource specialists from a diverse range of taxa are found across the marine environment, 

from the polar oceans to shallow tropical seas (e.g. Pitman & Durban, 2012; Stella, 

Pratchett, Hutchings, & Jones, 2011), where they often fulfil important ecological or 

socioeconomic roles (Bellwood, Hoey, & Choat, 2003; Graham & Nash, 2013; Grutter, 

Murphy, & Choat, 2003; Pratchett, 2001). However, as the condition of marine habitats 

steadily declines, specialist species are expected to face the greatest risk of extinction 

following changes in resource availability, while generalist species are expected to increase 

in abundance (Clavel, Julliard, & Devictor, 2010). Despite this prediction, accurate 

assessment of species' vulnerability is often hindered by a limited understanding of (1) the 

exact types of resources used and (2) the degree of behavioural flexibility exhibited at the 

individual, population and species level (Bastiaans & Swanger, 2015). For example, many of 

the organisms found on coral reefs have a critical dependence on reef-building scleractinian 

corals, for food, shelter, or during settlement processes (Bonin, 2012; Cole, Pratchett, & 

Jones, 2008; Stella et al., 2011), with declines in coral cover leading to declines in the 

abundance of many reef-associated species (Jones, McCormick, Srinivasan, & Eagle, 2004; 

Pratchett, Wilson, & Baird, 2006). While the importance of corals for the health, diversity 

and socio-economic viability of reef communities is well documented (Graham, 2014; 

Graham et al., 2011; Pratchett et al., 2008), an increasing body of research into the 

behaviour of coral-associated animals is revealing that many are far more specialized than 

previously thought (Brooker, Jones, & Munday, 2013a, 2013b; Gardiner & Jones, 2010; 

Munday, 2004; Pratchett, 2007; Rotjan & Lewis, 2009; Stella et al., 2011). The degree of 

specialization displayed by these species appears to correlate with extinction risk. For 

example, Munday (2004) found that declines in the abundance in a guild of coral-dwelling 

gobies following coral loss was directly correlated with the breadth of corals that each 

species used as habitat. Likewise, while dramatic declines in the abundance of highly 

specialized coral-feeding fishes have been observed following catastrophic reductions in 

coral abundance (Brooker, Munday, Brandl, & Jones, 2014; Kokita & Nakazono, 2001), 

other more generalist corallivores appear to be somewhat resilient to these changes 

(Pratchett, Wilson, Berumen, & McCormick, 2004). Thus the magnitude of decline appears 

to not only reflect specialization but also the degree of behavioural flexibility that species 

exhibit, with documented local extinctions correlating with declines of certain corals despite 

an abundance of taxonomically similar alternatives (Brooker et al., 2014; Hoverman, 

Cothran, & Relyea, 2014). While coral reef health is often assessed using measures such as 

total coral cover, the high degree of coral specialization inherent within these systems may 

make these broad metrics of limited use when attempting to assess the vulnerability of 

resident organisms. Although currently difficult in practice, including factors such as 

species-level coral community composition in benthic surveys as well as categorizing the 

differential susceptibility of coral species to disturbance (e.g. Marshall & Baird, 2000) may 
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be necessary when identifying potential risks to reef-associated biodiversity as a primary 

research objective.

Much like corals on coral reefs, living organisms are often the primary ecosystem engineers 

within marine environments, creating habitat structure and diversity (Gutiérrez, Jones, 

Strayer, & Iribarne, 2003; Jones, Lawton, & Shachak, 1996, 1997). Examples of biotically 

formed habitats can be found throughout the marine realm, such as macroalgae within 

temperate reef ecosystems (Steneck et al., 2002) or sessile invertebrate communities in many 

deep-water habitats (Rowden et al., 2010). Engineer species are themselves often specialized 

with regards to resource requirements or abiotic tolerance (e.g. Smale & Wernberg, 2013) 

and are also vulnerable to environmental degradation, with interspecific differences in 

vulnerability likely to shift benthic composition towards low-diversity communities 

dominated by tolerant generalist species (Pratchett, Trapon, Berumen, & Chong-Seng, 

