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Network-based diffusion analysis (NBDA) is a statistical technique for

detecting the social transmission of behavioural innovations in groups of

animals, including humans. The strength of social transmission is inferred

from the extent to which the diffusion (spread) of the innovation follows a

social network. NBDA can have two goals: (a) to establish whether social

transmission is occurring and how strong its effects are; and/or (b) to estab-

lish the typical pathways of information transfer. The technique has been

used in a range of taxa, including primates, cetaceans, birds and fish,

using a range of different types of network. Here I investigate the conceptual

underpinnings of NBDA, in order to establish the meaning of results using

different networks. I develop a model of the social transmission process

where each individual observation of the target behaviour affects the rate

at which the observer learns that behaviour. I then establish how NBDAs

using different networks relate to this underlying process, and thus how we

can interpret the results of each. My analysis shows that a different network

or networks are appropriate depending on the specific goal or goals of the

study, and establishes how the parameter estimates yielded from an NBDA

can be interpreted for different networks.

This article is part of the themed issue ‘Process and pattern in innovations

from cells to societies’.
1. Introduction
In recent years, there has been a substantial interest in better understanding

how and why non-human animals use social information [1–3], and particu-

larly understanding if novel behaviour (innovations) can diffuse through

populations as a result of social transmission (learning from others) [4]. A

capacity for social transmission has been demonstrated in many species using

a traditional demonstrator–observer paradigm [5]. By contrast, recent studies

have focused on studying the diffusion of innovations in freely interacting

groups of animals in the field (e.g. [6,7]) or in captivity (e.g. [8,9]), aiming to

assess the importance of social transmission in the spread of behaviour, and

elucidate typical pathways of transmission. However, in many cases it can be

challenging to determine whether the spread of innovations is caused by

social transmission, or purely the product of asocial learning (see also [10]).

One approach to this problem is to use diffusion data: time-structured data

on the spread of behaviour through a population or group. Network-based dif-

fusion analysis (NBDA) is one such approach which infers social transmission if

the spread of an innovation follows a social network [11,12]. For example, in

1980 a few humpback whales (Megaptera novaeangliae) were observed display-

ing a novel hunting behaviour, called ‘lobtail feeding’ whereby they would

strike the water’s surface with their tails before engaging in their usual

bubble-feeding routine. This innovation diffused through the population over

the course of the next 27 years. NBDA was used to show that the diffusion of

the innovation followed a social network, providing evidence that it spread

by social transmission [6]. In this case, and most applications of NBDA, the
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social network used is a pre-established association network

(e.g. [6,13]) that is assumed to reflect opportunities for learn-

ing between each pair of individuals [12]. However, a

number of different types of social network (e.g. based on

different types of interactions between individuals) can be

constructed and used in an NBDA [14] representing different

hypothetical pathways about the pathways of social trans-

mission. There are two main objectives a researcher might

have in applying an NBDA: (a) to establish whether social

transmission is occurring and how strong its effects are;

and/or (b) to establish the typical pathways of social trans-

mission in a population, group or context. However, it is

not currently well established how an NBDA using each of

the various kinds of networks relates to the underlying

process of social learning. Such a conceptual foundation to

NBDA is required if researchers are to (a) know what kinds

of network can be validly used to validly accomplish each

goal, and (b) interpret the results of an NBDA using a par-

ticular type of network. In this paper, I develop such a

conceptual foundation, by presenting a simple, but realistic

model of the social learning process, whereby observation

of performance of the behaviour offers a naive individual

the opportunity to learn that behaviour pattern for itself.

I then use the model to assess the validity of different

types of social network for each of the two goals, and

establish how the results of an NBDA should be interpreted.

I also use simulations to assess how error in the measured

network impacts on the outputs of an NBDA, and assess

whether error in a network influences the interpretation of

the results.
2. Network-based diffusion analysis
The basic NBDA model states that at time t an individual, i,
learns a target innovation at rate:

liðtÞ ¼ l0 1þ s
X

j

aijzjðtÞ

0
@

1
A(1� ziðtÞ), ð2:1Þ

where l0 is the baseline (asocial) rate of learning, aij is the

social network connection from j to i, zi(t) is the status of indi-

vidual i: informed ¼ 1 (has learned the target behaviour), or

naive ¼ 0, and s is a parameter, fitted to the data, estimating

the strength of social learning relative to asocial learning.

The SjaijzjðtÞ term means that individuals learn at a rate

proportional to their connection to informed individuals,

and the ð1� ziðtÞÞ term means that only naive individuals

can learn. If the diffusion follows the network closely, s is

estimated to be large. The model can be fitted to data giving

only the order in which individuals learn (order of acqui-

sition diffusion analysis or OADA) or the times at which

they learn, in continuous time, or in discrete time periods

(continuous/discrete time of acquisition diffusion analysis

or TADA) [11,12]. TADA has more statistical power, but

OADA makes fewer assumptions about the time course of

asocial learning [12]. In all cases the model is compared

with a null model in which there is no social transmission

(s ¼ 0) to establish the strength of evidence for social trans-

mission. Models can be fitted using maximum-likelihood

[11,12] or Bayesian approaches [15,16]. In this paper, I use

the former approach in simulations owing to its reduced

computational complexity. Code for implementing NBDA in
the R statistical environment [17], along with instructions, can

be found at https://lalandlab.st-andrews.ac.uk/freeware/.