2011). As such, declines in total biodiversity may not only follow declines in total resource 

abundance, but also occur as a result of subtle compositional changes to benthic 

communities that reduce niche diversity. Management strategies that aim to preserve benthic 

habitat composition (e.g. by limiting practices such as dredging or those that contribute to 

ocean acidification) or facilitate its creation (e.g. adding hard substratum to otherwise barren 

areas: Baine, 2001) may play a critical role in preserving and facilitating the recovery of 

associated biodiversity. The rapid development of coastal and offshore infrastructure such as 

seawalls or offshore wind farms and turbines (Chapman & Blockley, 2009; Inger et al., 

2009) provides a prime opportunity to consider these possibilities and maintain or increase 

local biodiversity (Inger et al., 2009; Petersen & Malm, 2006; Wilhelmsson, Malm, & 

Öhman, 2006). Numerous success stories exist in which increases to local biodiversity occur 

following the incorporation of factors such as slope angle or complexity into marine 

structure design (reviewed in Dafforn et al., 2015). However, while these opportunities may 

facilitate some species, they could also have deleterious effects on others through the 

creation of deterring noise (Simpson, Purser, & Radford, 2015) or facilitating the 

proliferation of invasive species (Glasby, Connell, Holloway, & Hewitt, 2007), so care must 

be taken when considering these options.

Many species exhibit unrecognized variation with regards to the type or breadth of resources 

targeted, either at the population or interindividual level (Lawton, Cole, Berumen, & 

Pratchett, 2012), and ascertaining this information is important for potential conservation 

initiatives. Within populations, variable resource selection may inadvertently aid 

conservation initiatives by providing a potential buffer against the sudden decline of specific 

resources. While species can often appear highly specialized when populations are viewed in 

isolation, examining variation in resource use across gradients in resource availability can 

help to identify potential behavioural flexibility. For example, while several studies have 

concluded that the chevron butterflyfish, Chaetodon trifacialis, is extremely vulnerable to 

habitat loss due to a species-specific coral diet (Pratchett, 2007), comparisons of resource 

use over its geographical range suggest that its dietary scope is much broader than assumed 

(Lawton & Pratchett, 2012). Given limited resources for targeted conservation, having solid 

estimates of species vulnerability will prove invaluable to resource managers when 

determining conservation priorities.
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By understanding the interspecific dependencies of specialist species, habitat conservation 

efforts can focus on habitat-forming species that have the greatest number of reliant 

specialist species (e.g. Acropora corals or Macrocystis kelps). Some specialized animals also 

play keystone roles within ecosystems, having a disproportionate effect on surrounding 

biodiversity. For this reason, focusing conservation effort towards identifying and ensuring 

the persistence of these specific species may be necessary. For example, macroalgae is a 

pressing threat to coral reef biodiversity as it can rapidly outcompete corals, reducing 

complex habitats into low-diversity systems (Hughes et al., 2007). While many coral reef 

fishes are herbivorous, only a limited number will selectively feed on the species that pose 

the greatest threat (Bellwood, Hughes, & Hoey, 2006). Protection of functionally important 

species or genera (such as Scarus and Sparisoma spp. on the Great Barrier Reef) is therefore 

paramount, and could be achieved though the reduction of targeted fishing pressure via 

community education or the creation or expansion of marine protected area networks. 

Likewise, the cleaner wrasses (Labroides spp.) have a highly specialized diet consisting of 

parasites consumed during cleaning interactions (Grutter, 1996). However, the removal of 

cleaner wrasse from reefs can result in massive declines in the diversity, abundance, 

recruitment and health of local fish communities (Clague et al., 2011; Grutter et al., 2003; 

Sun et al., 2015). As with many coral reef fishes, wild stocks of cleaner wrasse are often 

heavily exploited for the commercial aquarium trade. Reducing pressure on wild stock by 

shifting reliance onto the growing ornamental aquaculture industry may be an achievable 

method of limiting declines in fish diversity.

Incorporating Behavioural Variation into Resource Conservation and 

Management

The ability of an individual, or a population of individuals, to adapt to changing 

circumstances is key to persisting in a changing world. As is the case with the specificity of 

an ecological niche, the degree of behavioural flexibility of an individual or a population can 

be essential for survival if circumstances change (Sih, 2013). Interindividual consistency in 

behavioural tendencies are almost ubiquitously recognized across taxa (reviewed in Gosling, 

2001; Réale, Reader, Sol, McDougall, & Dingemanse, 2007), with individuals differing in a 

variety of behavioural traits (reviewed in: Carter, Feeney, Marshall, Cowlishaw, & Heinsohn, 

2013; Dall, Houston, & McNamara, 2004; Réale et al., 2007). If an individual displays 

consistency in a single behaviour over time or in different contexts, it is termed a 

‘personality’ trait, whereas consistency in the relationship between two or more functionally 

different behaviours is termed a ‘behavioural syndrome’ (Garamszegi & Herczeg, 2012). 

The presence of personality traits and behavioural syndromes implies that an individual is 

constrained to a limited number of behavioural responses, creating cost–benefit trade-offs 

(Kelley, Phillips, & Evans, 2013) that can influence survival (Dingemanse, Both, Drent, & 

Tinbergen, 2004; Downes, 2002; Smith & Blumstein, 2008), reproductive success (Both, 

Dingemanse, Drent, & Tinbergen, 2005; Pruitt & Ferrari, 2011; Sih & Watters, 2005) 

resource acquisition (Webster, Ward, & Hart, 2009) and growth (Meekan, von Kuerthy, 

McCormick, & Radford, 2010). Determining how variable and flexible behavioural traits 

are, both within and between individuals, is critical for understanding the ecology and 

evolution of species, as well as how they will respond to ecological change (Dall et al., 
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2004; Sih, Bell, Johnson, & Ziemba, 2004; Wilson, Clark, Coleman, & Dearstyne, 1994). 

For example, the level of behavioural consistency within populations will directly influence 

distribution and abundance, interspecies interactions, population dynamics (Mittelbach, 

Ballew, & Kjelvik, 2014; Pruitt, Grinsted, & Settepani, 2013; Sih, Cote, Evans, Fogarty, & 

Pruitt, 2012), ecological invasions (Conrad, Weinersmith, Brodin, Saltz, & Sih, 2011; Sih et 

al., 2012) and responses to environmental and ecological shifts (Réale et al., 2007; Sih et al., 

2012). If individuals within a population display a range of behavioural responses to 

ecological change, this may increase that populations overall adaptability and ability to 

persist under novel conditions. It is therefore beneficial to have a spectrum of behavioural 

phenotypes within a population in order to cope with future selective pressures (Powell & 

Gartner, 2011). Therefore, as with resource selectivity, determining variability within 

populations, and taking measures to preserve it, may be an important conservation tool 

(Berger-Tal et al., 2011; Biro & Dingemanse, 2009; McDougall, Réale, Sol, & Reader, 2006; 

Powell & Gartner, 2011; Smith & Blumstein, 2008).

As evolutionary change is thought to happen faster in populations with larger variation in 

behavioural phenotypes, reducing a population's variation may make it vulnerable to 

environmental change (Wolf & Weissing, 2012), which could limit its recovery potential 

(Hutchings & Reynolds, 2004). In marine ecosystems, individual fish and fish populations 

vary consistently in their behaviour and display differences in their behavioural 

heterogeneity (Biro, Beckmann, & Stamps, 2010; Carter & Feeney, 2012). Selective 

pressures that limit variation in behavioural types may reduce the viability of these 

populations to respond or adapt to their environment, and this may already be occurring in 

some exploited populations (Mittelbach et al., 2014). For example, commercial fisheries for 

both fishes and marine invertebrates typically target the largest individuals, indirectly biasing 

populations towards phenotypes with slow growth and early maturation (Biro & Post, 2008; 