The basic NBDA model given in equation (2.1) has been

expanded so that potentially confounding variables can be

included and statistically controlled for [12] and so that it

can account for a non-constant rate of asocial learning [18].

Franz & Nunn [19] have investigated the effect of inaccuracies

in the times of acquisition data, and Whalen & Hoppitt [16]

have shown that NBDA is robust to departures from the

assumption of a linear relationship between li(t) and aij.

However, little work has been done on the effect of inaccura-

cies in the social network itself. Consequently, in this paper I

assess the effect of various types of inaccuracies that might

affect the recording of the social network aij. But first, I

develop a model of social learning that is more realistic

than the model underlying NBDA (equation (2.1)), at the

mechanistic level, and use this to establish the conceptual

foundations for NBDA.
3. A realistic model of social transmission
Here I develop a simple model of the social transmission pro-

cess that is mechanistically realistic in groups of non-human

animals, i.e. observation of performance of the behaviour

offers a naive individual the opportunity to learn that behav-

iour pattern for itself. The model, and NBDA itself, may

also be applicable to the diffusion of innovations in humans

where the mechanism is relatively simple. However, the

model is not intended to capture ‘complex contagions’

in which transmission relies on interactions with multiple

contacts, and includes mechanisms such as judgement of

credibility and legitimacy of innovations prior to adoption

([20], see also [21,22]). I start from the assumption that each

time an individual i observes the target behaviour being per-

formed by individual j there is a probability, plearn:ij, that i
learns the target behaviour. Therefore, the rate of transmission

from j to i, Tij is given by:

Tij ¼ Oijplearn:ij, ð3:1Þ

where Oij is the rate at which i observes j. We can further break

the model down to:

Tij ¼ Bjpobs:ijplearn:ij, ð3:2Þ

where Bj is the rate at which j performs the behaviour, once

it has learned it, and pobs,ij is the probability that a given per-

formance of the behaviour by j is observed by i. Thus, the rate

at which a naive individual acquires the novel behaviour to its

repertoire, at a given time, t, will be:

liðtÞ ¼ l0 þ
X

j

TijzjðtÞ ¼ l0 þ
X

j

Bjpobs:ijplearn:ijzjðtÞ, ð3:3Þ

where l0 is the rate of asocial learning, and zj(t) gives the

status of individual j at time t (1¼ informed, 0 ¼ naive).

This corresponds closely to the basic NBDA model given in

equation (2.1), where

saij ¼
Tij

l0
¼

Bjpobs:ijplearn:ij

l0
; ð3:4Þ

s is fitted to the data and scales the rate of social transmission

relative to the rate of asocial learning, l0. This is because in

equation (2.1) the rate of transmission from j to i is given

by l0saij, whereas in equation (3.3) this is given by Tij, or,

https://lalandlab.st-andrews.ac.uk/freeware/
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equivalently, Bjpobs:ijplearn:ij. Consequently, the more closely a

social network, aij, approximates Tij, (scale aside) the better it

will tend to predict the order and time of diffusion in an

NBDA. However, the exact meaning of the s parameter, esti-

mated by the NBDA, will depend on exactly what network aij

is used (e.g. association versus interaction networks), as will

the meaning of the model itself, when compared with models

using alternative social networks. One of the key goals of this

paper is to establish how an NBDA should be interpreted

when different types of network are used.

Thus far, I assume that social transmission occurs via

observation, whereas instead it could occur when i encoun-

ters the products of j’s behaviour, as has been observed in

a number of cases of non-human social learning (e.g. [23]).

In such cases the model might still apply: here instead Oij is

the rate at which i encounters the products of j’s behaviour,

and pij is the probability of learning the behaviour from

each encounter. In the remainder of the paper I refer to

cases where social transmission occurs via observation,

but analogous logic applies to cases where the transmission

pathway does not operate via direct observation.

As noted above, there are two main objectives a

researcher might have in applying an NBDA. Aim 1 is to

establish whether social transmission is occurring and how

strong its effects are. For this goal, a researcher ideally

requires a social network that captures the opportunities for

social transmission as directly as possible. Intuitively, the

extent to which the diffusion follows such a network then

reflects the importance of social transmission relative to

asocial learning. Aim 2 is to determine the particular types of

relationship that are important in providing the opportunity

to observe and learn. Here, each network can be seen as a

competing hypothesis, with the aim of NBDA being to estab-

lish which one best approximates the patterns of transmission

among individuals (Tij). Given that part of this goal is to

determine the types of relationship that determine opportuni-

ties to learn, a network that provides a direct quantification of

such opportunities is not a useful predictor variable. In this

paper, I will examine each aim in turn, and with reference to

my simple model of the transmission process, look at the kind

of networks that might be used to address each question.

I also assess the effects error in the measured social

network has on estimates of the importance of social trans-

mission (i.e. Aim 1). It is well known that sampling of

animal interactions and associations can be incomplete,

often because animals are missed during a given sampling

period [24]. In some cases, incomplete sampling is likely to

result in random noise applied to the network. However, of

more concern is the possibility that individuals may be

more likely or less likely to be missed when they are together

than when they are apart, resulting in large network con-

nections being under- or overestimated relative to smaller

ones. Hoppitt & Farine [24] show that the indexes commonly

believed to correct such bias (e.g. the half-weight index [25])

do so by an arbitrary amount, and are likely to either under-

correct or over-correct the bias. It is possible to calculate

corrected association indexes, but this requires calibration

data to assess the degree of error to be corrected, which

may not be possible to obtain in all studies [24]. Thus it is

vital that researchers using association indexes know the

effects that noise and bias might have on their findings.

While work has been conducted on the effect error can

have on inferences about network structure (e.g. [26]), it has
not yet been established what effect noise and bias in the net-

work have in an NBDA. In this paper, I conduct simulations

to address this question.
4. NBDA Aim 1: detecting and quantifying social
transmission

Here the goal is to assess the strength of evidence that social

transmission is operating, and to estimate the effect social

transmission has, with confidence intervals providing a

plausible range. There are two main types of network that

could be used, depending on how closely the diffusion process

was observed and documented.

(a) Observation networks
In an ideal case, a researcher would know exactly when the

innovation was performed, by whom, and who observed

each performance. While such cases might seem rare, it is

possible to attain data close to this level of resolution in

cases where the target behaviour is only performed in a

specific location that can be monitored closely. For example,

Hobaiter et al. [7] applied NBDA to show evidence of social

transmission of a tool using innovation, moss sponging, in

a group of chimpanzees. Moss sponging is the use of pieces

of moss as sponges to obtain water from holes in trees (differ-

ing from the usual use of folded leaves), and the initial spread

was documented at a single water hole. A similar situation

may be easy to achieve empirically using a novel artificial

foraging task (e.g. [27]) that can be monitored closely by

the researcher.

At first glance, one might attempt to fit a model in which

plearn:ij is modelled directly; however, this model deviates

from the form of the standard NBDA. A standard NBDA

assumes that transmission occurs at a rate that is proportional

to a network connection between two individuals, whereas

the model specified in §3 assumes there is a probability of

learning from each discrete observation event. Furthermore,

in order to fit a model in which plearn:ij is estimated directly,

we need to be able to ascertain whether learning has occurred

as a result of a given observation event. The only way we

have to infer this is by observing i perform the behaviour

itself. Therefore, one has to address the question of how

long after observing the behaviour i will perform it, given

learning has occurred. A practical solution is to use an

NBDA that approximates this process, by creating a dynamic

observation network. I define a dynamic observation net-

work, aij(t), as giving the number of times i has observed j
performing the behaviour prior to time t. Hobaiter et al.
[7] extend the NBDA model to allow use of a dynamic net-

work. This model assumes that social transmission occurs

at a rate that is proportional to the number of times the be-

haviour has been observed in the past. This model is

perhaps less realistic than that specified above, because it

seems improbable that an individual can continue to learn

an innovation as a result at observing it at some time in the

past, and that the effect of all such observations on the rate

of learning would be cumulative. But the model might be

used to approximate the case where plearn:ij ¼ plearn is constant

across individuals.

An alternative is to use a static network, where aij gives

the number of times i observed j up until the point at
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which i learned the behaviour [7]. However, a static obser-

vation network does not fully allow for the time course of

observations. For example, imagine a group of three individ-

uals: A, B and C. A learns the behaviour first. Next, B

observes A performing the behaviour three times and then

learns the behaviour. Finally, C observes A performing the

behaviour four times and subsequently learns the behaviour

last. A static network would represent the network as having

links of strength 3 from A to B and 4 to C, so an NBDA model

based on this network would predict that C was more likely

to learn second. In reality, we might expect B to be more

likely to learn second, because B observed A performing

the behaviour first. A dynamic network allows us to incor-

porate this information into the NBDA. Supporting this,

Hobaiter et al. [7] found that an NBDA using a dynamic

observation network had substantially more power than an

NBDA using a static observation network.

Use of an observation network has the advantage that even

when there is no social structure in the population, social trans-

mission can be inferred if the chance order in which individuals

observe the behaviour predicts the order of diffusion (this is

illustrated in the simulation below). If plearn ¼ 0, then we

would not expect the diffusion to follow the observation net-

work, and we would expect the s parameter in the NBDA not

to be significantly greater than 0. Likewise, the greater plearn

is, the greater our estimate of s will be, although s does not

give an estimate of plearn. However, one can use the estimate

of s to estimate the proportion of learning events that occurred

by social transmission (as opposed to asocial learning), allow-

ing an interpretable measure of social transmission to be

obtained. For each acquisition event, e, at time te, one calculates

the probability of social transmission as:

psocial,e ¼
saijðteÞzjðteÞ

1þ saijðteÞzjðteÞ
, ð4:1Þ

then takes the mean of psocial,e across acquisition events to esti-

mate the proportion that occurred via social transmission (see

[6] for more details).

To test the performance of observation networks I simu-

lated data from the model specified in equation 3.2 (see

electronic supplementary material for details). I found that

type 1 error rate was appropriate if slightly conservative,

with the null hypothesis being rejected in 3.1% of cases

when plearn:ij ¼ 0. Power increased rapidly as plearn:ij increased,

showing that the dynamic network NBDA is able to detect

social transmission occurring by the more realistic model

even in the absence of any social structure (see electronic sup-

plementary material, figure S1a; power is increased in the

presence of underlying social structure, see electronic sup-

plementary material, figure S2). However, the model did

tend to slightly overestimate the proportion of events that

occurred by social learning, with the true value lying above

the 95% confidence intervals in more than 5% of simulations

(see electronic supplementary material, figure S1b).