Fenberg & Roy, 2008). As individuals with fast growth phenotypes are on average more 

active, bold and aggressive, this makes them more vulnerable to fishing methods that use 

passive gear (such as hook-and-line or traps) compared to their more slow-growing 

conspecifics (Biro & Dingemanse, 2009; Biro & Post, 2008; Wilson, Binder, McGrath, 

Cooke, & Godin, 2011). While at a smaller scale than commercial operations, recreational 

angling methods can also selectively target particular behavioural phenotypes, which may 

have similar effects on fished populations. For example, vulnerability to angling in 

largemouth bass, Micropterus salmoides, correlates with aggression, parental care and 

reproductive fitness (Cooke, Suski, Ostrand, Wahl, & Philipp, 2007; Sutter et al., 2012). 

Trophy fishing also actively targets the largest and most fecund individuals within a 

population (Shiffman et al., 2014). Fisheries policy decisions that take catch size and 

behavioural diversity into account are therefore necessary to ensure population persistence 

and the ongoing viability of fisheries. Imposing maximum as well as minimum size catch 

restrictions, removing incentives for catching large individuals of threatened species, as well 

as selectively targeting species with naturally short life spans, might allow for a greater 

range of personality types to persist in wild populations and allow for a less biased removal 

of personality types.

As the global exploitation of marine fisheries continues to rise, reintroduction and stock 

enhancement programmes are likely to become increasingly important. While captive-bred 

Brooker et al. Page 9

Anim Behav. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reintroduction programmes are commonly used, and despite increased release rates of 

hatchery-reared fishes, many populations have continued to see declines in spawning 

biomass (Blaxter, 2000; Svåsand et al., 2000). This may be because fish raised in hatcheries 

for release are often reared using commercial production techniques that do not emphasize 

preparation for the wild (Petersson, Camargo Valencia, & Järvi, 2014). Consequently, 

released fish can tend to exhibit reduced rates of growth, survival and impaired habitat use 

(Brown & Day, 2002; Tatara, Riley, & Scheurer, 2010), tend to be bolder, more aggressive 

and less experienced with predators than their uncultivated counterparts (Jackson & Brown, 

2011; Sundström, Petersson, Höjesjö, Johnsson, & Järvi, 2004), and often have a limited 

ability to recognize, capture and handle wild prey (Brown & Day, 2002). This is similar to 

results from terrestrial reintroduction programmes, which suggest that captive-reared 

individuals tend to forage less efficiently (Ellis & Nash, 1998; Sol, Timmermans, & 

Lefebvre, 2002), demonstrate poorer antipredator behaviours (Alvarez & Nicieza, 2003; 

Armstrong & Seddon, 2007; Fischer & Lindenmayer, 2000; Koolhaas et al., 1999) and are 

less adept at finding quality territories (Deverill, Adams, & Bean, 1999; Mathews, Orros, 

McLaren, Gelling, & Foster, 2005) than their wild counterparts. Numerous studies have 

examined the possibility of reducing mortality rates of hatchery-reared fishes through the 

behavioural training of juveniles (e.g. Brown & Day, 2002; Brown & Laland, 2001) and 

have delivered some successes. For example, juvenile Atlantic salmon (Salmo salar) reared 

in environmentally enriched conditions take less risks compared to controls (Roberts, Taylor, 

& Garcia de Leaniz, 2011), have improved learning abilities (Salvanes et al., 2013) and 

exhibit greater foraging rates towards novel prey (Rodewald, Hyvaärinen, & Hirvonen, 

2011). However, Petersson et al. (2014) demonstrated that, while prerelease exposure to 

predators improved antipredator responses in hatchery-reared brown trout, Salmo trutta, they 

still lagged behind their wild conspecifics, suggesting that further refinement of these 

techniques is needed.