A concern with use of a dynamic observation network

arises if the target behaviour is performed in a specific

location or locations. For example, the moss sponging docu-

mented by Hobaiter et al. [7] was performed at a particular

water hole. In these cases, a recorded observation for i may

simply indicate that i was in the area appropriate for

performing/learning the behaviour, and thus have been

more likely to learn the target behaviour in the near future.

Such an effect may look like social transmission in the
NBDA. Hobaiter et al. [7] address this problem by including

a variable giving each individual’s exposure to the relevant

location in the NBDA, and thus statistically controlling for

it. Ideally exposure would be included as a time-varying vari-

able (e.g. proportion of time spent in the target area each day)

to allow for the possibility that patterns of changing exposure

correlate with patterns of observation.

In conclusion, if detailed data are available on when the

target behaviour is performed, by whom, and who observed

each performance, use of a dynamic observation network is

the most direct way to detect and quantify the effects of

social transmission.
(b) Association networks
In most cases, researchers will not be able to document every

performance and observation of the target innovation, but

have a good idea of the order in which (and potentially

times at which) individuals learned the target behaviour. In

such cases, one can use an association network, where aij rep-

resents the proportion of time i spends associating with j (see

[24,28,29] for reviews of techniques for estimating association

networks). The assumption is that individuals can only learn

from one another when they are associating; thus the rate of

transmission from j to i, Tij, will be proportional to aij. For this

logic to be valid, the criterion for i to be recorded as associat-

ing with j has to be specified at the appropriate spatial scale

[30]. Individuals recorded as associating must be within a

range at which observation can occur, whereas individuals

not recorded as associating must tend to be at a distance at

which observation is not possible. This is the case in Allen

et al.’s [6] aforementioned humpback whale study, where

the study was conducted over an area of approximately

1000 square miles. In contrast, other studies on captive

groups of birds [8,31] have used a criterion for association

based on proximity (e.g. nearest neighbour) within an enclo-

sure of a few square metres—meaning that dyads not recorded

as associating are still able to observe one another’s behaviour.

The discussion in this section pertains to the former kind of

association network, whereas I return to the interpretation of

the second kind, which I refer to as ‘small-scale association

networks’ in §5b. Note that if patterns of association are

known to change over the course of the diffusion, a dynamic

association network aij(t) could be used.

In an NBDA using an appropriate association network,

aij is an estimate of pobs:ij, with Bj ¼ B and plearn:ij ¼ plearn

assumed to be approximately constant across individuals

(though variation in learning rates can be modelled using

individual covariates [8]). Therefore, from equation (3.4),

the s parameter can be taken as an estimate of Bplearn=l0, the

rate at which information is transmitted from an informed to

a naive individual during periods when they are associating,

relative to the rate of asocial learning.

Alternatively, there may be variation in Bj, which is

implicitly assumed to be constant in the standard NBDA.

However, if data are available on the rate at which each indi-

vidual performs the behaviour once they have learned it, this

can be used to weight the association network and account

for this variability [13]. Here, aij is replaced by Wjaij, where

the transmission weight Wj is an estimate of Bj. This means

that the meaning of the s parameter is now changed. From

equation (3.3), in a weighted NBDA s now estimates

plearn:ij=l0, i.e. the probability of learning each time i observes
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j perform the target behaviour, relative to the rate of asocial

learning. However, the estimated proportion of events can

still be calculated from equation (4.1) by replacing aij with

Wjaij, allowing some comparison between weighted and un-

weighted NBDAs. In the electronic supplementary material I

present simulations showing both that inclusion of trans-

mission weights can increase statistic power to detect social

learning and that models with transmission weights fit the

data better, as judged by Akaike’s information criterion,

AICc. This suggests that if transmission weights are available,

they should be included in the analysis if they decrease

AICc, as this indicates the model is more realistic and may

result in better power to detect social transmission. However,

these simulations also show that if transmission weights are

not available, but a researcher suspects variation in Bj, he/

she can still use an un-weighted NBDA as a valid means to

detect and quantify social transmission. Note that transmission

weights can be used with other types of networks too, where

there is measured variation in performance rate (see §5d).
0160418
(c) Effects of error in the social network
Error could potentially arise in both dynamic observation

networks and, as outlined above, in association networks.

Here I conduct simulations to assess the effect of such error

on the detection of social transmission and the estimates of

its importance using NBDA. Full details of the simulations

outlined below are provided in the electronic supplementary

material. Note that the purpose of the simulations presented

in this paper is not to draw general inferences about the

power of NBDA for given values of s, or the relative power

of OADA and TADA, which depend on sample size, network

structure and whether asocial learning occurs at a constant

rate [18]. Rather, the aim is to see how NBDA responds to

errors in network structure.

When using an observation network researchers do not

know for sure when an observation has occurred, because

it is difficult to know what a subject is attending to (especially

with non-human animals). In reality, some kind of proxy is

used, such as: individuals within 1 m, with head orientated

towards the performer and with an unobstructed view [7].

Potentially, individuals recorded as observers might not

really have been observers, and some observers might have

been missed (e.g. if they are outside the threshold distance).

Critics of the use of observation networks might suggest

that this uncertainty renders the results unreliable. I re-ran

the simulations and analyses described in §4a, varying the

degree of error in the network: i.e. the probability an individ-

ual recorded as an observer really was an observer (pobsjRobs).

For all values of pobsjRobs, the type 1 error rate remained

approximately constant at 2.9–3.3%, showing that error in

identifying observers does not increase the risk of a spurious

social transmission effect (see figure 1a,c). Instead, power to

detect social transmission was reduced as pobsjRobs decreased

(see figure 1b), accompanied by a tendency to underestimate

the proportion of events occurring by social transmission (see

figure 1d ). This counteracts the tendency of the dynamic net-

work NBDA to overestimate the importance of social

transmission. Only when observers are identified with very

high reliability (which is probably unachievable in practice)

are overestimates produced. This means that researchers

using a dynamic observation network should consider their

estimates to be slightly conservative if good data on observers
are available, and highly conservative if only a crude proxy

for observation can be obtained.

Next I investigate the robustness of an NBDA using an

association network when aij is not a perfect estimate of

pobs:ij. First I assess how the method is affected when the aij

has random noise, perhaps as a result of sampling error

when collecting association data. Alternatively this could be

due to variation in plearn:ij, causing Tij not to be directly

proportional to aij. I simulated diffusion data from equation

(3.4). I then simulated an association network as ‘recorded’

by the researcher, by adding random noise to the network

before it was input into the NBDA (OADA and continuous

TADA variants). For all levels of noise, the type 1 error rate

remained less than 5%, showing that random noise in the net-

work does not result in an increased risk of detecting a

spurious social transmission effect. As expected, power

increases with increasing values of s, and is greater for

TADA than for OADA. In the OADA power was reduced as

network noise increased; however this effect was not seen in

the TADA (see electronic supplementary material, figure

S3a,b). When no noise was present, 95% confidence intervals

for s contained the true value 95–98% of the time, showing

these to be appropriate or slightly too wide. However, as

noise increased, both OADA and TADA showed a tendency

to underestimate the true value of s (see figure 2a,b). Overall,

this means that if a researcher suspects there is random noise

in the association network: a positive result for social trans-

mission can still be trusted, and 95% confidence intervals for

s may be conservative (underestimate s). The same is true for

the estimated proportion of events by social transmission

(equation (4.1)) because this is calculated from s.

Another possibility is that there is systematic bias in the

network. If all connections in the network are overestimated

or underestimated by the same factor, this has little effect on

the analysis, because it merely scales the network. If network

connections are overestimated, s will be estimated as smaller

than its true value and vice versa. However, the proportion of

learning events estimated to have occurred by social trans-

mission will be unchanged, as will the fit of the model to

the data. A potentially more serious concern is when larger

values of aij tend to be overestimated, and smaller values

underestimated, or vice versa. This could occur if members

of each dyad are more or less likely to be observed when

they are together than when they are alone [24]. I investigate

the effect of such bias by repeating the simulations described

above but with systematic bias in the ‘recorded’ network

instead of random noise. I did this by transforming each aij

as aij ¼ aij þ (aij 2 0.5) � bias, where bias , 0 means small

network connections are overestimated relative to large

ones and bias . 0 means large network connections are

overestimated relative to small ones.

In all cases type 1 error rate remained less than 5%, show-

ing that bias in the network does not result in an increased

risk of detecting a spurious social transmission effect.

There was little effect on statistical power in either the

OADA or the TADA (see electronic supplementary material,

figure S3c,d). When small network connections were overesti-

mated relative to large ones (bias , 0), 95% confidence

intervals contained the true value of s in .95% of cases,

suggesting the 95% were too broad (underestimated the

level of precision) (see figure 2c,d). In contrast, when large

network connections tended to be overestimated relative to

small ones (bias . 0) the 95% CIs tended to underestimate
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the true value of s, sometimes to a severe extent. For example,

an OADA when s ¼ 4 and bias ¼ 0.25, in 92.4% of simulations

the true value was below the 95% confidence interval. There

is no indication that bias can result in confidence intervals that

are too narrow, or a tendency to overestimate s. Overall, if a

researcher suspects bias in the network it means the estimates

of s are likely to be conservative, in terms of either the estimated

precision (bias , 0) or the estimated value of s (bias . 0).

None of the sources of noise or bias considered here

inflated the type 1 error rate, and statistical power was

usually not badly reduced. In some cases, confidence inter-

vals were found to be conservative in terms of precision

(too broad) or because they tended to underestimate s. It is

worth noting that if the aim is to compare rates of social

transmission across diffusions (e.g. across species or contexts)

it is important to ensure that association networks are quan-

tified in a consistent manner, so any sources of noise and bias

are consistent across diffusions and do not generate a spurious

difference in social transmission rates.
5. NBDA Aim 2: establishing the typical
pathways of information transfer

Another aim a researcher might have in an NBDA is to eluci-

date the typical pathways of diffusion, by comparing the fit
of alternative NBDA models using different networks. The

objective here may be to determine the particular types of

relationship that are important in providing the opportunity

to observe and learn. For example, in their study of

common ravens (Corvus corax) Kulahci et al. [32] found that

a social network based on affiliative interactions (e.g. allo-

preening and food sharing) predicted the spread of novel

foraging behaviour better than networks based on aggressive

interactions and proximity. Alternatively, NBDA can be used

to assess different hypotheses regarding social learning strat-

egies (i.e. from whom do animals learn?) [2] or directed social

learning [33]. The implicit aim is to identify the network that

best approximates Tij. The logic is that the more closely the

network approximates Tij, the more closely the diffusion

will tend to follow the network, as quantified by AICc.