Improved training success could also be accomplished via exposure to conspecifics that 

exhibit a desired behavioural trait. A number of social animals, including various species of 

fishes, have demonstrated an ability to rapidly acquire the ability to complete novel tasks or 

important antipredator skills through social learning (Griffin & Evans, 2003; Kelley, Evans, 

Ramnarine, & Magurran, 2003; Manassa & McCormick, 2013; Manassa, McCormick, & 

Chivers, 2013), and individual variation in the retention of learned information can also 

influence postrelease survival (Brown, Ferrari, & Chivers, 2013). In their recent paper, 

Brown et al. (2013) suggested methodological approaches such as increasing the strength 

and frequency of conditioning, reducing time between conditioning and release, reducing 

food supply prior to release, conditioning with multiple predator cues and conditioning in an 

appropriate habitat could improve rates of critical information retention in reared fish stocks. 

Furthermore, when dealing with group-living species, terrestrial studies suggest that 

established social networks should be maintained for species that depend on social 

interactions (Shier, 2006; Whitehead, 2010). For example, black-tailed prairie dogs, 

Cynomys ludovicianus, translocated in family groups have been shown to be five times more 

likely to survive and reproduce when compared to animals released individually, factors that 

may also prove important for some marine species.
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Physiological Drivers of Animal Behaviour Across Biomes and Climate 

Threats

In addition to considering the life histories, ecological niches and behavioural flexibility of 

species in an area of concern, effective conservation efforts should also consider the external 

and internal stressors that can influence their behaviour (Cooke et al., 2014; Wikelski & 

Cooke, 2006). While it is well known that habitat degradation or exploitation can affect 

critical behavioural patterns, subtle changes in the external environment (e.g. water 

biochemistry and temperature) can cause dramatic physiological and behavioural changes in 

individuals and populations, ultimately leading to reductions in fitness and abundance in 

habitats that would otherwise appear healthy (see Buckley, Waaser, MacLean, & Fox, 2011; 

Cheung et al., 2013; see also Møller, Rubolini, & Lehikoinen, 2008, for terrestrial 

examples). Understanding the connection between physiology and behaviour, particularly 

the behavioural strategies that aquatic and terrestrial organisms typically use to alleviate 

physiological stressors provides a strong theoretical and practical foundation for effective 

conservation strategies (Cooke et al., 2014).

The majority of marine and freshwater organisms are ecto-thermic, making their capacity for 

physical and physiological performance directly related to the ambient water temperature 

(e.g. Pörtner & Farrell, 2008; Pörtner, Schulte, Wood, & Schiemer, 2010). Rising 

temperatures increase the rate of biochemical and cellular processes, which increases the 

energetic cost of activity, growth and reproduction (Baumann, Talmage, & Gobler, 2012; 

Hein & Keirsted, 2012; Pörtner et al., 2010). In fishes, for example, energetic requirements 

generally rise two- to three-fold for every 10 °C increase in temperature (Evans & Claiborne, 

2006), suggesting that the energetic cost of hunting prey can rise significantly during 

warmer summer months, particularly in temperate regions with large seasonal temperature 

fluctuations. If global warming causes the predicted 0.3–4.8 °C increase in mean surface 

temperature by 2100, the basal metabolic maintenance cost of fishes could increase by 30–

40% (Evans & Claiborne, 2006; IPCC, 2015). To preserve energy, individuals can decrease 

their swimming speeds or activity rates. However, species that travel vast distances to spawn, 

or that require large home ranges or that expend relatively high amounts of energy may be 

particularly vulnerable in a warming ocean (Baumann et al., 2012; Johansen, Messmer, 

Coker, Hoey, & Pratchett, 2014). Importantly, it is unlikely that all trophic levels will adapt 

equally to their rapidly changing environment, which may lead to increased top–down 

competition (Graham, 2014; Johansen et al., 2015; Jones et al., 2004; Pratchett et al., 2008) 

and potentially lead to cascading changes in species compositions and abundance across 

ecosystems.