(Alternatively, Whalen & Hoppitt [16] show that the Wata-

nabe Akaike information criterion WAIC can be used in a

Bayesian NBDA). This logic is supported by the simulations

conducted in §4. For each set of simulations AICc tended

to be lower (better) for the networks that more closely

approximated Tij, with differences becoming more pro-

nounced as the strength of social learning increased (see

electronic supplementary material, figures S6 and S7).

A researcher might have the combined aim of detecting

and quantifying social transmission, but also making infer-

ences about the typical pathways of diffusion. If so, the



0 0.05 0.10 0.15 0.20 0.25 0.30

0

20

40

60

80

100

random noise in network

%
 s

im
ul

at
io

ns

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

%
 s

im
ul

at
io

ns
OADA

true value of s within 95% CI
s underestimated
s over estimated 

–0.2 –0.1 0 0.1 0.2
bias in network

0 0.05 0.10 0.15 0.20 0.25 0.30
random noise in network

TADA

–0.2 –0.1 0 0.1 0.2
bias in network

(a) (b)

(c) (d)

Figure 2. Performance of NBDA using an association network when there was noise (a,b) or bias (c,d ) in the network. The plots show the proportion of simulations
in which the true value of the s parameter (giving the strength of social transmission) was within the 95% CI (circles), overestimated (crosses) or underestimated
(triangles). The horizontal dashed line shows 95%: ideally the true value should be within the 95% CI 95% of the time. The left panels show the performance of the
OADA variant of NBDA, and the right panels show the performance of the TADA variant. Positive bias means that large network connections are overestimated
relative to smaller ones, whereas negative bias means small network connections are overestimated.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160418

7

researcher can include a model with no social transmission

(s ¼ 0) in the model comparison. If no network results in an

AICc that is substantially lower than that yielded from the

asocial model, there is little evidence for social transmission

following any of the networks studied. If there is evidence

for social transmission, the best fitting model can be used

to generate estimates of the strength of social transmission,

on the basis that this model is likely to best approximate

the true Tij. There are a number of types of network that

could be used the elucidate the typical pathways

of information transfer; here I discuss them in turn.

(a) Observation networks
I showed above that a network giving the pattern of obser-

vations that occurred during the course of a diffusion is a

direct and powerful way to detect and quantify social trans-

mission. However, if the goal is to find a network that

approximates Tij, then an observation network will usually

be of little use when used as a predictor in an NBDA. Part

of the goal here is to find a network that predicts the pattern

of observations that is likely to occur during a diffusion (i.e.

approximate Bjpobs:ij). The pattern of observations that

happened to occur in a specific diffusion, when used as a pre-

dictor, cannot tell us anything about what aspects of social

structure influence patterns of observations in general.
Therefore, it will usually make little sense to use an obser-

vation network in an NBDA for this purpose. Instead a

researcher might ask if another network, N, is correlated

with the observation network, and thus assess the case that

the relationships quantified in N are important in determin-

ing opportunities for observation. If N is strongly correlated

with the observation network, and has good predictive

power (low AICc relative to other networks) in an NBDA,

it suggests that N approximates the pathway of diffusion

(Tij) well, and it does so at least in part because it predicts

the pattern of observations (approximates Bjpobs:ij). An excep-

tion occurs if a researcher wishes to test whether social

transmission occurs via observation of the target innovation,

as opposed to an alternative, mutually exclusive pathway,

such as exposure to the products of behaviour. In this case,

an NBDA model using an observation network could be

compared to a model with a network representing that

alternative pathway.

(b) Association and proximity networks
Proximity networks are derived from data on the spatial

relationships among individuals: members of a dyad who

are commonly in close proximity have strong connections

between them. These include association networks, which

quantify the proportion of time members of a dyad spend
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together. In §4b above I argued that an association network

based on data collected on an appropriate spatial scale is an

estimate of pobs:ij. This leads to an interpretation of s as the

rate at which information is transmitted from an informed

to a naive individual during periods when they are asso-

ciating, relative to the rate of asocial learning. However,

proximity networks are often collected on a small spatial

scale, such that the individuals always remain in close proxi-

mity, such as groups housed in captivity (e.g. [8,32]), e.g. by

quantifying which individuals tend to be nearest neighbours,

or within five body lengths. In such cases, association or

relative proximity is not a necessary condition for observation

to occur, e.g. an animal could quite easily observe an individ-

ual that is not its nearest neighbour, or within five body

lengths. Consequently, for such small-scale proximity net-

works, there is no logical guarantee that aij will estimate

pobs:ij. Instead, use of a proximity network in an NBDA rep-

resents the hypothesis that individuals that are often in

spatial proximity to one another will learn from one another

more frequently than individuals that are usually spatially

separated. It may be that another type of network (see

below) may predict Tij better than a proximity network

(e.g. [32]). Even in cases where a proximity or association net-

work is a good estimate of Bjpobs:ij, another network may

approximate Tij better if it better captures variation in plearn:ij.

A question arises as to whether researchers should use

association data that is collected during the course of the dif-

fusion, or whether they should use data collected during a

different period. For example, in their study on squirrel mon-

keys, Cladiere et al. [34] constructed an association network

based on the amount of time dyads spent together in the

area of the foraging task and thus were able to observe one

another solving the task (though they did not use this

for an NBDA, their aims were similar). Intuitively, such a ‘dif-

fusion-specific network’ provides a better proxy for the

observation network than association data collected during

the weeks, months or years preceding the diffusion. For this

reason, such data are likely to be more powerful for detecting

and quantifying the effects of social transmission. However,

for the same reasons as for the observation network, the dif-

fusion-specific network is of little utility for an NBDA aiming

to elucidate the general pathways of diffusion in the popu-

lation. The diffusion-specific network will reflect the chance

patterns of observation that happened to occur in the diffu-

sion, and, therefore, cannot tell us anything about what

aspects of social structure influence patterns of observations

in general. Consequently, a diffusion-specific association

network is suitable for detecting and quantifying social trans-

mission, but not for establishing the typical pathways of

information transfer.
(c) Interaction networks
Researchers often construct social networks based on the rate

at which each dyad interacts, or show a particular type

of interaction (e.g. grooming, fights) [14]. In animal social

network analysis in general, this is often considered to be a

more direct way of quantifying patterns of interactions

among animals, with proximity/association networks pro-

viding an indirect proxy for interaction rate [14]. However,

when used in an NBDA, interaction networks represent a

hypothesis that a particular interaction type predicts the

rate at which individuals learn from one another. As such
there is no reason to think of interaction networks as being

preferable to proximity networks a priori for an NBDA.

Instead, alternative networks can be compared against one

another as competing hypotheses using AICc. Once a sup-

ported model is found, a researcher may wish to use this to

quantify the importance of social transmission. The s parameter

obtained will estimate the rate of social transmission per

unit connection relative to the rate of asocial learning. Thus, s
will be dependent on the scale of the network, and potentially

difficult to interpret. Therefore, I suggest researchers transform

their estimate of s into an estimated proportion of events that

occurred by social transmission using equation (4.1).
(d) Model networks
Instead of using social networks derived from association,

proximity or interaction data, a researcher could construct a

network representing a hypothesis about the pathway of dif-

fusion that is theoretically derived. For example, a hypothesis

that individuals only learn from high-prestige individuals

[35] could be represented by a network, mij, that has mij ¼ 1

when j is a high-prestige individual and mij ¼ 0 otherwise

(I use mij to represent a model network to distinguish it

from the association network, aij, below). This model could

be tested against a model with a homogeneous network (all

mij ¼ 1) to test for a prestige bias in learning, or against

other theoretically derived networks. This allows NBDA to

be used as a tool to test for evidence of evolved social learn-

ing strategies [2,36,37] in contexts and species where

empirical tests (e.g. [38,39–41]) cannot be run.

In an NBDA, a copying bias could be manifested in Bj,

pobs:ij, plearn:ij or some combination of the three. For illus-

tration, imagine we have an evolved strategy ‘copy

individuals of high prestige’. This may be implemented as

a tendency to observe high-prestige individuals more often,

resulting in large values of pobs:ij when j has high prestige.

Alternatively, or in addition, individuals may be more likely

to copy behaviour after they observe it being performed by a

high-prestige individual, resulting in large values of plearn:ij

when j has high prestige. A similar copying bias might

result if high-prestige individuals tend to perform the behav-

iour more once they have learned it (high Bj). This is unlikely

to be a result of an evolved social learning strategy, but none-

theless would result in a similar bias in favour of learning

from high-prestige individuals—i.e. high values of Tij when

j has high prestige.

Therefore, if a researcher uses a binary network represent-

ing a particular copying bias, and finds it is supported, this

provides evidence of a bias in Tij, which could be a result

of bias in any combination of Bj, pobs:ij and plearn:ij. The s par-

ameter obtained will provide an estimate of the rate of

transmission averaged across all relevant dyads (i.e. average

Tij=l0 given mij ¼ 1). However, the analysis could be broken

down further to investigate where the bias lies. If a researcher

has transmission weights Wj providing a good estimate of Bj

(see §4b), he/she can test whether Wj tends to be higher for

the target class (e.g. high prestige) of individuals, to assess

whether there is bias resulting from performance rate. They

can then include Wj in the NBDA: if copying bias still

remains, it suggests there is bias in pobs:ij and/or plearn:ij. The

s parameter now estimates the average of pobs:ijplearn:ij=l0

given mij ¼ 1. If the researcher has an association network,

he/she can test whether aij is correlated with the binary
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model network, e.g. whether aij tends to be higher when j has

high prestige, thus testing for a bias in plearn:ij. The researcher

can then include aij in the NBDA. A social network with con-

nections of strength aijmij with transmission weights Wj

represents the hypothesis that there is (strong) copying bias

in plearn:ij. This can be compared with a weighted model

using the unaltered association matrix aij, representing the

hypothesis of no copying bias in plearn:ij. The s parameter

obtained from an NBDA using the network aijmij with trans-

mission weights estimates plearn:ij=l0 given mij ¼ 1. As yet

there are no studies using this approach to detecting and

breaking down biases in Tij (but see [42] for a similar

approach).
 rans.R.Soc.B
372:20160418
(e) Multiple networks
The approaches described above allow researchers to test

which of a specified set of social networks best approximates

Tij. An alternative approach is to acknowledge that social

transmission might follow more than one pathway, but do

so at different rates. To this end, one can input multiple

networks into an NBDA, each with a separate s parameter

estimated for each network [43]. The NBDA model then

becomes:

liðtÞ ¼ l0 1þ
X

k

sk

X
j

ak,ijzj

0
@

1
Að1� ziÞ, ð5:1Þ

where ak,ij is the kth social network, and sk estimates the rate

of social transmission through that network. This model can

be compared with one in which s parameters are constrained,

e.g. s1 ¼ s2, to test for evidence of a difference in transmission

rate between different pathways. It can also be compared

with models in which there is no transmission along a

specific pathway, e.g. s1 ¼ 0, to test for evidence of social

transmission along that pathway.