While most predictions for changes to species performance or abundance are based on sound 

theoretical expectations (e2.g. the thermal physiology of ectotherms), many hypotheses can 

be relatively easily tested prior to inclusion in predictive conservation strategies. For 

example, shelter selection and within-habitat settlement patterns are often tightly linked to 

thermal physiological metrics such as aerobic scope. Aerobic scope is the difference 

between standard metabolic rate and maximum metabolic rate, indicating the physiological 

capacity for critical activities at a given temperature. In fishes, aerobic scope has been 
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related directly to hypoxia tolerance (Nilsson, Östlund-Nilsson, & Munday, 2010), 

swimming performance (Johansen & Jones, 2011), competitive dominance (Killen et al., 

2014) and reproductive output (Donelson, McCormick, Booth, & Munday, 2014). Of these, 

hypoxia tolerance is particularly important in tropical coral reef fishes as many species seek 

shelter among coral branches where oxygen levels become depleted at night (Nilsson et al., 

2010). As hypoxia tolerance in fishes is generally dictated by metabolic oxygen demand, 

elevated temperatures, which increase this demand, can force species to vacate established 

night-time shelters and relocate into open habitats with a greater risk of predation (Nilsson et 

al., 2010). Diminished aerobic scope may also compromise maximum oxygen delivery and 

consumption by tissues and muscles, diminishing the ability to swim. Indeed, prolonged 

exposure to elevated temperatures may even have the capacity to reduce maximum 

swimming speeds to such an extent that some fishes may no longer be able to occupy high-

current habitats (Johansen & Jones, 2011). As a result, conservation strategies aimed at 

safeguarding habitat structure or population composition may benefit from an understanding 

of the physiological parameters that can cause temporal changes in habitat shelter selection 

or distribution patterns within habitats.

Most current efforts to conserve heavily fished species consist of bans on fishing during the 

spawning season, an approach that is not always effective (Grüss, Robinson, Heppell, 

Heppell, & Semmens, 2014). Gonadal development and reproduction of many species is 

regulated by photoperiod and temperature, with a long photoperiod often required for 

reproductive stability (e.g. Bapary, Fainuulelei, & Takemura, 2009). As a result, species that 

have a broad latitudinal distribution can exhibit differential onset of courtship, spawning and 

migratory behaviours and may benefit from a corresponding staggering of fishing closures. 

Additionally, global warming is expected to change the onset and conclusion of the breeding 

season of numerous species by limiting reproduction to acceptable thermal windows and 

photoperiods during early spring and late summer (see Pankhurst & Munday, 2011). Similar 

trends are also prevalent in the terrestrial biome, where the timing of bird migrations and 

breeding have advanced significantly in recent decades due to warmer springs (Charmantier 

& Gienapp, 2013; Gill et al., 2014). This change may particularly affect the biodiversity of 

specialist species such as those that are dependent on other species for their reproductive 

efforts (Saino et al., 2009). The tight link between reproductive physiology and ambient 

biophysical conditions suggests that changes in reproductive behaviours, such as the timing 

of migratory movements to spawning and breeding grounds, can potentially be anticipated in 

conservation strategies and form a behaviourally driven basis for management.

Incorporating behavioural mitigation patterns, such as the tendency of populations to 

relocate to more favourable habitats, into conservation strategies is expected to become 

increasingly important as global climatic conditions change in aquatic and terrestrial biomes 

(Booth, Bond, & Macreadie, 2011; Burrows et al., 2011, 2014; Cheung et al., 2009; Dulvy et 

al., 2008; IPCC, 2015; Madin et al., 2012; Molinos et al., 2015; Pinsky, Worm, Fogarty, 

Sarmiento, & Levin, 2013). The environmental conditions found in some marine ecosystems 

may change to become physiologically incompatible with the biology of local species, 

forcing these species to either relocate or face local extinction. For example, most coral reef 

fishes found in the Red Sea and Arabian peninsula are absent from reefs in the Arabian gulf 

where temperatures can reach >35°C during summer months (Al-Rashidi, El-Gamily, Amos, 
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& Rakha, 2009; Burt et al., 2011). The absence of species in the gulf despite suitable habitat 

and food suggests that these species have an upper limit for thermal adaptation (Al-Rashidi 

et al., 2009; Burt et al., 2011). Similarly, recent work on equatorial fish populations has 

revealed reduced capacities to tolerate the 3 °C temperature increase expected by 2100 

(Rummer et al., 2014), while populations at higher latitudes appear better able to tolerate 

comparable temperature rises (Gardiner, Munday, & Nilsson, 2010; McLeod et al., 2015; 

Takahashi, McCormick, Munday, & Jones, 2012). Work by Schurmann, Steffensen, and 

Lomholt (1991) and Killen (2014) has shown that some marine teleosts will actively search 

for habitats with ambient water temperatures that facilitate optimal physiological 

performance and avoid habitats that promote metabolic depression. Therefore, efforts to 

conserve specific habitats should consider both how current conditions benefit the inhabiting 

species and how these conditions may change over time.

While species with short generation times and those species that are not living close to their 

physiological limits may be able to adapt to ocean warming (e.g. Donelson et al., 2014), 

others may not (Munday, Crawley, & Nilsson, 2009; Rummer et al., 2014). There is 

increasing evidence that rising sea temperatures are changing the distributions of thermally 

sensitive marine species, a trend that is expected to increase over time. The species most 

likely to relocate are those with larger body sizes, longer generation times and greater 

mobility (Feary et al., 2014), with low levels of parental care (e.g. broadcast spawners), and 

those with relatively wide latitudinal ranges. To date, more than 360 species of tropical 

fishes spanning 55 different families have been recorded settling in cooler higher-latitude 

regions (Feary et al., 2014), with no species demonstrating the opposite trend of moving to 

lower latitudes following range shrinkage (Feary et al., 2014). However, while some species 

appear able to relocate to compensate for changing environmental conditions, evidence 

suggests that changing climatic conditions will have detrimental effects on the majority of 

affected populations. For example, specialized species should have a limited capacity for 

geographical shifts in habitat use compared to generalist species. Major changes in habitat 

structure and species distribution patterns are therefore expected to create novel ecosystems 

with completely different fish assemblages, dominated by habitat generalists (Graham, 

2014). Such changes will have unpredictable consequences for many species and 

ecosystems, with new stabilization points and species interactions potentially leading to the 

evolution of novel specialists and generalists alike. From a conservation standpoint, 

localized extinctions are inevitable. However, given adequate insight into the physiological 

resilience and physiologically driven behavioural changes of ecologically and economically 

important species, we may be able to formulate effective mitigation strategies and prepare 

industries for expected changes to species distribution and abundance. For example, prior to 

investing heavily in processing plants and infrastructure, it may be valuable for fisheries to 

know whether an important stock is likely to relocate hundreds or thousands of kilometres 

poleward over the next 30–50 years. Informed management and industry investment may 

allow us to reduce the severity of ongoing changes either through increased protection of 

sensitive habitats or catch-regulations that reduce impacts on vulnerable species.
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Conclusions

Incorporating knowledge from the fields of animal behaviour and behavioural ecology into 

conservation initiatives offers a potential avenue for increasing their effectiveness at 

stemming the loss and increasing the recovery of biodiversity. In this review, we have 

discussed this in the context of tropical marine ecosystems, with a particular focus on how 

understanding the ecology and evolution of larval ecology can inform the creation of 

effective protected areas, how behaviours associated with habitat selection and particular 

ecological niches may affect species' vulnerability to population decline and potential for 

recovery, how knowledge of behavioural variation within- and between-populations can be 

affected by external pressures and how it may affect rates of population recovery, and how 

changes to the external environment can affect the physiology and behaviour of marine 

organisms. We suggest how changes to industry practices, such as current commercial 

fishing methods, may stem biodiversity loss and have positive effects on recruitment patterns 

and how conservation efforts that focus on particular ecologically important species (e.g. 

habitat-building corals or cleaner wrasses) may prove particularly important for conservation 

initiatives by promoting natural facilitators of biodiversity. Conservation behaviour and 

animal behaviour/behavioural ecology are intuitively complementary fields of research, and 

the continued intertwining of these fields will continue to provide parallel benefits for both.
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