It is important to note that there are two ways a researcher

might then quantify and compare the importance of social

transmission in the different networks. The sk parameters esti-

mate the relative strength of social transmission per unit of

network connection. The exact interpretation of sk depends

on the type of network, as shown above. In addition, a

researcher can estimate the proportion of events occurring by

social transmission through each network, N, by modifying

equation (4.1) as follows:

psocial,e ¼
sNaN,ijðteÞzjðteÞ

1þ Skskak,ijðteÞzjðteÞ
, ð5:2Þ

and taking the mean across all acquisition events. Unlike sk,

this figure will also take into account the strength and

number of connections in each network, in estimating the

influence of each network on the diffusion. See [43] for

further discussion of how to quantify the influence of each

network in a multi-network NBDA.

Multi-network NBDA might also provide an improved

approach for detecting biases in social transmission. For

instance, in the example given in §5d, the hypothetical pres-

tige bias model states that only high-prestige individuals

socially transmit the target behaviour. It is perhaps more

realistic to assume that all individuals socially transmit the

behaviour, and test whether high-prestige individuals do so

at a higher rate. One network, m1,ij would contain binary

connections only from high-prestige individuals, whereas
another network m2,ij would contain binary connections

from all other individuals. If a model with s1 . s2 is favoured

over a model with s1 ¼ s2, then it provides evidence of a

prestige bias in Tij. The source of this bias could then be

investigated in an analogous manner to that described in §5d.

Farine et al. [44] used multi-network NBDA to analyse the

pathways by which juvenile zebra finches (Taeniopygia
guttata) socially learn foraging skills. Half of the juveniles

had been exposed to the avian stress hormone corticosterone

(CORT) earlier in life, mimicking the effects of developmental

stress. Farine et al. hypothesized that different social learning

strategies would be used by finches that had experienced

developmental stress (CORT) from those that had not. They

constructed eight different association networks representing

transmission from (1) adults to adults, (2) juveniles to adults,

(3) parents to CORT offspring, (4) adults to unrelated CORT

juveniles, (5) all juveniles to CORT juveniles, (6) parents

to non-CORT offspring, (7) adults to unrelated non-CORT

juveniles, and (8) all juveniles to control juveniles. They

then compared the predictive power of models combining

different combinations of these networks. The results

suggested that all individuals learned exclusively from

adults. Furthermore, they found evidence of a different

social learning strategy between non-CORT-treated juveniles

and CORT-treated juveniles. The former category relied more

on social transmission from their parents (bigger estimate of s
for network 6 than network 7) whereas the latter relied more

(almost exclusively) on social transmission from unrelated

adults (bigger s for network 4 than network 3). This case

study illustrates the potential of multi-network NBDA to

quantify the relative importance of different pathways of

information transmission.
( f ) Other approaches
Given its potential role as a tool for testing for transmission

biases and social learning strategies, NBDA can be compared

with experience-weighted attraction models. McElreath et al.
[45] adapted these models to infer specific social learning

strategies given data on the choices individuals make, and

the choices they observe others making. This approach is

similar to an NBDA, as it is used in §5, insofar as both use

time series of data to make inferences about pathways of

learning. However, NBDA is solely concerned with the acqui-

sition of novel behaviour (innovations) to the repertoire. In

contrast, experience-weighted attraction models are con-

cerned with the choices made by individuals when faced

with a number of different behavioural options (e.g. a

number of ways to solve a foraging task), and whether they

adopt particular social learning strategies in making these

choices. Thus the approaches answer subtly different, and

potentially complementary questions. Some combination of

the two methods might also be useful: an experience-

weighted attraction model might incorporate network data

to account for who is likely to have observed each per-

formance of the target behaviours. It seems likely that

experience-weighted attraction models will have more

power than NBDA to detect social learning strategies from

detailed data (accurate dynamic observation networks),

because they take into account the repeated behaviour of

individuals, rather than the first time they perform a novel

behavioural trait. However, NBDA may be applicable to

sparser datasets (e.g. using only association data).
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6. Conclusion
In summary, an NBDA can have two goals: (1) to detect and

quantify social transmission from diffusion data, and/or

(2) to make inferences about the typical pathways of diffusion

and information transfer in a given species or context. Some

types of social network are only generally appropriate for

the first of these goals. In this paper, I have attempted to

establish the conceptual foundations of NBDA, by showing

how an NBDA using each type of network links to the under-

lying process of learning. I showed that the precise meaning

of the estimate of the key parameter, s, depends on the type of

network that is used. However, I suggested that quantifying

the proportion of learning events that occurred by social

transmission can be used as an additional measure that trans-

fers more easily across analyses using different networks. I

showed that observation networks and association networks

are robust to violations of the assumptions implicit in the

NBDA model, and that such violations are not a cause to
suspect a spurious positive result for social transmission.

However, under some circumstances, biases can arise in esti-

mates of the importance of social transmission, which social

learning researchers should be aware of when interpreting

their results. Finally, I suggested how NBDA might be used

to detect social transmission biases and social learning

strategies using diffusion data. Thus, NBDA might prove a

valuable addition to social learning researchers’ toolkit, in

elucidating the taxonomic distribution of such strategies,

and their relationship to the emergence of traditions and

culture in natural settings.
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